1
|
Ren Y, MacPhillamy C, To TH, Smith TPL, Williams JL, Low WY. Adaptive selection signatures in river buffalo with emphasis on immune and major histocompatibility complex genes. Genomics 2021; 113:3599-3609. [PMID: 34455036 DOI: 10.1016/j.ygeno.2021.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 11/27/2022]
Abstract
River buffalo is an agriculturally important species with many traits, such as disease tolerance, which promote its use worldwide. Highly contiguous genome assemblies of the river buffalo, goat, pig, human and two cattle subspecies were aligned to study gene gains and losses and signs of positive selection. The gene families that have changed significantly in river buffalo since divergence from cattle play important roles in protein degradation, the olfactory receptor system, detoxification and the immune system. We used the branch site model in PAML to analyse single-copy orthologs to identify positively selected genes that may be involved in skin differentiation, mammary development and bone formation in the river buffalo branch. The high contiguity of the genomes enabled evaluation of differences among species in the major histocompatibility complex. We identified a Babesia-like L1 LINE insertion in the DRB1-like gene in the river buffalo and discuss the implication of this finding.
Collapse
Affiliation(s)
- Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Callum MacPhillamy
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Thu-Hien To
- Norwegian University of Life Sciences: NMBU, Universitetstunet 3, 1430 Ås, Norway
| | | | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia; Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia.
| |
Collapse
|
2
|
Endocrine Signals Altered by Heat Stress Impact Dairy Cow Mammary Cellular Processes at Different Stages of the Dry Period. Animals (Basel) 2021; 11:ani11020563. [PMID: 33669991 PMCID: PMC7930950 DOI: 10.3390/ani11020563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Late-gestation heat stress increases blood prolactin and decreases oestrogen concentrations in dry cows. These hormonal alterations may disturb mammary gland remodelling during the dry period, thereby being potentially responsible for the observed production impairments during the subsequent lactation. This project aimed to better understand the molecular mechanisms underlying subsequent impairments in mammary performance after dry period heat stress. For this, we studied the expression of genes encompassing prolactin and oestrogen pathways and key cellular process pathways under different thermal environments and in vitro hormonal milieus. The results of this study revealed that late-gestation heat stress impacted the expression of genes in the mammary gland involved in key cellular processes occurring during the dry period. Furthermore, our results indicated that these modifications are in part modulated by alterations of oestrogen and prolactin signalling. Abstract Hormonal alterations occurring under late gestation heat stress may disturb mammary gland remodelling, resulting in a reduced milk yield during the subsequent lactation. We investigated the effects of an altered endocrine environment on mammary gene expression at different stages of the dry period. Mammary gland biopsies from in vivo-cooled (CL) or heat-stressed (HT) cows were collected at d 3 and 35 relative to dry-off and divided into explants. Explants were incubated in vitro for 24 h in one of three media: Basal: no prolactin or estrogen; CL-mimic: Basal + low prolactin + high 17β-estradiol, or HT-mimic: Basal + high prolactin + low 17β-estradiol. Real time qPCR was used to quantify gene expression. We established that late-gestation heat stress changes the expression of prolactin and oestrogen receptors, downregulates genes involved in apoptosis, autophagy and proliferation at d 3 and upregulates genes related to those cellular processes at d 35. Moreover, compared with in vivo treatments, we showed that the expression of fewer genes was impacted by in vitro treatments which aimed to mimic the hormonal response of cows exposed to a different environment. Further research will continue to uncover the mechanisms behind the production impairments caused by late-gestation heat stress.
Collapse
|
3
|
Zhao X, Ponchon B, Lanctôt S, Lacasse P. Invited review: Accelerating mammary gland involution after drying-off in dairy cattle. J Dairy Sci 2019; 102:6701-6717. [PMID: 31202662 DOI: 10.3168/jds.2019-16377] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/22/2019] [Indexed: 01/20/2023]
Abstract
Bovine mammary gland involution, as a part of the reproductive cycle in dairy cows, is a very important remodeling transformation of the mammary gland for the subsequent lactation. There is considerable incentive to accelerate mammary gland involution to improve udder health, shorten the dry period, and simplify the management process by reducing dietary changes. The complex process of mammary involution is characterized by morphological changes in the epithelial cells and mammary tissue, changes in the composition of mammary secretions, and changes in the integrity of tight junctions. Involution is facilitated by elements of the immune system and several types of proteases and is coordinated by various types of hormones. This review first describes the involution process and then argues for the need to accelerate it. Last, this review focuses on various intervention methods for accelerating involution. Our aim is to provide a comprehensive overview of bovine mammary gland involution as well as potential techniques and new opinions for dry cow management.
Collapse
Affiliation(s)
- X Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada H9X 3V9.
| | - B Ponchon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - S Lanctôt
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - P Lacasse
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| |
Collapse
|
4
|
Mitz CA, Viloria-Petit AM. TGF-beta signalling in bovine mammary gland involution and a comparative assessment of MAC-T and BME-UV1 cells as in vitro models for its study. PeerJ 2019; 6:e6210. [PMID: 30671288 PMCID: PMC6338098 DOI: 10.7717/peerj.6210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
The goal of the dairy industry is ultimately to increase lactation persistency, which is the length of time during which peak milk yield is sustained. Lactation persistency is determined by the balance of cell apoptosis and cell proliferation; when the balance is skewed toward the latter, this results in greater persistency. Thus, we can potentially increase milk production in dairy cows through manipulating apoptogenic and antiproliferative cellular signaling that occurs in the bovine mammary gland. Transforming growth factor beta 1 (TGFβ1) is an antiproliferative and apoptogenic cytokine that is upregulated during bovine mammary gland involution. Here, we discuss possible applications of TGFβ1 signaling for the purposes of increasing lactation persistency. We also compare the features of mammary alveolar cells expressing SV-40 large T antigen (MAC-T) and bovine mammary epithelial cells-clone UV1 (BME-UV1) cells, two extensively used bovine mammary epithelial cell lines, to assess their appropriateness for the study of TGFβ1 signaling. TGFβ1 induces apoptosis and arrests cell growth in BME-UV1 cells, and this was reported to involve suppression of the somatotropic axis. Conversely, there is no proof that exogenous TGFβ1 induces apoptosis of MAC-T cells. In addition to TGFβ1's different effects on apoptosis in these cell lines, hormones and growth factors have distinct effects on TGFβ1 secretion and synthesis in MAC-T and BME-UV1 cells as well. MAC-T and BME-UV1 cells may behave differently in response to TGFβ1 due to their contrasting phenotypes; MAC-T cells have a profile indicative of both myoepithelial and luminal populations, while the BME-UV1 cells exclusively contain a luminal-like profile. Depending on the nature of the research question, the use of these cell lines as models to study TGFβ1 signaling should be carefully tailored to the questions asked.
Collapse
Affiliation(s)
- Charlotte Alexandra Mitz
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
5
|
Tucker HLM, Holdridge J, Parsons CLM, Akers RM. Excess deposition of collagen in mammary glands of tamoxifen-treated Holstein heifers is associated with impaired mammary growth. Domest Anim Endocrinol 2018; 65:49-55. [PMID: 29894894 DOI: 10.1016/j.domaniend.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 01/28/2023]
Abstract
It is established that the ovary and estrogen are essential to bovine mammary development with the onset of puberty. Recent studies have shown that ovariectomy in the very early prepubertal period, well before onset of puberty, also dramatically impairs mammary growth. Similarly, prepubertal heifers treated with the antiestrogen tamoxifen (TAM) also exhibit markedly impaired mammary growth in correspondence with reduced estrogen receptor α (ESR1) expression. Our objective was to evaluate the effect of TAM on the mammary stroma and specifically to determine if the reported decrease in mammary development was related to changes in TAM-induced alterations in the stroma surrounding the mammary parenchyma. Briefly, 16 Holstein heifers calves were randomly assigned to one of 2 treatment groups: TAM-injected or control. Calves were administered TAM (0.3 mg kg1 d1) or placebo from 28 to 120 d of age. At day 120, calves were euthanized and udders removed. Mammary tissue from near the boundary between the parenchyma and surrounding mammary fat pad was collected for histology and morphometric analysis, expression of selected extracellular matrix-related genes, and quantitation of stromal collagen deposition by study of Sirius Red-stained tissue sections imaged with polarized light. Compared with tissue from control heifers, TAM heifers frequently exhibited areas with abundant fibroblasts and mesenchymal cells especially within the intralobular stroma, as well as less complex ductal structures. Among the array of extracellular matrix-related genes tested, only a small difference (P < 0.05) in expression of laminin was found between treatments. The relative tissue area occupied by stromal tissue was not impacted by treatment. However, the deposition of collagen within the stromal tissue was more than doubled (P < 0.0001) in TAM-treated heifers. These data suggest that blocking ESR1 expression with TAM allows for excessive collagen deposition in the stroma surrounding the developing epithelial structures and that this interferes with both the degree of overall mammary parenchymal development, as well as the pattern of normal ductal morphogenesis.
Collapse
Affiliation(s)
- H L M Tucker
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - J Holdridge
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - C L M Parsons
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - R M Akers
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
6
|
Hillreiner M, Müller NI, Koch HM, Schmautz C, Küster B, Pfaffl MW, Kliem H. Establishment of a 3D cell culture model of primary bovine mammary epithelial cells extracted from fresh milk. In Vitro Cell Dev Biol Anim 2017. [PMID: 28643224 DOI: 10.1007/s11626-017-0169-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For the investigation of molecular processes underlying diseases of the bovine mammary gland, primary bovine mammary epithelial cells (pbMEC) are used. They are known to contribute to the innate immune system of the bovine mammary gland. The functionality of pbMEC depends on the maintenance of in vivo characteristics. So far, the optimization of pbMEC culture conditions was intended in a variety of experiments. For this purpose, most of the studies used stable cell lines or primary cells obtained from udder biopsies of slaughtered animals. By contrast, within our study, pbMEC of healthy and first lactating Brown Swiss cows were non-invasively isolated from fresh milk. The non-invasively isolated pbMEC were cultivated on the extracellular matrix-like scaffold Matrigel®. Further, they were challenged with different compositions of proliferation media, containing lactogenic hormones and/or the essential amino acid L-lysine. Changes in expression levels of genes coding for milk proteins and for components of the janus kinase/signal transducers and activators of transcription (JAK-STAT) and mTOR pathways were analyzed by RT-qPCR. The secreted proteins were analyzed by LC-MS/MS measurements. We showed for the first time the establishment of a physiologically functional 3D cell culture model of pbMEC isolated from fresh milk. This represents a primary cell culture model system, based on non-invasive cell collection, that can be used to unravel physiological processes in an unbiased manner.
Collapse
Affiliation(s)
- Maria Hillreiner
- Chair of Animal Physiology and Immunology, Technische Universität München, Freising, Germany
| | - Nadine I Müller
- Chair of Animal Physiology and Immunology, Technische Universität München, Freising, Germany
| | - Heiner M Koch
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Christiane Schmautz
- Chair of Animal Physiology and Immunology, Technische Universität München, Freising, Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany.,Bavarian Biomolecular Mass Spectrometry Center, Technische Universität München, Freising, Germany
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, Technische Universität München, Freising, Germany
| | - Heike Kliem
- Chair of Animal Physiology and Immunology, Technische Universität München, Freising, Germany.
| |
Collapse
|
7
|
Gao Y, Wang Y, Li Y, Xia X, Zhao S, Che Y, Sun Y, Lei L. TGF-β1 promotes bovine mammary fibroblast proliferation through the ERK 1/2 signalling pathway. Cell Biol Int 2016; 40:750-60. [PMID: 27063575 DOI: 10.1002/cbin.10609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/04/2016] [Indexed: 11/06/2022]
Abstract
The abnormal proliferation of bovine mammary fibroblasts (BMFBs) impairs mammary gland development and lactation. Severe manifestations develop into breast fibrosis, leading to the culling of cows and causing serious losses to the dairy industry. Transforming growth factor β1 (TGF-β1) is an important modulator of cell proliferation and extracellular matrix formation; however, limited information is available on BMFBs. In this study, a convenient and stable culture method for BMFBs was established. Treatment with 5 ng/mL of TGF-β1 significantly promoted the proliferation of BMFBs and accelerated the cell cycle. TGF-β1 stimulation for up to 12 h significantly increased the relative ERK1/2 mRNA expression and enhanced the protein expression of p-ERK1/2 and cyclin D1. Conversely, the ERK1/2 inhibitor PD98059 blocked these TGF-β1 effects. Further exploration using a mouse model showed that TGF-β1 significantly increased the proportion of fibroblasts and accelerating the cell transition from the G1 to G2/M phases. In addition, TGF-β1 enhanced the expression of fibrosis markers, α-SMA and I Collagen, which could be blocked efficiently by the PD98059 in mouse mammary gland. Finally, immunofluorescence analysis confirmed that TGF-β1 promoted fibroblast proliferation in healthy dairy cows after normal long-term dietary corn straw roughage supplementation. It is suggested that the diet may promote mammary fibroblast proliferation by raising the level of TGF-β1. Our study provides new insights into how nutrition causes undesirable changes in mammary gland structure.
Collapse
Affiliation(s)
- Yuanyuan Gao
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Yuping Wang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Yingying Li
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Xiaojing Xia
- College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin, China
| | - Shuang Zhao
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Yanyi Che
- College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin, China
| | - Yingying Sun
- College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin, China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin, China
| |
Collapse
|
8
|
Andreotti CS, Pereyra EAL, Baravalle C, Renna MS, Ortega HH, Calvinho LF, Dallard BE. Staphylococcus aureus chronic intramammary infection modifies protein expression of transforming growth factor beta (TGF-β) subfamily components during active involution. Res Vet Sci 2013; 96:5-14. [PMID: 24290236 DOI: 10.1016/j.rvsc.2013.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/01/2013] [Accepted: 11/01/2013] [Indexed: 02/01/2023]
Abstract
The objectives of this study were to determine whether Staphylococcus aureus chronic intramammary infection (IMI) influences protein expression of TGF-β subfamily components and collagen I and to examine the histomorphometric changes that occur in mammary stroma and parenchyma during active mammary gland involution. Twenty-one Holstein non-pregnant cows in late lactation either uninfected or with chronic natural S. aureus IMI were included in this study. Cows were slaughtered at 7, 14 and 21d after cessation of milking and samples for immunohistochemical and morphometric analysis were taken. Protein expression of TGF-β1, TGF-β2 and TGF-β3 was significantly higher in chronically infected quarters than in uninfected controls at the three involution stages studied. Immunostaining of TGF-βR1 and TGF-βR3 and collagen I was significantly higher in S. aureus-infected quarters than in uninfected controls at every involution time evaluated. The percentages of tissue area composed of parenchyma and intralobular stroma were significantly higher in S. aureus-infected than in uninfected quarters. Chronic S. aureus mastitis modifies protein expression of the three TGF-β isoforms and type 1 and 3 receptors, which was associated with changes directed to limit the scope of inflammation and injury to the host.
Collapse
Affiliation(s)
- Carolina S Andreotti
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Elizabet A L Pereyra
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Celina Baravalle
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María S Renna
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Hugo H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Luis F Calvinho
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), C.C. 22 (2300) Rafaela, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| | - Bibiana E Dallard
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|