Chi Z, Wu X, Zhang Q, Zhai F, Xu Z, Zhang D, Chen Q. Titanium-based metal-organic framework MIL-125(Ti) for the highly selective isolation and purification of immunoglobulin G from human serum.
J Sep Sci 2022;
45:3754-3762. [PMID:
35933591 DOI:
10.1002/jssc.202200357]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022]
Abstract
Titanium-based metal-organic framework MIL-125(Ti) was synthesized by the hydrothermal method of terephthalic acid and tetra butyl titanate in N-N dimethylformamide and methanol. MIL-125(Ti) was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, nitrogen adsorption-desorption, energy-dispersive X-ray spectroscopy, zeta potential, scanning electron microscope and transmission electron microscopy. The results showed MIL-125(Ti) could be used as a potential adsorbent for protein separation and purification due to the high specific surface area, high stability and strong hydrophobicity. As a result, MIL-125(Ti) had adsorption selectivity for immunoglobulin G, which was due to hydrogen bond between MIL-125(Ti) and protein. At pH 8.0, the maximum adsorption efficiency of 0.25 mg MIL-125(Ti) for 300 μL 100 μg mL-1 immunoglobulin G was 98.3%, and its maximum adsorption capacity was 232.56 mg g-1 . The elution efficiency of immunoglobulin G was 92.4% by 0.1% SDS. SDS-PAGE result demonstrated the successful isolation of highly purified immunoglobulin G from the human serum. Therefore, a new method of separation and purification of immunoglobulin G in human serum using titanium-based metal-organic framework MIL-125(Ti) as a solid-phase adsorbent was established, which broadened the application scope of metal-organic frameworks. This article is protected by copyright. All rights reserved.
Collapse