1
|
Blanco-Paniagua E, Álvarez-Fernández I, Álvarez-Fernández L, Millán-García A, Merino G. Evaluation of the interaction between the pesticides chlorantraniliprole and imidacloprid with the ATP-binding cassette transporter G2 (ABCG2): In vitro and in vivo assays. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104709. [PMID: 40311789 DOI: 10.1016/j.etap.2025.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Pesticides used in agriculture to control pests can also affect non-target animals, such as livestock and humans, through exposure. Pesticide residues found in animal-derived products like milk serve as evidence of exposure in mammals and may pose health risks due to bioaccumulation. Understanding the mechanisms of elimination and toxicity of pesticides is essential to minimize their negative impact. The ATP-binding cassette (ABC) transporter ABCG2 is a membrane protein involved in xenobiotic biodisposition and milk secretion. Our purpose was to evaluate its role in the in vitro transport and secretion into milk of two pesticides: chlorantraniliprole and imidacloprid. Using MDCK-II cells transduced with ABCG2, we found that they are effectively transported by murine, ovine and bovine ABCG2. In vivo studies using wild-type and Abcg2-/- mice showed that milk concentration of chlorantraniliprole was affected by Abcg2, potentially leading to toxicological effects and contributing to unwanted xenobiotic residues in milk.
Collapse
Affiliation(s)
- Esther Blanco-Paniagua
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Spain.
| | - Indira Álvarez-Fernández
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Spain
| | - Laura Álvarez-Fernández
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Spain
| | - Alicia Millán-García
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Spain
| | - Gracia Merino
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Spain
| |
Collapse
|
2
|
Peka M, Balatsky V. Bioinformatic approach to identifying causative missense polymorphisms in animal genomes. BMC Genomics 2024; 25:1226. [PMID: 39701989 DOI: 10.1186/s12864-024-11126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Trends in the development of genetic markers for the purposes of genomic and marker-assisted selection primarily focus on identifying causative polymorphisms. Using these polymorphisms as markers enables a more accurate association between genotype and phenotype. Bioinformatic analysis allows calculating the impact of missense polymorphisms on the structural and functional characteristics of proteins, which makes it promising for identifying causative polymorphisms. In this study, a bioinformatic approach is applied to evaluate and differentiate polymorphisms based on their causality in genes that affect the production traits of pigs and cows, which are two important livestock species. RESULTS The influence of both known causative and candidate missense polymorphisms in the MC4R, NR6A1, PRKAG3, RYR1, and SYNGR2 genes of pigs, as well as the ABCG2, DGAT1, GHR, and MSTN genes of cows, was assessed. The study included an evaluation of the effect of polymorphisms on protein functions, considering the evolutionary and physicochemical characteristics of amino acids at polymorphic sites. Additionally, it examined the impact of polymorphisms on the stability of tertiary protein structures, including changes in folding, binding of protein monomers, and interaction with ligands. CONCLUSIONS The comprehensive bioinformatic analysis used in this study enables the differentiation of polymorphisms into neutral, where both amino acids in the polymorphic site do not significantly affect the structure and function of the protein, and causative, where one of the amino acids significantly impacts the protein's properties. This approach can be employed in future research to screen extensive sets of polymorphisms in animal genomes, identifying the most promising polymorphisms for further investigation in association studies.
Collapse
Affiliation(s)
- Mykyta Peka
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013, Ukraine.
- V. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv, 61022, Ukraine.
| | - Viktor Balatsky
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013, Ukraine
| |
Collapse
|
3
|
Gunes Y, Blanco-Paniagua E, Anlas C, Sari AB, Bakirel T, Ustuner O, Merino G. Role of the Abcg2 transporter in plasma, milk, and tissue levels of the anthelmintic monepantel in mice. Chem Biol Interact 2024; 398:111117. [PMID: 38906501 DOI: 10.1016/j.cbi.2024.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Breast cancer resistance protein/ATP-binding cassette subfamily G2 (BCRP/ABCG2) is an ATP-binding cassette efflux (ABC) transporter expressed in the apical membrane of cells in tissues, such as the liver, intestine, kidney, testis, brain, and mammary gland. It is involved in xenobiotic pharmacokinetics, potentially affecting the efficacy and toxicity of many drugs. In this study, the role of ABCG2 in parasiticide monepantel (MNP) and its primary metabolite, monepantel sulfone (MNPSO2)'s systemic distribution and excretion in milk, was tested using female and male wild-type and Abcg2-/- mice. Liquid chromatography coupled with a tandem mass spectrometer (LC-MS/MS) was used for the analysis in a 10-min run time using positive-mode atmospheric pressure electrospray ionization (ESI+) and multiple reaction monitoring (MRM) scanning. For the primary metabolite tested, milk concentrations were 1.8-fold higher in wild-type mice than Abcg2-/- female lactating mice (P = 0.042) after intravenous administration of MNP. Finally, despite the lack of a difference between groups, we investigated potential differences in MNP and MNPSO2's plasma and tissue accumulation levels between wild-type and Abcg2-/- male mice. In this study, we demonstrated that MNPSO2 milk levels were affected by Abcg2, with potential pharmacological and toxicological consequences, contributing to the undesirable xenobiotic residues in milk.
Collapse
Affiliation(s)
- Yigit Gunes
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey.
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071, Leon, Spain
| | - Ceren Anlas
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Ataman Bilge Sari
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Tulay Bakirel
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Oya Ustuner
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500, Istanbul, Turkey
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071, Leon, Spain
| |
Collapse
|
4
|
Álvarez-Fernández L, Blanco-Paniagua E, Millán-García A, Velasco-Díez M, Álvarez AI, Merino G. The ABCG2 protein in vitro transports the xenobiotic thiabendazole and increases the appearance of its residues in milk. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104421. [PMID: 38493880 DOI: 10.1016/j.etap.2024.104421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Thiabendazole (TBZ) is a broad-spectrum anthelmintic and fungicide used in humans, animals, and agricultural commodities. TBZ residues are present in crops and animal products, including milk, posing a risk to food safety and public health. ABCG2 is a membrane transporter which affects bioavailability and milk secretion of xenobiotics. Therefore, the aim of this work was to characterize the role of ABCG2 in the in vitro transport and secretion into milk of 5-hydroxythiabendazole (5OH-TBZ), the main TBZ metabolite. Using MDCK-II polarized cells transduced with several species variants of ABCG2, we first demonstrated that 5OH-TBZ is efficiently in vitro transported by ABCG2. Subsequently, using Abcg2 knockout mice, we demonstrated that 5OH-TBZ secretion into milk was affected by Abcg2, with a more than 2-fold higher milk concentration and milk to plasma ratio in wild-type mice compared to their Abcg2-/- counterpart.
Collapse
Affiliation(s)
- Laura Álvarez-Fernández
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), 24071, Universidad de León, Campus de Vegazana, León, Spain
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), 24071, Universidad de León, Campus de Vegazana, León, Spain
| | - Alicia Millán-García
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), 24071, Universidad de León, Campus de Vegazana, León, Spain
| | - Miriam Velasco-Díez
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), 24071, Universidad de León, Campus de Vegazana, León, Spain
| | - Ana I Álvarez
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), 24071, Universidad de León, Campus de Vegazana, León, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), 24071, Universidad de León, Campus de Vegazana, León, Spain.
| |
Collapse
|
5
|
Yang L, Han J, Deng T, Li F, Han X, Xia H, Quan F, Hua G, Yang L, Zhou Y. Comparative analyses of copy number variations between swamp buffaloes and river buffaloes. Anim Genet 2023; 54:199-206. [PMID: 36683294 DOI: 10.1111/age.13288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
As an important source of genomic variation, copy number variation (CNV) contributes to environmental adaptation in worldwide buffaloes. Despite this importance, CNV divergence between swamp buffaloes and river buffaloes has not been studied previously. Here, we report 21 152 CNV regions (CNVRs) in 141 buffaloes of 20 breeds detected through multiple CNV calling strategies. Only 248 CNVRs were shared between river buffalo and swamp buffalo, reflecting great variation of CNVRs between the two subspecies. Population structure analysis based on CNVs successfully separated the two buffalo subspecies. We further assessed CNV divergence by calculating FST for genome-wide CNVs. Totally, we identified 110 significantly divergent CNV segments and 44 putatively selected genes between river buffaloes and swamp buffaloes. In particular, LALBA, a key gene controlling milk production in cattle, presented a highly differentiated CNV in the promoter region, which makes it a strong functional candidate gene for differences between swamp buffaloes and river buffaloes in traits related to milk production. Our study provides useful information of CNVs in buffaloes, which may help explain the genetic differences between the two subspecies.
Collapse
Affiliation(s)
- Lv Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiazheng Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Fan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaotao Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fanfan Quan
- Livestock and Poultry Breeding Center of Hubei Province, Wuhan, China
| | - Guohua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| |
Collapse
|
6
|
Secretion into Milk of the Main Metabolites of the Anthelmintic Albendazole Is Mediated by the ABCG2/BCRP Transporter. Antimicrob Agents Chemother 2022; 66:e0006222. [PMID: 35736132 PMCID: PMC9295555 DOI: 10.1128/aac.00062-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Albendazole (ABZ) is an anthelmintic with a broad-spectrum activity, widely used in human and veterinary medicine. ABZ is metabolized in all mammalian species to albendazole sulfoxide (ABZSO), albendazole sulfone (ABZSO2) and albendazole 2-aminosulphone (ABZSO2-NH2). ABZSO and ABZSO2 are the main metabolites detected in plasma and all three are detected in milk. The ATP-binding cassette transporter G2 (ABCG2) is an efflux transporter that is involved in the active secretion of several compounds into milk. Previous studies have reported that ABZSO was in vitro transported by ABCG2. The aim of this work is to correlate the in vitro interaction between ABCG2 and the other ABZ metabolites with their secretion into milk by this transporter. Using in vitro transepithelial assays with cells transduced with murine Abcg2 and human ABCG2, we show that ABZSO2 and ABZSO2-NH2 are in vitro substrates of both. In vivo assays carried out with wild-type and Abcg2-/- lactating female mice demonstrated that secretion into milk of these ABZ metabolites was mediated by Abcg2. Milk concentrations and milk-to-plasma ratio were higher in wild-type compared to Abcg2-/- mice for all the metabolites tested. We conclude that ABZ metabolites are undoubtedly in vitro substrates of ABCG2 and actively secreted into milk by ABCG2.
Collapse
|
7
|
Lei X, Xu X, Liu L, Kuang H, Xu L, Xu C. Immunochromatographic assays for ultrasensitive and high specific determination of enrofloxacin in milk, eggs, honey, and chicken meat. J Dairy Sci 2022; 105:1999-2010. [PMID: 34998562 DOI: 10.3168/jds.2021-20276] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
Enrofloxacin, a veterinary antibiotic that persists in food, poses a risk to human health. Here, a monoclonal antibody against enrofloxacin, 1H12, was prepared based on the hapten ENR-1, and showed excellent sensitivity with a 50% inhibitory concentration (IC50) of 0.03 ng/mL. Using this antibody, 2 lateral-flow immunochromatographic assays were developed for determination of enrofloxacin in egg, milk, honey, and chicken meat samples. The detection ranges (IC20-IC80) were 0.16-0.82 ng/g, 0.24-1.8 ng/g, 0.25-3.6 ng/g, and 0.61-3.9 ng/g by colloidal gold-immunochromatographic sensor (CG-ICS) analysis, and 0.022-0.42 ng/g, 0.054-0.42 ng/g, 0.069-1.4 ng/g, and 0.19-2.2 ng/g by Eu-fluorescence-immunochromatographic sensor (EF-ICS) analysis. The intraassay and interassay recovery rates were 88.9 to 108.5% with coefficients of variation of 1.3 to 7.0% by CG-ICS analysis, and 88.6 to 113.6% with coefficients of variation of 1.3 to 8.1% by EF-ICS analysis. Thus, our newly developed ICS are sensitive and reliable, providing an option for rapid quantitative detection of enrofloxacin in food samples.
Collapse
Affiliation(s)
- Xianlu Lei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China.
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China.
| |
Collapse
|
8
|
Kuhnert L, Giantin M, Dacasto M, Halwachs S, Honscha W. AhR-activating pesticides increase the bovine ABCG2 efflux activity in MDCKII-bABCG2 cells. PLoS One 2020; 15:e0237163. [PMID: 32764792 PMCID: PMC7413513 DOI: 10.1371/journal.pone.0237163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
In bovine mammary glands, the ABCG2 transporter actively secretes xenobiotics into dairy milk. This can have significant implications when cattle are exposed to pesticide residues in feed. Recent studies indicate that the fungicide prochloraz activates the aryl hydrocarbon receptor (AhR) pathway, increasing bovine ABCG2 (bABCG2) gene expression and efflux activity. This could enhance the accumulation of bABCG2 substrates in dairy milk, impacting pesticide risk assessment. We therefore investigated whether 13 commonly used pesticides in Europe are inducers of AhR and bABCG2 activity. MDCKII cells expressing mammary bABCG2 were incubated with pesticides for up to 72 h. To reflect an in vivo situation, applied pesticide concentrations corresponded to the maximum residue levels (MRLs) permitted in bovine fat or muscle. AhR activation was ascertained through CYP1A mRNA expression and enzyme activity, measured by qPCR and 7-ethoxyresorufin-Ο-deethylase (EROD) assay, respectively. Pesticide-mediated increase of bABCG2 efflux activity was assessed using the Hoechst 33342 accumulation assay. For all assays, the known AhR-activating pesticide prochloraz served as a positive control, while the non-activating tolclofos-methyl provided the negative control. At 10-fold MRL concentrations, chlorpyrifos-methyl, diflufenican, ioxynil, rimsulfuron, and tebuconazole significantly increased CYP1A1 mRNA levels, CYP1A activity, and bABCG2 efflux activity compared to the vehicle control. In contrast, dimethoate, dimethomorph, glyphosate, iprodione, methiocarb and thiacloprid had no impact on AhR-mediated CYP1A1 mRNA levels, CYP1A activity or bABCG2 efflux. In conclusion, the MDCKII-bABCG2 cell model proved an appropriate tool for identifying AhR- and bABCG2-inducing pesticides. This provides an in vitro approach that could reduce the number of animals required in pesticide approval studies.
Collapse
Affiliation(s)
- Lydia Kuhnert
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University Leipzig, Leipzig, Germany
- * E-mail:
| | - Mery Giantin
- Division of Veterinary Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro (Padua), Italy
| | - Mauro Dacasto
- Division of Veterinary Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro (Padua), Italy
| | - Sandra Halwachs
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University Leipzig, Leipzig, Germany
| | - Walther Honscha
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Garcia-Lino AM, Blanco-Paniagua E, Astorga-Simon EN, Alvarez-Fernandez L, Garcia-Mateos D, Alvarez-Fernandez I, Alvarez AI, Merino G. Abcg2 transporter affects plasma, milk and tissue levels of meloxicam. Biochem Pharmacol 2020; 175:113924. [PMID: 32217099 DOI: 10.1016/j.bcp.2020.113924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
ATP-binding cassette (ABCG2) is an efflux transporter that extrudes xenotoxins from cells in liver, intestine, mammary gland, brain and other organs, affecting the pharmacokinetics, brain accumulation and secretion into milk of several compounds, including antitumoral, antimicrobial and anti-inflammatory drugs. The aim of this study was to investigate whether the widely used anti-inflammatory drug meloxicam is an Abcg2 sustrate, and how this transporter affects its systemic distribution. Using polarized ABCG2-transduced cell lines, we found that meloxicam is efficiently transported by murine Abcg2 and human ABCG2. After oral administration of meloxicam, the area under the plasma concentration-time curve in Abcg2-/- mice was 2-fold higher than in wild type mice (146.06 ± 10.57 µg·h/ml versus 73.80 ± 10.00 µg·h/ml). Differences in meloxicam distribution were reported for several tissues after oral and intravenous administration, with a 20-fold higher concentration in the brain of Abcg2-/- after oral administration. Meloxicam secretion into milk was also affected by the transporter, with a 2-fold higher milk-to-plasma ratio in wild-type compared with Abcg2-/- lactating female mice after oral and intravenous administration. We conclude that Abcg2 is an important determinant of the plasma and brain distribution of meloxicam and is clearly involved in its secretion into milk.
Collapse
Affiliation(s)
- Alba M Garcia-Lino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Elsa N Astorga-Simon
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Laura Alvarez-Fernandez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Dafne Garcia-Mateos
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Indira Alvarez-Fernandez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Ana I Alvarez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain.
| |
Collapse
|
10
|
Transporters in the Mammary Gland-Contribution to Presence of Nutrients and Drugs into Milk. Nutrients 2019; 11:nu11102372. [PMID: 31590349 PMCID: PMC6836069 DOI: 10.3390/nu11102372] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
A large number of nutrients and bioactive ingredients found in milk play an important role in the nourishment of breast-fed infants and dairy consumers. Some of these ingredients include physiologically relevant compounds such as vitamins, peptides, neuroactive compounds and hormones. Conversely, milk may contain substances-drugs, pesticides, carcinogens, environmental pollutants-which have undesirable effects on health. The transfer of these compounds into milk is unavoidably linked to the function of transport proteins. Expression of transporters belonging to the ATP-binding cassette (ABC-) and Solute Carrier (SLC-) superfamilies varies with the lactation stages of the mammary gland. In particular, Organic Anion Transporting Polypeptides 1A2 (OATP1A2) and 2B1 (OATP2B1), Organic Cation Transporter 1 (OCT1), Novel Organic Cation Transporter 1 (OCTN1), Concentrative Nucleoside Transporters 1, 2 and 3 (CNT1, CNT2 and CNT3), Peptide Transporter 2 (PEPT2), Sodium-dependent Vitamin C Transporter 2 (SVCT2), Multidrug Resistance-associated Protein 5 (ABCC5) and Breast Cancer Resistance Protein (ABCG2) are highly induced during lactation. This review will focus on these transporters overexpressed during lactation and their role in the transfer of products into the milk, including both beneficial and harmful compounds. Furthermore, additional factors, such as regulation, polymorphisms or drug-drug interactions will be described.
Collapse
|
11
|
Hu S, Fang B, Huang Z, Chen Y, Liu D, Xing K, Peng J, Lai W. Using molecular descriptors for assisted screening of heterologous competitive antigens to improve the sensitivity of ELISA for detection of enrofloxacin in raw milk. J Dairy Sci 2019; 102:6037-6046. [PMID: 31056338 DOI: 10.3168/jds.2018-16048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/10/2019] [Indexed: 12/28/2022]
Abstract
The use of the heterologous competitive strategy has become a vital method to improve the sensitivity of ELISA. In this work, we prepared an anti-enrofloxacin (ENR) mAb with ENR-bovine serum albumin (BSA) as immunogen. The molecular descriptors of quinolones were then used to screen heterologous coating antigens for the detection of ENR based on an ensemble learning method to improve the sensitivity of the ELISA. Results indicated that 6 of the 7 selected heterologous competitive antigens could enhance the sensitivity of ELISA. The ELISA sensitivity for the detection of ENR with sarafloxacin-BSA as heterologous coating antigen was improved 10-fold (in PBS) and 6-fold (in milk) compared with that with ENR-BSA as homologous antigen. The strategy can effectively screen suitable heterologous competitive antigens to improve the sensitivity of ELISA, followed by preparation of mAb with no additional modification to the corresponding immunogen.
Collapse
Affiliation(s)
- Song Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Bolong Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhen Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Daofeng Liu
- Jiangxi Province Center for Disease Control and Prevention, Nanchang 330047, China
| | - Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- School of Food Science, Nanchang University, Nanchang 330047, China.
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
12
|
Garcia-Mateos D, Garcia-Lino AM, Alvarez-Fernandez I, Blanco-Paniagua E, de la Fuente A, Alvarez AI, Merino G. Role of ABCG2 in Secretion into Milk of the Anti-Inflammatory Flunixin and Its Main Metabolite: In Vitro-In Vivo Correlation in Mice and Cows. Drug Metab Dispos 2019; 47:516-524. [PMID: 30858238 DOI: 10.1124/dmd.118.085506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/07/2019] [Indexed: 01/10/2023] Open
Abstract
Flunixin meglumine is a nonsteroidal anti-inflammatory drug (NSAID) widely used in veterinary medicine. It is indicated to treat inflammatory processes, pain, and pyrexia in farm animals. In addition, it is one of the few NSAIDs approved for use in dairy cows, and consequently gives rise to concern regarding its milk residues. The ABCG2 efflux transporter is induced during lactation in the mammary gland and plays an important role in the secretion of different compounds into milk. Previous reports have demonstrated that bovine ABCG2 Y581S polymorphism increases fluoroquinolone levels in cow milk. However, the implication of this transporter in the secretion into milk of anti-inflammatory drugs has not yet been studied. The objective of this work was to study the role of ABCG2 in the secretion into milk of flunixin and its main metabolite, 5-hydroxyflunixin, using Abcg2(-/-) mice, and to investigate the implication of the Y581S polymorphism in the secretion of these compounds into cow milk. Correlation with the in vitro situation was assessed by in vitro transport assays using Madin-Darby canine kidney II cells overexpressing murine and the two variants of the bovine transporter. Our results show that flunixin and 5-hydroxyflunixin are transported by ABCG2 and that this protein is responsible for their secretion into milk. Moreover, the Y581S polymorphism increases flunixin concentration into cow milk, but it does not affect milk secretion of 5-hydroxyflunixin. This result correlates with the differences in the in vitro transport of flunixin between the two bovine variants. These findings are relevant to the therapeutics of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Dafne Garcia-Mateos
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Alba Maria Garcia-Lino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Indira Alvarez-Fernandez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Alvaro de la Fuente
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Ana Isabel Alvarez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| |
Collapse
|