1
|
Wang C, An J, Bu L, Liu Y, Liu Q, Guo G, Zhang J, Zhang Y. Effects of biotin and coated cobalamin on lactation performance, nutrient digestion and rumen fermentation in Holstein dairy cows. J Anim Physiol Anim Nutr (Berl) 2024; 108:635-645. [PMID: 38197588 DOI: 10.1111/jpn.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024]
Abstract
Biotin (BI) and cobalamin (CA) are essential for rumen propionate production and hepatic gluconeogenesis. The study evaluated the influence of BI or/and coated CA (CCA) on milk performance and nutrient digestion in cows. Sixty Holstein dairy cows were assigned in a 2 × 2 factorial arrangement and randomised block design to four groups. The factors were BI at 0 or 20 mg/day and CCA at 0 or 9 mg CA/day. Dry matter intake increased with BI addition but was unchanged with CCA supply. Addition of BI or CCA increased fat-corrected milk, milk fat and milk protein yields and feed efficiency. Moreover, lactose yield was increased by CCA addition. Dry matter, organic matter, crude protein and acid detergent fibre total-tract digestibility increased for BI or CCA supply. When CCA was supplemented, positive response of neutral detergent fibre digestibility to BI addition was enhanced. Supplementing BI did not affect pH, propionate content and acetate to propionate ratio, but increased total volatile fatty acids (VFA) and acetate contents. Supplementing CCA decreased pH and acetate to propionate ratio, but increased total VFA, acetate and propionate contents. Rumen protease and carboxymethyl-cellulase activities and fungi, bacteria and Butyrivibrio fibrisolvens numbers increased for BI or CCA supply. In addition, protozoa increased for BI addition, and protease activity and Prevotella ruminicola increased for CCA supply. When CCA was supplemented, positive responses of R. albus and Ruminobacter amylophilus numbers to BI addition were enhanced. Blood glucose concentration was unchanged with BI supply, but increased for CCA supply. Blood nonesterified fatty acids and β-hydroxybutyrate contents reduced with BI or CCA supply. Supplementation with BI or CCA increased blood BI or CA content. The results showed that supplementing BI or/and CCA improved lactation performance and nutrient digestion, and CCA supply did not enhance the lactation performance response to BI supply.
Collapse
Affiliation(s)
- Cong Wang
- Department of Animal Nutrition and Feed Science, College of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jing An
- Department of Animal Nutrition and Feed Science, College of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - LiJun Bu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - YaPeng Liu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Qiang Liu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Gang Guo
- Department of Animal Nutrition and Feed Science, College of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jing Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - YaWei Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
2
|
Girard CL, Duplessis M. Review: State of the knowledge on the importance of folates and cobalamin for dairy cow metabolism. Animal 2023; 17 Suppl 3:100834. [PMID: 37210233 DOI: 10.1016/j.animal.2023.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 05/22/2023] Open
Abstract
Synthesis of B vitamins by the rumen microbiota is usually sufficient to avoid the appearance of clinical deficiency symptoms in dairy cows under normal feeding conditions. Nevertheless, it is now generally accepted that vitamin deficiency is much more than the appearance of major functional and morphological symptoms. Subclinical deficiency, which is present as soon as the supply is lower than the need, causes cellular metabolic changes leading to a loss of metabolic efficiency. Folates and cobalamin, two B vitamins, share close metabolic relationships. Folates act as co-substrates in one-carbon metabolism, providing one-carbon unit for DNA synthesis and de novo synthesis of methyl groups for the methylation cycle. Cobalamin acts as a coenzyme for reactions in the metabolism of amino acids, odd-numbered chain fatty acids including propionate and de novo synthesis of methyl groups. Both vitamins are involved in reactions to support lipid and protein metabolism, nucleotide synthesis, methylation reactions and possibly, maintenance of redox status. Over the last decades, several studies have reported the beneficial effects of folic acid and vitamin B12 supplements on lactation performance of dairy cows. These observations indicate that, even when cows are fed diets adequately balanced for energy and major nutrients, B-vitamin subclinical deficiency could be present. This condition reduces casein synthesis in the mammary gland and milk and milk component yields. Folic acid and vitamin B12 supplements, especially when given together, may alter energy partitioning in dairy cows during early and mid-lactation as indicated by increased milk, energy-corrected milk, or milk component yields without affecting DM intake and BW or even with reductions in BW or body condition loss. Folate and cobalamin subclinical deficiency interferes with efficiency of gluconeogenesis and fatty acid oxidation and possibly alters responses to oxidative conditions. The present review aims to describe the metabolic pathways affected by folate and cobalamin supply and the consequences of a suboptimal supply on metabolic efficiency. The state of knowledge on the estimation of folate and cobalamin supply is also briefly mentioned.
Collapse
Affiliation(s)
- C L Girard
- Centre de recherche et développement de Sherbrooke, Agriculture et agroalimentaire Canada, 2000 rue Collège, Sherbrooke, Québec J1M 0C8, Canada.
| | - M Duplessis
- Centre de recherche et développement de Sherbrooke, Agriculture et agroalimentaire Canada, 2000 rue Collège, Sherbrooke, Québec J1M 0C8, Canada
| |
Collapse
|
3
|
Duplessis M, Lapierre H, Girard CL. Biotin, folic acid, and vitamin B12 supplementation given in early lactation to Holstein dairy cows: Their effects on whole-body propionate, glucose, and protein metabolism. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Duplessis M, Lapierre H, Sauerwein H, Girard CL. Combined biotin, folic acid, and vitamin B 12 supplementation given during the transition period to dairy cows: Part I. Effects on lactation performance, energy and protein metabolism, and hormones. J Dairy Sci 2022; 105:7079-7096. [PMID: 35840411 DOI: 10.3168/jds.2021-21677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 12/31/2022]
Abstract
Biotin (B8), folates (B9), and vitamin B12 (B12) are involved and interrelated in several metabolic reactions related to energy and protein metabolism. We hypothesized that a low supply of one of the latter vitamins during the transition period would impair metabolic status. The purpose of this study was to evaluate the effect of B8 supplementation on the response of lactation performance and selected energy and protein metabolites and hormones to a combined supplementation of B9 and B12 given to periparturient dairy cows, from d -21 to 21 relative to calving. A total of 32 multiparous Holstein cows housed in tie stalls were randomly assigned, according to their previous 305-d milk yield, to 8 incomplete blocks of 4 treatments: (1) a 2-mL weekly i.m. injection of saline (0.9% NaCl; B8-/B9B12-); (2) 20 mg/d of dietary B8 (unprotected from ruminal degradation) and 2-mL weekly i.m. injection of 0.9% NaCl (B8+/B9B12-); (3) 2.6 g/d of dietary B9 (unprotected) and 2-mL weekly i.m. injection of 10 mg of B12 (B8-/B9B12+); and (4) 20 mg/d of dietary B8, 2.6 g/d of dietary B9, and weekly i.m. injection of 10 mg of B12 (B8+/B9B12+) in a 2 × 2 factorial arrangement. Milk yield and dry matter intake were obtained daily and milk components weekly. Blood samples were taken weekly from d -21 to calving and 3 times per week from calving to 21 d following parturition. Prepartum plasma concentrations of glucose, insulin, nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHB), and adiponectin were unaffected by treatments. Biotin, B9, and B12 supplements increased their respective concentrations in plasma and milk. Cows fed the B8 supplement tended to have lower dry matter intake, but only cows in B8+/B9B12- had greater plasma concentrations of NEFA compared with B8-/B9B12-. Milk and total solid yields were greater by 13.5 and 13.9%, respectively, for B8-/B9B12+ [45.5 (standard error, SE: 1.8) and 5.81 (0.22) kg/d, respectively] compared with B8-/B9B12- [40.1 (1.9) and 5.10 (0.23) kg/d, respectively], but these effects were suppressed when combined with the B8 supplement. Cows in the B8-/B9B12+ group had decreased plasma insulin and tended to have increased NEFA concentrations, but postpartum plasma concentrations of glucose, BHB, leptin, and adiponectin were not affected. These cows also mobilized more body fat reserves, as suggested by a tendency to increased plasma NEFA and more milk total solids compared with B8-/B9B12- cows. However, plasma concentrations of BHB and adiponectin were similar among treatments. This suggests that the B9 and B12 supplements enhanced efficiency of energy metabolism in early lactation cows. Folic acid and B12 supplementation increased postpartum plasma Cys and homocysteine concentrations but did not affect plasma Met concentration, suggesting an upregulation of the transsulfuration pathway. In summary, our results showed that, under the current experimental conditions, increasing B8 supply did not improve responses to the B9 and B12 supplementation.
Collapse
Affiliation(s)
- M Duplessis
- Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada.
| | - H Lapierre
- Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada
| | - H Sauerwein
- Institute for Animal Science, Physiology Unit, University of Bonn, Bonn, 53115, Germany
| | - C L Girard
- Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada
| |
Collapse
|
5
|
Girard CL, Duplessis M. The Importance of B Vitamins in Enhanced Precision Nutrition of Dairy Cows: The Case of Folates and Vitamin B12. CANADIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1139/cjas-2021-0065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dairy cow diets are generally balanced for energy and major nutrients with B vitamins generally assumed not to be limiting, in spite of their role as coenzymes, essential to many metabolic reactions in protein, carbohydrate and lipid metabolism. Assuming adequacy of B-vitamin supply may explain some of the discrepancies between the outcomes of metabolic prediction models and measured cow performance. In lactating dairy cow, the amount of B vitamins from the diet and synthesized by the ruminal microbiota is generally sufficient to prevent deficiency symptoms and, as such, is assumed to fulfill requirements. However, reports of beneficial effects of B-vitamin supplementation on dairy cow performance suggest that B-vitamin supply is sometimes lower than its needs, as an insufficient B-vitamin supply decreases metabolic efficiency by driving a shift towards alternative metabolic pathways with greater energy cost. Using information on folates and vitamin B12 illustrated how meeting dairy cow needs for B vitamins should not be overlooked in formulation of rations for lactating dairy cattle. The present review discusses current knowledge and indicates areas presently impeded by the lack of research results, especially the limitations on the ability to estimate B vitamin need and supply.
Collapse
Affiliation(s)
| | - Mélissa Duplessis
- Agriculture et Agroalimentaire Canada, 6337, Sherbrooke, Quebec, Canada
| |
Collapse
|
6
|
Duplessis M, Girard CL. Response to a glucose tolerance test in early-lactation Holstein cows receiving a supplementation of biotin, folic acid, and vitamin B 12. J Dairy Sci 2020; 104:1111-1122. [PMID: 33189274 DOI: 10.3168/jds.2020-19333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023]
Abstract
The aim of the study was to evaluate glucose and insulin metabolism of cows receiving a supplementation of biotin (B8), folic acid (B9), and vitamin B12 (B12) during the transition period. According to a 2 × 2 factorial arrangement, 32 cows were randomly assigned to 9 incomplete blocks according to their previous 305-d milk yield. Within each block, cows were randomly assigned to 1 of the following levels of biotin from -27 to 28 d relative to the parturition: (1) no biotin supplement (B8-) or (2) 20 mg/d of dietary biotin (B8+). Within each level of biotin, the cows received either (1) 2-mL weekly intramuscular injections of saline 0.9% NaCl (B9B12-) or (2) 2.6 g/d of dietary folic acid and 2-mL weekly intramuscular injections of 10 mg of vitamin B12 (B9B12+). An intravenous glucose tolerance test was performed at 25 d in milk. Baseline plasma glucagon, glucose, and nonesterified fatty acid concentrations did not differ among treatments. For B9B12+ cows, baseline plasma insulin concentration and maximal glucose concentration after glucose administration were greater when also combined with biotin compared with no biotin combination, whereas there was no effect in B9B12- cows. There was no treatment effect on time to reach half-maximal glucose and insulin concentrations, glucose positive incremental area under the curve, and glucose and insulin clearance rates. Regarding insulin results, maximal plasma concentration and positive incremental area under the curve were respectively 51 and 74% greater for cows receiving the B8 supplement than for cows who did not. Moreover, plasma nonesterified fatty acid concentration nadir tended to be reached later for B8 cows. Insulin peak was reached earlier for cows in the group B9B12+ than cows in B9B12-, regardless of B8 supplementation. Under the current conditions, our results suggested that cows receiving a B8 supplement had a reduced insulin sensitivity in early lactation. Insulin response was faster for B9B12+ cows, but this was not translated into further improvements following the glucose administration challenge.
Collapse
Affiliation(s)
- M Duplessis
- Centre de Recherche et Développement de Sherbrooke, Sherbrooke, Québec J1M 0C8, Canada.
| | - C L Girard
- Centre de Recherche et Développement de Sherbrooke, Sherbrooke, Québec J1M 0C8, Canada
| |
Collapse
|
7
|
Xu NN, Yang DT, Zhang BX, Liu JX, Ye JA, Ren DX. Short communication: Influence of intramuscular injection of vitamin B 12 in early-lactation dairy cows on Mozzarella cheese quality and vitamin B 12 stability. J Dairy Sci 2020; 103:9835-9840. [PMID: 32896413 DOI: 10.3168/jds.2020-18568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023]
Abstract
The current study explored the effect of intramuscular injection of vitamin B12 (VB12) in early-lactation dairy cows on subsequent low-moisture part-skim Mozzarella cheese quality and VB12 levels during cheese processing and storage. Twenty-four peripartum dairy cows were blocked based on parity and milk yield and randomly assigned into 2 treatments: basal diet (CON) and basal diet with an intramuscular injection of 10 mg of VB12 per cow per week (VB12). Raw milk was collected to determine VB12 content and then used to make low-moisture part-skim Mozzarella cheese 8 wk after injection. The VB12 content of raw milk and cheese was determined using ultra-performance liquid chromatography coupled with tandem mass spectrometry. We found that VB12 content was significantly increased in milk (15.43 vs. 3.30 ng/mL) and fresh cheese (3.72 ng/g vs. undetectable) from the VB12 group compared with the CON group. However, approximately 70% of VB12 was lost in the whey during cheese making, and no VB12 was detectable in either cheese treatment after 8 wk of storage. Furthermore, no significant differences were observed in fat and protein contents in the cheese between the 2 groups. For cheese color, the b* value increased and the a* value decreased slightly in fresh VB12 cheese. Functional properties of stretchability, flowability, and meltability of VB12 cheese were initially comparable to that of CON cheese, but higher flowability and meltability was observed in VB12 cheese after 8 wk of storage. In summary, intramuscular injection of VB12 in early-lactation dairy cows increases the content of VB12 in milk and fresh cheese with no adverse effect on cheese quality, but substantial VB12 is lost during cheesemaking and declines rapidly during storage.
Collapse
Affiliation(s)
- N N Xu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - D T Yang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - B X Zhang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - J X Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - J A Ye
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - D X Ren
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
8
|
Effect of maternal biotin, folic acid, and vitamin B12 supplementation before parturition on colostral and Holstein calf plasma concentrations in those vitamins. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|