1
|
Gheitanchi F, Giambra IJ, Hecker AS, Strube C, König S, May K. Relationships between liver and rumen fluke infections, milk somatic cells and polymorphisms in the Toll-like receptor 5 gene and vitamin D metabolism-related genes in Holstein dairy cows. Vet Immunol Immunopathol 2025; 283:110911. [PMID: 40058098 DOI: 10.1016/j.vetimm.2025.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
This study investigated polymorphisms in the genes CYP3A4, CYP2R1, and TLR5, and their associations with liver fluke (Fasciola hepatica) and rumen fluke (Calicophoron / Paramphistomum spp.) infections as well as with milk somatic cell count (SCC) as an indicator for mastitis in Holstein Friesian dairy cows. DNA sequencing of the genes' exons, 5'-, 3'-untranslated regions (UTR), introns, and flanking regions of 24 cows revealed 442 variants (388 SNPs and 54 InDels) including 116 previously unknown variants. We detected three novel non-synonymous variants leading to the derived amino acid exchanges, i.e. CYP3A4 p.Gly197Ser, CYP3A4 p.Ile388Val, and CYP2R1 p.Val11Ala. The newly identified SNP 25:36589922 T > C (ss11846100002) is positioned in the splice site of CYP3A4, but showed no impact on the binding score of the splice enzymes. The CYP2R1 and TLR5 genes presented 11 SNPs in the 5'- and 3'-UTR, partly influencing transcription factor binding or microRNA target sites. Associations between polymorphisms and constructed haplotypes with infection traits were analysed via (generalized) linear mixed models including further potential confounders. In total, 109 variants in CYP3A4, 37 variants in CYP2R1, and 18 variants in TLR5 were significantly associated with F. hepatica and rumen fluke infections, and with SCC. The CYP2R1 and TLR5 variants were mostly linked to SCC, indicating the genes' roles in immune responses to bacterial infections. Haplotype analysis revealed significant associations between specific CYP3A4 haplotypes and F. hepatica worm count and faecal egg counts. This study revealed significant insights into gene polymorphisms related to vitamin D metabolism and immune response, which seem to play a role in helminth and udder infections.
Collapse
Affiliation(s)
- Fatemeh Gheitanchi
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany.
| | - Isabella Jasmin Giambra
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany
| | - Anna Sophie Hecker
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany; Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| |
Collapse
|
2
|
Ye Q, Xie J, Xiao H, Wang J, Tian W, Wang W, Zhang J, Chang Y, Wang L, Yin D, Ding J, Han B. Effects of Selenium, Iron, and Zinc Enrichment on Cultured Sea Cucumber (Apostichopus Japonicus). Biol Trace Elem Res 2024:10.1007/s12011-024-04352-9. [PMID: 39340597 DOI: 10.1007/s12011-024-04352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024]
Abstract
Selenium, iron, and zinc (Se, Fe, Zn) are essential trace elements crucial for animal growth, development, and immune protection, but they can be detrimental in excess. This study evaluates the impacts of Se, Fe and Zn on Apostichopus japonicus over a period of nine days, utilizing concentrations ranging from low to high: Se (0.20 µmol/L and 0.82 µmol/L), Fe (4.74 µmol/L and 18.96 µmol/L), Zn (1.88 µmol/L and 7.51 µmol/L). Concentrations of these trace elements in sea cucumbers increased with exposure time. Activities of CAT, SOD, and GSH-PX enzymes were enhanced. Transcriptomic analyses of sea cucumber body wall revealed significant gene expression changes, with differentially expressed genes (DEGs) numbering 294 at high and 945 at low Se concentrations, 906 at high and 210 at low Fe concentrations, and 423 at high and 123 at low Zn concentrations. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses highlighted DEGs enrichment in critical metabolic and immune-related pathways, including DNA replication, arachidonic acid metabolism, and oxidative phosphorylation. These results suggest that energy metabolism and immune regulation are pivotal in managing these elements, potentially enhancing sea cucumber immunity. This study enhances our comprehension of the physiological responses of sea cucumbers to trace elements and provides a theoretical basis for their use in aquaculture.
Collapse
Affiliation(s)
- Qi Ye
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Jiahui Xie
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Haoran Xiao
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Junhui Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Wanrong Tian
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Wenpei Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Jinyuan Zhang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Yaqing Chang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Luo Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Donghong Yin
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Jun Ding
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China.
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China.
| | - Bing Han
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China.
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China.
| |
Collapse
|
3
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
4
|
Neves RC. Relationship between calcium dynamics and inflammatory status in the transition period of dairy cows. JDS COMMUNICATIONS 2023; 4:225-229. [PMID: 37360125 PMCID: PMC10285257 DOI: 10.3168/jdsc.2022-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 06/28/2023]
Abstract
Improvements in nutrition, management, and genetics of dairy cows over the last several decades have shifted research focus from clinical diseases to subclinical disorders, to which transition cows are particularly vulnerable. Recent studies on the characterization of subclinical hypocalcemia (SCH) indicate that the combined analysis of the degree, timing of suboptimal blood Ca concentration, and duration are most reflective of the disorder. Therefore, the understanding of blood Ca dynamics in early postpartum cows has emerged as an avenue to investigate the paths leading to a successful metabolic adaptation to lactation or not. The conundrum has been in defining whether SCH is the cause or a reflection of a greater underlying disorder. Immune activation and systemic inflammation have been proposed to be the root cause of SCH. However, there is a paucity of data investigating the mechanisms of how systemic inflammation can lead to reduced blood Ca concentration in dairy cows. The objective of this review is to discuss the links between systemic inflammation and reduced blood Ca concentration, and studies needed to advance knowledge on the interface between systemic inflammation and Ca metabolism for the transition dairy cow.
Collapse
|
5
|
Poindexter MB, Zimpel R, Vieira-Neto A, Husnain A, Silva ACM, Faccenda A, Sanches de Avila A, Celi P, Cortinhas C, Santos JEP, Nelson CD. Effect of source and amount of vitamin D on serum concentrations and retention of calcium, magnesium, and phosphorus in dairy cows. J Dairy Sci 2023; 106:954-973. [PMID: 36543649 DOI: 10.3168/jds.2022-22386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/25/2022] [Indexed: 12/24/2022]
Abstract
The objectives of the experiment were to determine the effects of supplementing 2 amounts of 25-hydroxyvitamin D3 (calcidiol; CAL) compared with equal amounts of vitamin D3 (cholecalciferol; CHOL) on serum concentrations, absorptions, and retentions of Ca, Mg, and P in periparturient dairy cows. One hundred seventy-seven (133 parous and 44 nulliparous) pregnant Holstein cows were enrolled in the experiment. Cows were blocked by parity and previous lactation milk yield (parous) or genetic merit for energy-corrected milk yield (nulliparous) and assigned randomly to receive 1 or 3 mg/d of CAL or CHOL in a 2 × 2 factorial arrangement of treatments. Treatments were provided to individual cows as a top-dress to the prepartum diet from 250 d gestation until parturition. The prepartum diet had a dietary cation-anion difference of -128 mEq/kg of dry matter. All cows were fed a common postpartum diet containing 46 μg of vitamin D3/kg of dry matter without further supplementation of treatments. Concentrations of vitamin D metabolites, Ca, Mg, and P in serum were measured pre- and postpartum, in addition to total-tract digestibility and urinary excretion of Ca, Mg, and P in the prepartum period. Feeding 3 mg compared with 1 mg of CAL increased serum 25-hydroxyvitamin D3 (CAL1 = 94 vs. CAL3 = 173 ± 3 ng/mL). In comparison, the increment in serum 25-hydroxyvitamin D3 from feeding 3 mg compared with 1 mg of CHOL was small (CHOL1 = 58 vs. CHOL3 = 64 ± 3 ng/mL). Feeding CAL increased prepartum concentration of P in serum compared with CHOL (CHOL = 1.87 vs. CAL = 2.01 ± 0.02 mM), regardless of the amount fed, but neither source nor amount affected prepartum Ca or Mg in serum. Feeding CAL increased serum Ca and P for the first 11 d postpartum compared with CHOL (CHOL = 2.12 vs. CAL = 2.16 ± 0.01 mM serum Ca; CHOL = 1.70 vs. CAL = 1.78 ± 0.02 mM serum P) but the amount of vitamin D did not affect postpartum concentrations of Ca, Mg, and P in serum. Feeding CAL increased prepartum apparent digestibility of Ca compared with CHOL (CHOL = 26.6 vs. CAL = 33.5 ± 2.8%) but treatments did not affect Ca retention prepartum. Neither source nor amount of vitamin D affected Mg and P apparent digestibility, but CAL decreased the concentration of P excreted in urine during the prepartum period (CHOL = 1.8 vs. CAL = 0.8 ± 0.3 g/d). Calcidiol tended to increase the amount of Ca secreted in colostrum (CHOL = 9.1 vs. CAL = 11.2 ± 0.9 g/d) and Ca excreted in urine postpartum (CHOL = 0.4 vs. CAL = 0.6 ± 0.1 g/d) compared with CHOL. Collectively, feeding CAL at 1 or 3 mg/d compared with CHOL in the last 24 d of gestation is an effective way to increase periparturient serum P concentration and postpartum serum Ca of dairy cows fed a prepartum diet with negative DCAD.
Collapse
Affiliation(s)
- M B Poindexter
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - R Zimpel
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - A Vieira-Neto
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - A Husnain
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - A C M Silva
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A Faccenda
- Department of Animal Sciences, University of Florida, Gainesville 32611; Department of Animal Science, State University of Western Paraná, Marechal Condido Rondon, PR 85960-000, Brazil
| | - A Sanches de Avila
- Department of Animal Sciences, University of Florida, Gainesville 32611; Department of Animal Science, State University of Western Paraná, Marechal Condido Rondon, PR 85960-000, Brazil
| | - P Celi
- DSM Nutritional Products, Columbia, MD 21045; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia
| | - C Cortinhas
- DSM Nutritional Products, Columbia, MD 21045
| | - J E P Santos
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611; Department of Animal Sciences, University of Florida, Gainesville 32611
| | - C D Nelson
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611; Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
6
|
Elolimy AA, Liang Y, Lopes MG, Loor JJ. Antioxidant networks and the microbiome as components of efficiency in dairy cattle. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Ren Y, MacPhillamy C, To TH, Smith TPL, Williams JL, Low WY. Adaptive selection signatures in river buffalo with emphasis on immune and major histocompatibility complex genes. Genomics 2021; 113:3599-3609. [PMID: 34455036 DOI: 10.1016/j.ygeno.2021.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 11/27/2022]
Abstract
River buffalo is an agriculturally important species with many traits, such as disease tolerance, which promote its use worldwide. Highly contiguous genome assemblies of the river buffalo, goat, pig, human and two cattle subspecies were aligned to study gene gains and losses and signs of positive selection. The gene families that have changed significantly in river buffalo since divergence from cattle play important roles in protein degradation, the olfactory receptor system, detoxification and the immune system. We used the branch site model in PAML to analyse single-copy orthologs to identify positively selected genes that may be involved in skin differentiation, mammary development and bone formation in the river buffalo branch. The high contiguity of the genomes enabled evaluation of differences among species in the major histocompatibility complex. We identified a Babesia-like L1 LINE insertion in the DRB1-like gene in the river buffalo and discuss the implication of this finding.
Collapse
Affiliation(s)
- Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Callum MacPhillamy
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Thu-Hien To
- Norwegian University of Life Sciences: NMBU, Universitetstunet 3, 1430 Ås, Norway
| | | | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia; Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia.
| |
Collapse
|
8
|
Activity of sEH and Oxidant Status during Systemic Bovine Coliform Mastitis. Antioxidants (Basel) 2021; 10:antiox10050812. [PMID: 34065244 PMCID: PMC8161397 DOI: 10.3390/antiox10050812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/31/2022] Open
Abstract
Bovine coliform mastitis presents treatment challenges because of systemic inflammation and oxidative stress. Soluble epoxide hydrolase (sEH) is a promising therapeutic target in conditions characterized by inflammation and oxidative stress but has not been evaluated in cattle. We compared sEH activity and oxidant status in healthy Holstein dairy cows to those with systemic coliform mastitis (n = 5/group) using complementary approaches. First, the activity of sEH on [3H]-trans-diphenyl-propene oxide (tDPPO) was assessed ex vivo using tissue homogenates (mammary, liver, and kidney). Second, the concentrations of sEH substrates and metabolites in plasma, milk, and urine were determined as an index of in vivo sEH activity. Oxidant status was assessed in serum and milk. Data were analyzed by non-parametric methods. Metabolism of tDPPO was greater in mammary tissues from cows with coliform mastitis compared to controls. In contrast, ratios of sEH substrates and metabolites predicted lower sEH activity in cows with coliform mastitis than controls. Milk oxidant status showed greater prooxidant levels in coliform mastitis cows. Cows with coliform mastitis exhibit increased sEH activity in mammary tissue; at the same time, milk oxidant status is increased. Future studies should characterize sEH activity and oxidant status patterns and explore therapies targeting sEH during coliform mastitis.
Collapse
|
9
|
Teixeira BF, Dias FFG, Vieira TMFDS, Leite Nobrega de Moura Bell JM, Taha AY. Method optimization of oxylipin hydrolysis in nonprocessed bovine milk indicates that the majority of oxylipins are esterified. J Food Sci 2021; 86:1791-1801. [PMID: 33864645 DOI: 10.1111/1750-3841.15697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
The oxidation of polyunsaturated fatty acids produces bioactive primary oxidation products known as oxylipins. In many biological matrices, the majority of oxylipins are bound (i.e. esterified), and a relatively small proportion (<10%) exists in the free form. The present study tested whether this extends to bovine milk following method evaluation of various extraction and base hydrolysis protocols for measuring bound oxylipins. Free (unbound) oxylipins were also measured. Folch extraction followed by sodium carbonate hydrolysis in the presence of methanol containing 0.1% of acetic acid and 0.1% of butylated hydroxytoluene resulted in greater oxylipin concentrations and better surrogate standard recoveries compared to other methods that did not involve Folch extraction or the addition of methanol with hydrolysis base. Sodium hydroxide was better than sodium carbonate in hydrolyzing bound oxylipins under the same conditions. Milk analysis of oxylipins with mass-spectrometry following Folch extraction and sodium hydroxide hydrolysis revealed that 95% of oxylipins in bovine milk were esterified. Most of the detected oxylipins were derived from linoleic acid, which accounted for 92 and 88% of oxylipins in the free and esterified pools, respectively. These results demonstrate that the majority of bovine milk oxylipins are bound, and that linoleic-acid derived metabolites are the most abundant oxylipin species in free and bound lipid pools. Additional studies are needed to understand the role of different oxylipin pools in both calf and human nutrition. PRACTICAL APPLICATION: A method involving Folch lipid extraction and sodium hydroxide hydrolysis was validated for esterified oxylipin measurements in bovine milk. Application of the method revealed that the majority (∼95%) of oxylipins in bovine milk were bound. Linoleic-acid derived oxylipins were the most abundant species in both bound and free milk fractions (88-92%). The results highlight the presence of a new pool of oxidized lipids in milk, potentially involved in modifying its sensory and nutritional properties.
Collapse
Affiliation(s)
- Bianca Ferraz Teixeira
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA.,ESALQ Food, College of Agriculture "Luiz de Queiroz,", University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | | | - Juliana Maria Leite Nobrega de Moura Bell
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA.,Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, California, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA
| |
Collapse
|
10
|
Kuhn MJ, Sordillo LM. Inhibition of 20-hydroxyeicosatetraenoic acid biosynthesis by vitamin E analogs in human and bovine cytochrome P450 microsomes. J Anim Physiol Anim Nutr (Berl) 2021; 106:55-60. [PMID: 33851747 DOI: 10.1111/jpn.13547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022]
Abstract
Dairy cattle are predisposed to disease around the time of calving due to dysfunctional inflammatory responses. Oxylipids are lipid-derived mediators that regulate all aspects of the inflammatory response, and shifts in oxylipid profiles are correlated with disease risk. For example, 20-hydroxyeicosatetraenoic acid (HETE) is an oxylipid derived from cytochrome P450 enzymes (CYP450) found at significantly greater concentrations around calving and during clinical disease. Biosynthesis of 20-HETE occurs almost exclusively from two specific CYP450 of which CYP450 family four sub-family F member two (CYP4F2) is the major contributor to 20-HETE production in humans. To further study the activities of 20-HETE and potentially reduce its production in vivo, mitigation methods must be explored. Additional substrates of CYP4F2, such as vitamin E, are known to both increase and decrease the metabolism of other CYP4F2 substrates. This study aimed to determine whether vitamin E analogs may reduce the production of 20-HETE through competition for CYP4F2 activity in human CYP4F2, bovine-kidney and bovine-mammary microsomes. Gamma-tocopherol reduced 20-HETE production from human and bovine-kidney microsomes (35.3% and 27.5%, respectively) whereas γ-tocotrienol only reduced 20-HETE production from human microsomes (40.1%). Finally, bovine-mammary microsomes did not produce a quantifiable amount of 20-HETE, suggesting basal mammary CYP4F2 activity may not be a significant contributor to 20-HETE found in milk. Together, these data show that analogs of vitamin E can reduce the production of 20-HETE, potentially through competition with arachidonic acid for metabolism by CYP4F2, posing a potential means for limiting 20-HETE production during clinical diseases of dairy cattle.
Collapse
Affiliation(s)
- Matthew J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
The Physiological Roles of Vitamin E and Hypovitaminosis E in the Transition Period of High-Yielding Dairy Cows. Animals (Basel) 2021; 11:ani11041088. [PMID: 33920342 PMCID: PMC8070221 DOI: 10.3390/ani11041088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary In high-yield cows, most production diseases occur during transition periods. Alpha-tocopherol, the most biologically active form of vitamin E, declines in blood and reaches the lowest levels (hypovitaminosis E) around calving. Hypovitaminosis E is associated with the incidence of peripartum diseases. Therefore, many studies which have been published for more than 30 years have investigated the effects of α-tocopherol supplementation. This α-tocopherol deficiency was thought to be caused by complex factors. However, until recently, the physiological factors or pathways underlying hypovitaminosis E in the transition period have been poorly understood. In the last 10 years, the α-tocopherol-related genes expression, which regulate the metabolism, transportation, and tissue distribution of α-tocopherol in humans and rodents, has been reported in ruminant tissues. In this paper, we discuss at least six physiological phenomena that occur during the transition period and may be candidate factors predisposing to a decreased blood α-tocopherol level and hypovitaminosis E with changes in α-tocopherol-related genes expression. Abstract Levels of alpha-tocopherol (α-Toc) decline gradually in blood throughout prepartum, reaching lowest levels (hypovitaminosis E) around calving. Despite numerous reports about the disease risk in hypovitaminosis E and the effect of α-Toc supplementation on the health of transition dairy cows, its risk and supplemental effects are controversial. Here, we present some novel data about the disease risk of hypovitaminosis E and the effects of α-Toc supplementation in transition dairy cows. These data strongly demonstrate that hypovitaminosis E is a risk factor for the occurrence of peripartum disease. Furthermore, a study on the effectiveness of using serum vitamin levels as biomarkers to predict disease in dairy cows was reported, and a rapid field test for measuring vitamin levels was developed. By contrast, evidence for how hypovitaminosis E occurred during the transition period was scarce until the 2010s. Pioneering studies conducted with humans and rodents have identified and characterised some α-Toc-related proteins, molecular players involved in α-Toc regulation followed by a study in ruminants from the 2010s. Based on recent literature, the six physiological factors: (1) the decline in α-Toc intake from the close-up period; (2) changes in the digestive and absorptive functions of α-Toc; (3) the decline in plasma high-density lipoprotein as an α-Toc carrier; (4) increasing oxidative stress and consumption of α-Toc; (5) decreasing hepatic α-Toc transfer to circulation; and (6) increasing mammary α-Toc transfer from blood to colostrum, may be involved in α-Toc deficiency during the transition period. However, the mechanisms and pathways are poorly understood, and further studies are needed to understand the physiological role of α-Toc-related molecules in cattle. Understanding the molecular mechanisms underlying hypovitaminosis E will contribute to the prevention of peripartum disease and high performance in dairy cows.
Collapse
|
12
|
Kuhn MJ, Sordillo LM. Vitamin E analogs limit in vitro oxidant damage to bovine mammary endothelial cells. J Dairy Sci 2021; 104:7154-7167. [PMID: 33773776 DOI: 10.3168/jds.2020-19675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Diseases that occur during the transition period are exacerbated when cows are unable to cope with an increased pro-oxidant load that results in oxidative stress. Dairy cattle are routinely supplemented with the vitamin E analog α-tocopherol to mitigate the severity of oxidative stress. Nonetheless, oxidative stress remains a disease predisposing condition for many dairy cattle. A better method of optimizing the antioxidant functions of vitamin E is needed. α-Tocopherol is only 1 of 8 analogs of vitamin E, all of which have varying antioxidant properties in other mammals, albeit a shorter physiological half-life compared with α-tocopherol. A primary bovine mammary endothelial cell oxidant challenge model was used to determine functions of certain vitamin E analogs. The aim of this study was to determine if other analogs, namely γ-tocopherol or γ-tocotrienol, have antioxidative functions in bovine cells and if these functions may protect cellular viability and endothelial function from oxidant damage. Physiological (10 μM) and supraphysiological (50 μM) concentrations of γ-tocopherol and γ-tocotrienol had a greater capacity to reduce accumulated reactive oxygen species derived from a nitric oxide donating pro-oxidant antagonist, when compared with α-tocopherol, after 30 min to 6 h of treatment. Further, γ-tocotrienol (10 μM) decreased cell cytotoxicity to a greater amount than other analogs at like concentrations, whereas γ-tocopherol (10 μM) reduced lipid peroxidation and apoptosis more effectively than other analogs. Last, α-tocopherol (5 and 10 μM) and γ-tocopherol (5 and 10 μM) significantly slowed pro-oxidant induced loss of endothelial cell barrier integrity over a 48-h period using an electrical cell-substrate impedance sensing system. Concerningly, γ-tocotrienol drastically reduced the endothelial barrier integrity at only 5 μM despite no apparent effect on cellular viability at like concentrations. γ-Tocotrienol, however, was also the only analog to show significant cytotoxicity and reductions in viability at supraphysiological doses (25 and 50 μM). Our results suggest that γ-tocopherol has antioxidant activities that reduces cellular damage and loss of function due to oxidant challenge as effectively as α-tocopherol. These data set the foundation for further investigation into the antioxidant properties of vitamin E analogs in other bovine cells types or whole animal models.
Collapse
Affiliation(s)
- M J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
13
|
Kuhn MJ, Mavangira V, Sordillo LM. Invited review: Cytochrome P450 enzyme involvement in health and inflammatory-based diseases of dairy cattle. J Dairy Sci 2020; 104:1276-1290. [PMID: 33358163 DOI: 10.3168/jds.2020-18997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Dairy cattle are at the greatest risk of developing diseases around the time of calving because of compromised immune responses and the occurrence of oxidative stress. Both the development of compromised immunity and oxidative stress are influenced directly or indirectly by the metabolism of polyunsaturated fatty acids (PUFA) and fat-soluble vitamins. The cytochrome P450 (CYP450) family of enzymes is central to the metabolism of both classes of these compounds, but to date, the importance of CYP450 in the health of dairy cattle is underappreciated. As certain CYP450 isoforms metabolize both PUFA and fat-soluble vitamins, potential interactions may occur between PUFA and fat-soluble vitamins that are largely unexplored. For example, one CYP450 that generates anti-inflammatory oxylipids from arachidonic acid additionally contributes to the activation of vitamin D. Other potential substrate interactions between PUFA and vitamins A and E may exist as well. The intersection of PUFA and fat-soluble vitamin metabolism by CYP450 suggest that this enzyme system could provide an understanding of how immune function and oxidant status interconnect, resulting in increased postpartum disease occurrence. This review will detail the known contributions of bovine CYP450 to the regulation of oxylipids with a focus on enzymes that may also be involved in the metabolism of fat-soluble vitamins A, D, and E that contribute to antioxidant defenses. Although the activity of specific CYP450 is generally conserved among mammals, important differences exist in cattle, such as the isoforms primarily responsible for activation of vitamin D that makes their specific study in cattle of great importance. Additionally, a CYP450-driven inflammatory positive feedback loop is proposed, which may contribute to the dysfunctional inflammatory responses commonly found during the transition period. Establishing the individual enzyme isoform contributions to oxylipid biosynthesis and the regulation of vitamins A, D, and E may reveal how the CYP450 family of enzymes can affect inflammatory responses during times of increased susceptibility to disease. Determining the potential effect of each CYP450 on disease susceptibility or pathogenesis may allow for the targeted manipulation of the CYP450 pathways to influence specific immune responses and antioxidant defenses during times of increased risk for health disorders.
Collapse
Affiliation(s)
- M J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - V Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|