1
|
Ferronato G, Tobanelli N, Bani P, Cattaneo L. Carbon Footprint Assessment of Dairy Milk and Grana Padano PDO Cheese and Improvement Scenarios: A Case Study in the Po Valley (Italy). Animals (Basel) 2025; 15:811. [PMID: 40150340 PMCID: PMC11939476 DOI: 10.3390/ani15060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
The significance of agriculture, particularly dairy farming, in the global food production landscape has been ascertained. Farm efficiency affects how much the agri-food sector, and the dairy industry in particular, contributes to economic and environmental sustainability. This study employs an LCA approach to evaluate the carbon footprint (CF) of Grana Padano PDO cheese production in a dairy plant, analyzing 19 farms supplying milk to the cheese factory. The results showed that milk production is the primary contributor to CF, with enteric methane emissions (34%), feed production and purchases (36%), and manure management (24%) as the main drivers. The CF of milk ranged from 0.95 to 2.14 kg CO2eq/kg Fat and Protein Corrected Milk, while Grana Padano PDO cheese (9 months ripening) ranged from 16.96 to 23.07 kg CO2eq/kg. An increase in milk yield and feed efficiency resulted in a reduction in CF per kilogram of cheese. Furthermore, the protein and casein content influenced both cheese yield and environmental performance. This study highlights trade-offs between productivity, product quality, and sustainability, emphasizing the need for tailored mitigation strategies within PDO regulation.
Collapse
Affiliation(s)
- Giulia Ferronato
- Department of Civil Engineering, Architecture, Environment, Land Planning and Mathematics (DICATAM), Università degli Studi di Brescia, Via Branze, 43, 25123 Brescia, Italy;
| | - Noemi Tobanelli
- Department of Civil Engineering, Architecture, Environment, Land Planning and Mathematics (DICATAM), Università degli Studi di Brescia, Via Branze, 43, 25123 Brescia, Italy;
| | - Paolo Bani
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (P.B.); (L.C.)
| | - Luca Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (P.B.); (L.C.)
| |
Collapse
|
2
|
Linehan K, Patangia DV, Ross RP, Stanton C. Production, Composition and Nutritional Properties of Organic Milk: A Critical Review. Foods 2024; 13:550. [PMID: 38397527 PMCID: PMC10887702 DOI: 10.3390/foods13040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is one of the most valuable products in the food industry with most milk production throughout the world being carried out using conventional management, which includes intensive and traditional systems. The intensive use of fertilizers, antibiotics, pesticides and concerns regarding animal health and the environment have given increasing importance to organic dairy and dairy products in the last two decades. This review aims to compare the production, nutritional, and compositional properties of milk produced by conventional and organic dairy management systems. We also shed light on the health benefits of milk and the worldwide scenario of the organic dairy production system. Most reports suggest milk has beneficial health effects with very few, if any, adverse effects reported. Organic milk is reported to confer additional benefits due to its lower omega-6-omega-3 ratio, which is due to the difference in feeding practices, with organic cows predominantly pasture fed. Despite the testified animal, host, and environmental benefits, organic milk production is difficult in several regions due to the cost-intensive process and geographical conditions. Finally, we offer perspectives for a better future and highlight knowledge gaps in the organic dairy management system.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (K.L.); (D.V.P.)
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- School of Microbiology, University College Cork, T12 XF62 Cork, Ireland
| | - Dhrati V. Patangia
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (K.L.); (D.V.P.)
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- School of Microbiology, University College Cork, T12 XF62 Cork, Ireland
| | - Reynolds Paul Ross
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- School of Microbiology, University College Cork, T12 XF62 Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (K.L.); (D.V.P.)
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- VistaMilk Research Centre, Teagasc Moorepark, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
3
|
Soder KJ, Brito AF. Enteric methane emissions in grazing dairy systems. JDS COMMUNICATIONS 2023; 4:324-328. [PMID: 37521055 PMCID: PMC10382831 DOI: 10.3168/jdsc.2022-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/03/2023] [Indexed: 08/01/2023]
Abstract
Approximately 80% of agricultural CH4 comes from livestock systems, with 90% of that derived from enteric CH4 production by ruminants. Grazing systems are used worldwide to feed dairy cattle. Although quantifying enteric CH4 emissions in grazing systems has unique challenges, emerging technologies have made gaseous data collection more feasible and less laborious. Nevertheless, robust data sets on enteric CH4 emissions under various grazing conditions, as well as effective and economic strategies to mitigate CH4 emissions in grazing dairy cows, are still in high demand because data collection, feeding management, and milk market regulations (e.g., organic certification, grassfed) impose more challenges to grazing than confinement dairy systems. This review will cover management strategies to mitigate enteric CH4 emissions and applicability to pastoral dairy systems. The effects of enteric CH4 in the broader context of whole-system assessments will be discussed, which are key to assess the overall environmental impact of grazing dairies.
Collapse
Affiliation(s)
- Kathy J. Soder
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802
| | - Andre F. Brito
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
4
|
Ormston S, Qin N, Faludi G, Pitt J, Gordon AW, Theodoridou K, Yan T, Huws SA, Stergiadis S. Implications of Organic Dairy Management on Herd Performance and Milk Fatty Acid Profiles and Interactions with Season. Foods 2023; 12:foods12081589. [PMID: 37107384 PMCID: PMC10138061 DOI: 10.3390/foods12081589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Interest in organic cows' milk has increased due to the perceived superior nutritional quality and improved sustainability and animal welfare. However, there is a lack of simultaneous assessments on the influence of organic dairy practices and dietary and breed drivers on productivity, feed efficiency, health parameters, and nutritional milk quality at the herd level. This work aimed to assess the impact of organic vs. conventional management and month on milk yield and basic composition, herd feed efficiency, health parameters, and milk fatty acid (FA) composition. Milk samples (n = 800) were collected monthly from the bulk tanks of 67 dairy farms (26 organic and 41 conventional) between January and December 2019. Data on breed and feeding practices were gathered via farm questionnaires. The samples were analyzed for their basic composition and FA profile using Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC), respectively. The data were analyzed using a linear mixed model, repeated measures design and multivariate redundancy analysis (RDA). The conventional farms had higher yields (kg/cow per day) of milk (+7.3 kg), fat (+0.27 kg), and protein (+0.25 kg) and higher contents (g/kg milk) of protein, casein, lactose, and urea. The conventional farms produced more milk (+0.22 kg), fat (+8.6 g), and protein (+8.1 g) per kg offered dry matter (DM). The organic farms produced more milk per kg of offered non-grazing and concentrate DM offered, respectively (+0.5 kg and +1.23 kg), and fat (+20.1 g and +51 g) and protein (+17 g and +42 g). The organic milk had a higher concentration of saturated fatty acid (SFA; +14 g/kg total FA), polyunsaturated fatty acid (PUFA; +2.4 g/kg total FA), and nutritionally beneficial FA alpha linolenic acid (ALNA; +14 g/kg total FA), rumenic acid (RA; +14 g/kg total FA), and eicosapentaenoic acid (EPA; +14 g/kg total FA); the conventional milk had higher concentrations of monounsaturated FA (MUFA; +16 g/kg total FA). Although the conventional farms were more efficient in converting the overall diet into milk, fat, and protein, the organic farms showed better efficiency in converting conserved forages and concentrates into milk, fat, and protein as a result of reduced concentrate feeding. Considering the relatively small differences in the FA profiles between the systems, increased pasture intake can benefit farm sustainability without negatively impacting consumer nutrition and health.
Collapse
Affiliation(s)
- Sabrina Ormston
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 237, Reading RG6 6EU, UK
| | - Nanbing Qin
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 237, Reading RG6 6EU, UK
| | - Gergely Faludi
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 237, Reading RG6 6EU, UK
- Department of Animal Breeding, Georgikon Campus, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Deák Ferenc u. 16, H-8360 Keszthely, Hungary
| | - Joe Pitt
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 237, Reading RG6 6EU, UK
| | - Alan W Gordon
- Statistical Services Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, UK
| | - Katerina Theodoridou
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Tianhai Yan
- Livestock Production Sciences Branch, Agri-Food and Biosciences Institute, Large Park, Hillsborough BT26 6DR, UK
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 237, Reading RG6 6EU, UK
| |
Collapse
|
5
|
Effect of incremental amounts of Asparagopsis taxiformis on ruminal fermentation and methane production in continuous culture with orchardgrass herbage. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Slanzon G, Sischo W, McConnel C. Contrasting Fecal Methanogenic and Bacterial Profiles of Organic Dairy Cows Located in Northwest Washington Receiving Either a Mixed Diet of Pasture and TMR or Solely TMR. Animals (Basel) 2022; 12:ani12202771. [PMID: 36290156 PMCID: PMC9597778 DOI: 10.3390/ani12202771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022] Open
Abstract
Currently, little is known regarding fecal microbial populations and their associations with methanogenic archaea in pasture-based dairy cattle. In this study, we assessed the fecal microbiome of organic dairy cows across different time points receiving a mixed diet of pasture and total mixed ration (TMR) or TMR only. We hypothesized that the fecal methanogenic community, as well as co-occurrence patterns with bacteria, change across diets. To test these hypotheses, we analyzed TMR and pasture samples, as well as the V3-V4 region of 16S rRNA of fecal samples collected over the course of a one-year study period from 209 cows located on an organic dairy in Northwest Washington. The inherent variability in pasture quality, quantity, availability, and animal preference can lead to diverse dietary intakes. Therefore, we conducted a k-means clustering analysis to identify samples from cows that were associated with either a pasture-based diet or a solely TMR diet. A total of 4 clusters were identified. Clusters 1 and 3 were mainly associated with samples primarily collected from cows with access to pasture of varying quality and TMR, cluster 2 was formed by samples from cows receiving only TMR, and cluster 4 was a mix of samples from cows receiving high-quality pasture and TMR or TMR only. Interestingly, we found little difference in the relative abundance of methanogens between the community clusters. There was evidence of differences in diversity between pasture associated bacterial communities and those associated with TMR. Cluster 4 had higher diversity and a less robust co-occurrence network based on Spearman correlations than communities representing TMR only or lower-quality pasture samples. These findings indicate that varied bacterial communities are correlated with the metabolic characteristics of different diets. The overall good pasture and TMR quality in this study, combined with the organic allowance for feeding high levels of TMR even during the grazing season, might have contributed to the lack of differences in the fecal archaeal community from samples associated with a mixed pasture and TMR diet, and a TMR only diet. Mitigation strategies to decrease methane emissions such as increasing concentrate to forage ratio, decreasing pasture maturity and adopting grazing systems targeting high quality pasture have been shown to be efficient for pasture-based systems. However, the allowance for organic dairy producers to provide up to an average of 70% of a ruminant's dry matter demand from dry matter fed (e.g., TMR), suggests that reducing enteric methane emissions may require the development of novel dietary strategies independent of pasture management.
Collapse
|
7
|
Oenema J, Oenema O. Unraveling feed and nutrient use efficiencies in grassland-based dairy farms. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.846561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Grassland-based dairy farms are important for the provisioning of milk and ecosystem services. However, the key factors and interactions that influence the feed use efficiency of grassland-based dairy farms in practice are not well known and understood, and as a consequence no well-targeted recommendations can be provided. This paper addresses the question ‘what are the main factors that determine the variations in calculated feed efficiency and N and P use efficiencies on dairy farms subjected to agri-environmental regulations’. Monitoring and modeling data from ~12000 grassland-based dairy farms in The Netherlands over a 4 year period (2017–2020), collected through the KringloopWijzer model, were analyzed and the data from 2020 were statistically analyzed in detail. Farms greatly differed in milk production intensity (range < 10 to >25 Mg per ha per yr) and in the amount of purchased feed. The 5 and 95 percentile values of frequency distribution of the calculated annual mean feed efficiency at herd level were 0.9 and 1.3 kg milk per kg feed dry matter, respectively. Feed efficiency was statistically related to milk yield and number of young stock per cow, the share of concentrates and silage maize in the ration, and the net energy content of silage grass. At herd level, the 5 and 95 percentile values of the calculated annual mean N use efficiency increased with feed efficiency from 21 to 28%, and those of the annual mean P use efficiency from 32 to 40%. Contrary to expectations, mean surpluses of N and P at farm level remained more or less constant with feed efficiency and the intensity of milk production, but the amounts of purchased feed and manure export strongly increased with the intensity of milk production. The N and P surpluses and use efficiencies at farm level were sensitive to accounting for the externalization of feed production and manure utilization. The modeled ammonia and methane emissions per kg milk produced were relatively low on farms with high feed efficiency. In conclusion, feed use and N and P use efficiencies are key indicator for the profitability and environmental performance of dairy farms. Differences between farms in these key indicators were large, and these differences were related to a limited number of explanatory variables. Our study provides lessons for improving the profitability and environmental performance of grassland-based dairy farms.
Collapse
|
8
|
Ormston S, Davis H, Butler G, Chatzidimitriou E, Gordon AW, Theodoridou K, Huws S, Yan T, Leifert C, Stergiadis S. Performance and milk quality parameters of Jersey crossbreds in low-input dairy systems. Sci Rep 2022; 12:7550. [PMID: 35534492 PMCID: PMC9085769 DOI: 10.1038/s41598-022-10834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Previous work has demonstrated some benefit from alternative breeds in low-input dairying, although there has been no systematic analysis of the simultaneous effect of Jersey crossbreeding on productivity, health, fertility parameters or milk nutritional quality. This work aimed to understand the effects of, and interactions/interrelations between, dairy cow genotypes (Holstein-Friesian (HF), Holstein-Friesian × Jersey crossbreds (HF × J)) and season (spring, summer, autumn) on milk yield; basic composition; feed efficiency, health, and fertility parameters; and milk fatty acid (FA) profiles. Milk samples (n = 219) and breed/diet data were collected from 74 cows in four UK low-input dairy farms between March and October 2012. HF × J cows produced milk with more fat (+ 3.2 g/kg milk), protein (+ 2.9 g/kg milk) and casein (+ 2.7 g/kg milk); and showed higher feed, fat, and protein efficiency (expressed as milk, fat and protein outputs per kg DMI) than HF cows. Milk from HF × J cows contained more C4:0 (+ 2.6 g/kg FA), C6:0 (+ 1.9 g/kg FA), C8:0 (+ 1.3 g/kg FA), C10:0 (+ 3.0 g/kg FA), C12:0 (+ 3.7 g/kg FA), C14:0 (+ 4.6 g/kg FA) and saturated FA (SFA; + 27.3 g/kg milk) and less monounsaturated FA (MUFA; -23.7 g/kg milk) and polyunsaturated FA (− 22.3 g/kg milk). There was no significant difference for most health and fertility parameters, but HF × J cows had shorter calving interval (by 39 days). The superior feed, fat and protein efficiency of HF × J cows, as well as shorter calving interval can be considered beneficial for the financial sustainability of low-input dairy farms; and using such alternative breeds in crossbreeding schemes may be recommended. Although statistically significant, it is difficult to determine if differences observed between HF and HF × J cows in fat composition are likely to impact human health, considering average population dairy fat intakes and the relatively small difference. Thus, the HF × J cow could be used in low-input dairying to improve efficiency and productivity without impacting milk nutritional properties.
Collapse
|
9
|
Silva LHP, Reis SF, Melo ATO, Jackson BP, Brito AF. Supplementation of Ascophyllum nodosum meal and monensin: Effects on diversity and relative abundance of ruminal bacterial taxa and the metabolism of iodine and arsenic in lactating dairy cows. J Dairy Sci 2022; 105:4083-4098. [PMID: 35221070 DOI: 10.3168/jds.2021-21107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/05/2022] [Indexed: 01/10/2024]
Abstract
Previous research has shown that the brown seaweed Ascophyllum nodosum (ASCO) has antimicrobial and antioxidant properties and also increases milk I concentration. We aimed to investigate the effects of supplementing ASCO meal or monensin (MON) on ruminal fermentation, diversity and relative abundance of ruminal bacterial taxa, metabolism of I and As, and blood concentrations of thyroid hormones, antioxidant enzymes, and cortisol in lactating dairy cows. Five multiparous ruminally cannulated Jersey cows averaging (mean ± standard deviation) 102 ± 15 d in milk and 450 ± 33 kg of body weight at the beginning of the study were used in a Latin square design with 28-d periods (21 d for diet adaptation and 7 d for data and sample collection). Cows were fed ad libitum a basal diet containing (dry matter basis) 65% forage as haylage and corn silage and 35% concentrate and were randomly assigned to 1 of the following 5 dietary treatments: 0, 57, 113, or 170 g/d of ASCO meal, or 300 mg/d of MON. Supplements were placed directly into the rumen once daily after the morning feeding. Diets had no effect on ruminal pH and NH3-N concentration, which averaged 6.02 and 6.86 mg/dL, respectively. Total volatile fatty acid concentration decreased linearly in cows fed incremental amounts of ASCO meal. Supplementation with ASCO meal did not change the ruminal molar proportions of volatile fatty acids apart from butyrate, which responded quadratically with the lowest values observed at 56 and 113 g/d of ASCO supplementation. Compared with the control diet or diets containing ASCO meal, cows fed MON showed greater molar proportion of propionate. Diets did not affect the α diversity indices Shannon, Simpson, and Fisher for ruminal bacteria. However, feeding incremental levels of ASCO meal linearly decreased the relative abundance of Tenericutes in ruminal fluid. Monensin increased the relative abundance of the CAG:352 bacterial genus in ruminal fluid compared with the control diet. Linear increases in response to ASCO meal supplementation were observed for the concentrations and output of I in serum, milk, urine, and feces. Fecal excretion of As increased linearly in cows fed varying amounts of ASCO meal, but ASCO did not affect the concentration and secretion of As in milk. The plasma activities of the antioxidant enzymes and the serum concentrations of thyroid hormones did not change. In contrast, circulating cortisol decreased linearly in diets containing ASCO meal. The apparent total-tract digestibilities of dry matter, organic matter, and crude protein increased linearly with ASCO meal, but those of neutral and acid detergent fiber were not affected. In summary, feeding incremental amounts of ASCO meal decreased serum cortisol concentration, and increased I concentrations and output in serum, milk, feces, and urine.
Collapse
Affiliation(s)
- L H P Silva
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham 03824
| | - S F Reis
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham 03824
| | - A T O Melo
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham 03824
| | - B P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03755
| | - A F Brito
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham 03824.
| |
Collapse
|
10
|
Brito AF, Almeida KV, Oliveira AS. Production performance, nutrient use efficiency, and predicted enteric methane emissions in dairy cows under confinement or grazing management system. Transl Anim Sci 2022; 6:txac028. [PMID: 35387309 PMCID: PMC8982198 DOI: 10.1093/tas/txac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
There has been an intense debate regarding the economic, social, and environmental sustainability of confinement versus grazing dairy systems. Our goal was to conduct a meta-analysis to compare dry matter intake, milk yield and composition, nutrient use efficiency (i.e., feed efficiency, milk N efficiency), and predicted enteric CH4 emissions using studies that simultaneously evaluated confinement and grazing. We were able to include in the meta-analysis 8 peer-reviewed articles that met the following selection criteria: (1) publication between 1991 and 2021 in English language, (2) report either SEM or SD, (3) inclusion of at least 1 confinement [total mixed ration or fresh cut herbage fed indoors (i.e., zero-grazing)] and 1 grazing treatment in the same study, and (4) use of markers (internal or external) to estimate herbage dry matter intake. Two unpublished experiments were added to the data set resulting in a total of 10 studies for comparing confinement and grazing. The magnitude of the effect (i.e., effect size) was evaluated using weighted raw mean differences between grazing and confinement systems for a random effect model. Enteric CH4 production was predicted as follows: CH4 (g/d) = 33.2 (13.54) + 13.6 (0.33) × dry matter intake + 2.43 (0.245) × neutral detergent fiber. Dry matter intake (–9.5%), milk yield (–9.3%), milk fat yield (–5.8%), milk protein yield (–10%), and energy-corrected milk (–12%) all decreased in grazing versus confined dairy cows. In contrast, concentration of milk fat and feed efficiency (energy-corrected milk/dry matter intake) were not affected by management system. Whereas milk protein concentration increased, milk nitrogen (N) efficiency (milk N/N intake) tended to decrease in grazing compared with confinement. Predicted enteric CH4 production was 6.1% lower in grazing than confined dairy cows. However, CH4 yield (g/kg of dry matter intake) and CH4 intensity (g/kg of energy-corrected milk) did not change between confinement and grazing. In conclusion, while production performance decreased in grazing dairy cows, nutrient use efficiency and predicted enteric CH4 emissions were relatively similar in both management systems. Results of our meta-analysis should be interpreted with caution due to the small number of studies that met our inclusion criteria leading to a limited number of treatment mean comparisons.
Collapse
Affiliation(s)
- A F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, United States of America
| | - K V Almeida
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, United States of America
| | - A S Oliveira
- Dairy Cattle Research Laboratory, Universidade Federal de Mato Grosso, Campus Sinop, Sinop, MT, Brazil
| |
Collapse
|
11
|
Abreu ACDS, Crippa BL, Souza VVMAD, Nuñez KVM, Almeida JMD, Rodrigues MX, Silva NCC. Assessment of sanitiser efficacy against Staphylococcus spp. isolated from Minas Frescal cheese producers in São Paulo, Brazil. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Abreu ACDS, Carazzolle MF, Crippa BL, Barboza GR, Mores Rall VL, de Oliveira Rocha L, Silva NCC. Bacterial diversity in organic and conventional Minas Frescal cheese production using targeted 16S rRNA sequencing. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|