1
|
Deng TX, Ma XY, Duan A, Lu XR, Abdel-Shafy H. Genome-wide copy number variant analysis reveals candidate genes associated with milk production traits in water buffalo (Bubalus bubalis). J Dairy Sci 2024; 107:7022-7037. [PMID: 38762109 DOI: 10.3168/jds.2023-24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/28/2024] [Indexed: 05/20/2024]
Abstract
Buffaloes are vital contributors to the global dairy industry. Understanding the genetic basis of milk production traits in buffalo populations is essential for breeding programs and improving productivity. In this study, we conducted whole-genome resequencing on 387 buffalo genomes from 29 diverse Asian breeds, including 132 river buffaloes, 129 swamp buffaloes, and 126 crossbred buffaloes. We identified 36,548 copy number variants (CNV) spanning 133.29 Mb of the buffalo genome, resulting in 2,100 CNV regions (CNVR), with 1,993 shared CNVR being found within the studied buffalo types. Analyzing CNVR highlighted distinct genetic differentiation between river and swamp buffalo subspecies, verified by evolutionary tree and principal component analyses. Admixture analysis grouped buffaloes into river and swamp categories, with crossbred buffaloes displaying mixed ancestry. To identify candidate genes associated with milk production traits, we employed 3 approaches. First, we used Vst-based population differentiation, revealing 11 genes within CNVR that exhibited significant divergence between different buffalo breeds, including genes linked to milk production traits. Second, expression quantitative loci analysis revealed differentially expressed CNVR-derived genes (DECG) associated with milk production traits. Notably, known milk production-related genes were among these DECG, validating their relevance. Last, a GWAS identified 3 CNVR significantly linked to peak milk yield. Our study provides comprehensive genomic insights into buffalo populations and identifies candidate genes associated with milk production traits. These findings facilitate genetic breeding programs aimed at increasing milk yield and improving quality in this economically important livestock species.
Collapse
Affiliation(s)
- Ting-Xian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| | - Xiao-Ya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Anqin Duan
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Xing-Rong Lu
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
2
|
Saravanan KA, Rajawat D, Kumar H, Nayak SS, Bhushan B, Dutt T, Panigrahi M. Signatures of selection in riverine buffalo populations revealed by genome-wide SNP data. Anim Biotechnol 2023; 34:3343-3354. [PMID: 36384399 DOI: 10.1080/10495398.2022.2145292] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The detection of selection signatures assists in understanding domestication, evolution, and the identification of genomic regions related to adaptation and production traits in buffaloes. The emergence of high-throughput technologies like Next Generation Sequencing and SNP genotyping had expanded our ability to detect these signatures of selection. In this study, we sought to identify signatures of selection in five buffalo populations (Brazilian Murrah, Bulgarian Murrah, Indian Murrah, Nili-Ravi, and Kundi) using Axiom Buffalo 90 K Genotyping Array data. Using seven different methodologies (Tajima's D, CLR, ROH, iHS, FST, FLK and hapFLK), we identified selection signatures in 374 genomic regions, spanning a total of 381 genes and 350 quantitative trait loci (QTLs). Among these, several candidate genes were associated with QTLs for milk production, reproduction, growth and carcass traits. The genes and QTLs reported in this study provide insight into selection signals shaping the genome of buffalo breeds. Our findings can aid in further genomic association studies, genomic prediction, and the implementation of breeding programmes in Indian buffaloes.
Collapse
Affiliation(s)
- K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|
3
|
Deng T, Wu J, Abdel-Shafy H, Wang X, Lv H, Shaukat A, Zhou X, Zhou Y, Sun H, Wei P, Sun N, Huang Q, Xu L, Liu M, Lin Y, Yang L, Hua G. Comparative Genomic Analysis of the Thiolase Family and Functional Characterization of the Acetyl-Coenzyme A Acyltransferase-1 Gene for Milk Biosynthesis and Production of Buffalo and Cattle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3325-3337. [PMID: 36780201 DOI: 10.1021/acs.jafc.2c07763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cattle and buffalo served as the first and second largest dairy animals, respectively, providing 96% milk products worldwide. Understanding the mechanisms underlying milk synthesis is critical to develop the technique to improve milk production. Thiolases, also known as acetyl-coenzyme A acetyltransferases (ACAT), are an enzyme family that plays vital roles in lipid metabolism, including ACAT1, ACAT2, ACAA1, ACAA2, and HADHB. Our present study showed that these five members were orthologous in six livestock species including buffalo and cattle. Transcriptomic data analyses derived from different lactations stages showed that ACAA1 displayed different expression patterns between buffalo and cattle. Immunohistochemistry staining revealed that ACAA1 were dominantly located in the mammary epithelial cells of these two dairy animals. Knockdown of ACAA1 inhibited mammary epithelial cell proliferation and triglyceride and β-casein secretion by regulating related gene expressions in cattle and buffalo. In contrast, ACAA1 overexpression promoted cell proliferation and triglyceride secretion. Finally, three novel SNPs (g.-681A>T, g.-23117C>T, and g.-24348G>T) were detected and showed significant association with milk production traits of Mediterranean buffaloes. In addition, g.-681A>T mutation located in the promoter region changed transcriptional activity significantly. Our findings suggested that ACAA1 play a key role in regulating buffalo and cattle milk synthesis and provided basic information to further understand the dairy animal lactation physiology.
Collapse
Affiliation(s)
- Tingxian Deng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Guangxi Key Laboratory of Buffalo Genetic, Breeding and Reproduction, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Jiyun Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Xiaojie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aftab Shaukat
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Pengfei Wei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianzhi Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linghua Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Miaoyu Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Lin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Guohua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Abdel-Shafy H, Deng T, Zhou Y, Low WY, Hua G. Editorial: Buffalo Genetics and Genomics. Front Genet 2022; 12:820627. [PMID: 35154263 PMCID: PMC8832542 DOI: 10.3389/fgene.2021.820627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- *Correspondence: Hamdy Abdel-Shafy,
| | - Tingxian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wai Yee Low
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - Guohua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Rahimmadar S, Ghaffari M, Mokhber M, Williams JL. Linkage Disequilibrium and Effective Population Size of Buffalo Populations of Iran, Turkey, Pakistan, and Egypt Using a Medium Density SNP Array. Front Genet 2021; 12:608186. [PMID: 34950186 PMCID: PMC8689148 DOI: 10.3389/fgene.2021.608186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Linkage disequilibrium (LD) across the genome provides information to identify the genes and variations related to quantitative traits in genome-wide association studies (GWAS) and for the implementation of genomic selection (GS). LD can also be used to evaluate genetic diversity and population structure and reveal genomic regions affected by selection. LD structure and Ne were assessed in a set of 83 water buffaloes, comprising Azeri (AZI), Khuzestani (KHU), and Mazandarani (MAZ) breeds from Iran, Kundi (KUN) and Nili-Ravi (NIL) from Pakistan, Anatolian (ANA) buffalo from Turkey, and buffalo from Egypt (EGY). The values of corrected r2 (defined as the correlation between two loci) of adjacent SNPs for three pooled Iranian breeds (IRI), ANA, EGY, and two pooled Pakistani breeds (PAK) populations were 0.24, 0.28, 0.27, and 0.22, respectively. The corrected r2 between SNPs decreased with increasing physical distance from 100 Kb to 1 Mb. The LD values for IRI, ANA, EGY, and PAK populations were 0.16, 0.23, 0.24, and 0.21 for less than 100Kb, respectively, which reduced rapidly to 0.018, 0.042, 0.059, and 0.024, for a distance of 1 Mb. In all the populations, the decay rate was low for distances greater than 2Mb, up to the longest studied distance (15 Mb). The r2 values for adjacent SNPs in unrelated samples indicated that the Affymetrix Axiom 90 K SNP genomic array was suitable for GWAS and GS in these populations. The persistency of LD phase (PLDP) between populations was assessed, and results showed that PLPD values between the populations were more than 0.9 for distances of less than 100 Kb. The Ne in the recent generations has declined to the extent that breeding plans are urgently required to ensure that these buffalo populations are not at risk of being lost. We found that results are affected by sample size, which could be partially corrected for; however, additional data should be obtained to be confident of the results.
Collapse
Affiliation(s)
- Shirin Rahimmadar
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - Mokhtar Ghaffari
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - Mahdi Mokhber
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia.,Department of Animal Science, Food and Nutrition, Università Cattolica Del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
6
|
Deng TX, Ma XY, Lu XR, Duan AQ, Shokrollahi B, Shang JH. Signatures of selection reveal candidate genes involved in production traits in Chinese crossbred buffaloes. J Dairy Sci 2021; 105:1327-1337. [PMID: 34955275 DOI: 10.3168/jds.2021-21102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Identification of selection signature is important for a better understanding of genetic mechanisms that affect phenotypic differentiation in livestock. However, the genome-wide selection responses have not been investigated for the production traits of Chinese crossbred buffaloes. In this study, an SNP data set of 133 buffaloes (Chinese crossbred buffalo, n = 45; Chinese local swamp buffalo, n = 88) was collected from the Dryad Digital Repository database (https://datadryad.org/stash/). Population genetics analysis showed that these buffaloes were divided into the following 2 groups: crossbred buffalo and swamp buffalo. The crossbred group had higher genetic diversity than the swamp group. Using 3 complementary statistical methods (integrated haplotype score, cross population extended haplotype homozygosity, and composite likelihood ratio), a total of 31 candidate selection regions were identified in the Chinese crossbred population. Here, within these candidate regions, 25 genes were under the putative selection. Among them, several candidate genes were reported to be associated with production traits. In addition, we identified 13 selection regions that overlapped with bovine QTLs that were mainly involved in milk production and composition traits. These results can provide useful insights regarding the selection response for production traits of Chinese crossbred buffalo, as identified candidate genes influence production performance.
Collapse
Affiliation(s)
- T X Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| | - X Y Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - X R Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - A Q Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Borhan Shokrollahi
- Department of Animal Science, Faculty of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran 5595-73919
| | - J H Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| |
Collapse
|
7
|
Kominakis A, Tarsani E, Hager-Theodorides AL, Mastranestasis I, Gkelia D, Hadjigeorgiou I. Genetic differentiation of mainland-island sheep of Greece: Implications for identifying candidate genes for long-term local adaptation. PLoS One 2021; 16:e0257461. [PMID: 34529728 PMCID: PMC8445479 DOI: 10.1371/journal.pone.0257461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
In Greece, a number of local sheep breeds are raised in a wide range of ecological niches across the country. These breeds can be used for the identification of genetic variants that contribute to local adaptation. To this end, 50k genotypes of 90 local sheep from mainland Greece (Epirus, n = 35 and Peloponnesus, n = 55) were used, as well as 147 genotypes of sheep from insular Greece (Skyros, n = 21), Lemnos, n = 36 and Lesvos, n = 90). Principal components and phylogenetic analysis along with admixture and spatial point patterns analyses suggested genetic differentiation of 'mainland-island' populations. Genome scans for signatures of selection and genome-wide association analysis (GWAS) pointed to one highly differentiating marker on OAR4 (FST = 0.39, FLK = 21.93, FDR p-value = 0.10) that also displayed genome wide significance (FDR p-value = 0.002) during GWAS. A total number of 6 positional candidate genes (LOC106990429, ZNF804B, TEX47, STEAP4, SRI and ADAM22) were identified within 500 kb flanking regions around the significant marker. In addition, two QTLs related to fat tail deposition are reported in genomic regions 800 kb downstream the significant marker. Based on gene ontology analysis and literature evidence, the identified candidate genes possess biological functions relevant to local adaptation that worth further investigation.
Collapse
Affiliation(s)
- Antonios Kominakis
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | - Eirini Tarsani
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | | | | | - Dimitra Gkelia
- Association of Pastoral Farmers of Epirus, Ioannina, Greece
| | | |
Collapse
|
8
|
Rehman SU, Feng T, Wu S, Luo X, Lei A, Luobu B, Hassan FU, Liu Q. Comparative Genomics, Evolutionary and Gene Regulatory Regions Analysis of Casein Gene Family in Bubalus bubalis. Front Genet 2021; 12:662609. [PMID: 33833782 PMCID: PMC8021914 DOI: 10.3389/fgene.2021.662609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Buffalo is a luxurious genetic resource with multiple utilities (as a dairy, draft, and meat animal) and economic significance in the tropical and subtropical regions of the globe. The excellent potential to survive and perform on marginal resources makes buffalo an important source for nutritious products, particularly milk and meat. This study was aimed to investigate the evolutionary relationship, physiochemical properties, and comparative genomic analysis of the casein gene family (CSN1S1, CSN2, CSN1S2, and CSN3) in river and swamp buffalo. Phylogenetic, gene structure, motif, and conserved domain analysis revealed the evolutionarily conserved nature of the casein genes in buffalo and other closely related species. Results indicated that casein proteins were unstable, hydrophilic, and thermostable, although αs1-CN, β-CN, and κ-CN exhibited acidic properties except for αs2-CN, which behaved slightly basic. Comparative analysis of amino acid sequences revealed greater variation in the river buffalo breeds than the swamp buffalo indicating the possible role of these variations in the regulation of milk traits in buffalo. Furthermore, we identified lower transcription activators STATs and higher repressor site YY1 distribution in swamp buffalo, revealing its association with lower expression of casein genes that might subsequently affect milk production. The role of the main motifs in controlling the expression of casein genes necessitates the need for functional studies to evaluate the effect of these elements on the regulation of casein gene function in buffalo.
Collapse
Affiliation(s)
- Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Siwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - An Lei
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Basang Luobu
- Shannan Animal Husbandry and Veterinary Terminus, Xizang, China
| | - Faiz-ul Hassan
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Nascimento AV, Cardoso DF, Santos DJA, Romero ARS, Scalez DCB, Borquis RRA, Neto FRA, Gondro C, Tonhati H. Inbreeding coefficients and runs of homozygosity islands in Brazilian water buffalo. J Dairy Sci 2020; 104:1917-1927. [PMID: 33272579 DOI: 10.3168/jds.2020-18397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
Characterization of autozygosity is relevant to monitor genetic diversity and manage inbreeding levels in breeding programs. Identification of autozygosity hotspots can unravel genomic regions targeted by selection for economically important traits and can help identify candidate genes for selection. In this study, we estimated the inbreeding levels of a Brazilian population of Murrah buffalo undergoing selection for milk production traits, particularly milk yield. We also studied the distribution of runs of homozygosity (ROH) islands and identified putative genes and quantitative trait loci (QTL) under selection. We genotyped 422 Murrah buffalo for 51,611 SNP; 350 of these had ROH longer than 10 Mb, indicating the occurrence of inbreeding in the last 5 generations. The mean length of the ROH per animal was 4.28 ± 1.85 Mb. Inbreeding coefficients were calculated from the genomic relationship matrix, the pedigree, and the ROH, with estimates varying between 0.242 and 0.035. Inbreeding estimates from the pedigree had a low correlation with the genomic estimates, and estimates from the genomic relationship matrix were much higher than those from the pedigree or the ROH. Signatures of selection were identified in 6 genomic regions, located on chromosomes 1, 2, 3, 5, 16, and 18, encompassing a total of 190 genes and 174 QTL. Many of the genes (e.g., APRT and ACSF3) and QTL identified are related to milk production traits, such as milk yield, milk fat yield and percentage, and milk protein yield and percentage. Other genes are associated with reproduction and immune response traits as well as morphological aspects of the buffalo species. Inbreeding levels in this population are still low but are increasing due to selection and should be managed to avoid future losses due to inbreeding depression. The proximity of genes linked to milk production traits with genes associated with reproduction and immune system traits suggests the need to include these latter genes in the breeding program to avoid negatively affecting them due to selection for production traits.
Collapse
Affiliation(s)
- A V Nascimento
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - D F Cardoso
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - D J A Santos
- Department of Animal Science, University of Maryland, College Park 20742
| | - A R S Romero
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - D C B Scalez
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil
| | - R R A Borquis
- College of Agricultural Sciences, Federal University of Grande Dourados (UFGD), Dourados, 79804970, Brazil
| | - F R A Neto
- Goiano Federal Institute, Campus Rio Verde, Rio Verde, 75909120, Brazil
| | - C Gondro
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - H Tonhati
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, 14884900, Brazil.
| |
Collapse
|
10
|
Islam S, Reddy UK, Natarajan P, Abburi VL, Bajwa AA, Imran M, Zahoor MY, Abdullah M, Bukhari AM, Iqbal S, Ashraf K, Nadeem A, Rehman H, Rashid I, Shehzad W. Population demographic history and population structure for Pakistani Nili-Ravi breeding bulls based on SNP genotyping to identify genomic regions associated with male effects for milk yield and body weight. PLoS One 2020; 15:e0242500. [PMID: 33232358 PMCID: PMC7685427 DOI: 10.1371/journal.pone.0242500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/03/2020] [Indexed: 11/20/2022] Open
Abstract
The domestic Nili-Ravi water buffalo (Bubalus bubalis) is the best dairy animal contributing 68% to total milk production in Pakistan. In this study, we identified genome-wide single nucleotide polymorphisms (SNPs) to estimate various population genetic parameters such as diversity, pairwise population differentiation, linkage disequilibrium (LD) distribution and for genome-wide association study for milk yield and body weight traits in the Nili-Ravi dairy bulls that they may pass on to their daughters who are retained for milking purposes. The genotyping by sequencing approach revealed 13,039 reference genome-anchored SNPs with minor allele frequency of 0.05 among 167 buffalos. Population structure analysis revealed that the bulls were grouped into two clusters (K = 2), which indicates the presence of two different lineages in the Pakistani Nili-Ravi water buffalo population, and we showed the extent of admixture of these two lineages in our bull collection. LD analysis revealed 4169 significant SNP associations, with an average LD decay of 90 kb for these buffalo genome. Genome-wide association study involved a multi-locus mixed linear model for milk yield and body weight to identify genome-wide male effects. Our study further illustrates the utility of the genotyping by sequencing approach for identifying genomic regions to uncover additional demographic complexity and to improve the complex dairy traits of the Pakistani Nili-Ravi water buffalo population that would provide the lot of economic benefits to dairy industry.
Collapse
Affiliation(s)
- Saher Islam
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Purushothaman Natarajan
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Venkata Lakshmi Abburi
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Amna Arshad Bajwa
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Yasir Zahoor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Abdullah
- Department of Livestock Production, University of Veterinary and Animal Sciences, Pattoki, Pakistan
| | - Aamir Mehmood Bukhari
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Sajid Iqbal
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Kamran Ashraf
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asif Nadeem
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habibur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
11
|
Abstract
The objectives of the current study were to detect putative genomic loci and to identify candidate genes associated with milk production traits in Egyptian buffalo. A total number of 161 479 daily milk yield (DMY) records and 60 318 monthly measures for fat and protein percentages (FP and PP, respectively), along with fat and protein yields (FY and PY, respectively) from 1670 animals were used. Genotyping was performed using Axiom® Buffalo Genotyping 90 K array. Genome-wide association study (GWAS) for each trait was performed using PLINK. After Bonferroni correction, 47 SNPs were associated with one or more milk production traits. These SNPs were distributed over 36 quantitative trait loci (QTL) and located on 20 buffalo chromosomes (BBU). For the 47 SNPs, one was overlapped for three traits (DMY, FY, and PY), six were associated with two traits (one for PP and PY and five for FY and PY) while the rest were associated with only one trait. Out of 36 identified QTL, eleven were overlapped with previously reported loci in buffalo and/or cattle populations. Some of these SNPs are placed within or close to potential candidate genes, for example: TPD52, ZBTB10, RALYL and SNX16 on BBU15, ADGRD1 on BBU17, ESRRG on BBU5 and GRIP1 on BBU4. This is the first reported study between genome-wide markers and milk components in Egyptian buffalo. Our findings provide useful information to explore the genetic mechanisms and relevant genes contributing to the variation in milk production traits. Further confirmation studies with larger population size are necessary to validate the findings and detect the causal genetic variants.
Collapse
|