1
|
Teso-Pérez C, López-Gazcón A, Peralta-Sánchez JM, Martínez-Bueno M, Valdivia E, Fárez-Vidal ME, Martín-Platero AM. Bacteriocin-Producing Enterococci Modulate Cheese Microbial Diversity. MICROBIAL ECOLOGY 2025; 87:175. [PMID: 39838107 PMCID: PMC11750935 DOI: 10.1007/s00248-025-02491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
Cheese production involves various lactic acid bacteria (LAB) that break down lactose, milk proteins, and fats, producing key nutrients and influencing the cheese's flavor. They form communities that play a crucial role in determining the cheese's organoleptic properties. The composition of cheeses' microbial communities is shaped by physicochemical factors (e.g., temperature, pH, and salinity) and biological factors (i.e. microbial interactions). While starter cultures are introduced to control these communities, non-starter LAB represent a significant portion of the final microbial assemblage, but their interactions remain unclear. LAB often produce bacteriocins, antimicrobial peptides that antagonize other bacteria, but their role within LAB communities is not fully understood. This study aimed to assess the impact of bacteriocin production on LAB diversity in cheese, using Enterococcus as a model organism, a common bacteriocin producer. We analyzed enterocin production of enterococcal isolates by antimicrobial assays and microbial diversity differences in raw milk cheeses by two approaches: 16S RNA gene amplicon metagenomic sequencing for the whole microbial community and multi-locus sequence analysis (MLSA) for the enterococcal diversity. Our results revealed that LAB communities were dominated by lactococci, lactobacilli, and streptococci, with enterococci present in lower numbers. However, cheeses containing bacteriocin-producing enterococci exhibited higher microbial diversity. Interestingly, the highest diversity occurred at low levels of bacteriocin producers, but this effect was not observed within enterococcal populations. These findings suggest that bacteriocin production plays a key role in shaping LAB communities during cheese ripening, although further research is needed to understand its broader implications in other microbial ecosystems.
Collapse
Affiliation(s)
- Claudia Teso-Pérez
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - Areli López-Gazcón
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | | | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
- Instituto de Biotecnología, Universidad de Granada, C/ Ramón y Cajal, 4, 18071, Granada, Spain
| | - María Esther Fárez-Vidal
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain.
- Instituto de Investigación Biomédica IBS. Granada. Complejo Hospitalario Universitario de Granada, Universidad de Granada, 18071, Granada, Spain.
| | - Antonio M Martín-Platero
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain.
| |
Collapse
|
2
|
Cardinali F, Rampanti G, Paderni G, Milanović V, Ferrocino I, Reale A, Boscaino F, Raicevic N, Ilincic M, Osimani A, Aquilanti L, Martinovic A, Garofalo C. A comprehensive study on the autochthonous microbiota, volatilome, physico-chemical, and morpho-textural features of Montenegrin Njeguški cheese. Food Res Int 2024; 197:115169. [PMID: 39593380 DOI: 10.1016/j.foodres.2024.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
The present study aims to deepen the knowledge of the microbiota, gross composition, physico-chemical and morpho-textural features, biogenic amines content and volatilome of Njeguški cheese, one of the most popular indigenous cheeses produced in Montenegro. Cheese samples were collected in duplicate from three different batches produced by three Montenegrin artisan producers. For the first time, the microbiota of Njeguški cheese was investigated using both culture-dependent techniques and metagenomic analysis. Coagulase positive staphylococci viable counts were below the detection limit of the analysis (<1 log cfu g-1). Salmonella spp., Listeria monocytogenes and staphylococcal enterotoxins were absent. However, relatively high viable counts of Enterobacteriaceae, Escherichia coli, Pseudomonadaceae and eumycetes were detected. Metataxonomic analysis revealed a core microbiome composed of Lactococcus lactis, Streptococcus thermophilus, Debaryomyces hansenii, and Kluyveromyces marxianus. Furthermore, the detection of opportunistic pathogenic yeasts such as Magnusiomyces capitatus and Wickerhamiella pararugosa, along with the variable content of biogenic amines, suggests the need for increased attention to hygienic conditions during Njeguški cheese production. Significant variability was observed in humidity (ranging from 38.37 to 45.58 %), salt content (ranging from 0.70 to 1.78 %), proteins content (ranging from 21.42 to 25.08 %), ash content (ranging from 2.97 to 4.05 %), hardness, springiness, and color among samples from different producers. Gas chromatography-mass spectrometry analysis showed a well-defined and complex volatilome profile of the Njeguški cheese, with alcohols (ethanol, isoamyl alcohol, phenetyl alcol), esters and acetates (ethyl acetate, ethyl butanoate, isoamyl acetate), ketones (acetoin, 2-butanone), and acids (acetic, butanoic, hexanoic acids) being the main chemical groups involved in aroma formation. This research will provide new insights into the still poorly explored identity of Njeguški cheese, thus serving as a first baseline for future studies aimed at protecting its tradition.
Collapse
Affiliation(s)
- Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Brecce Bianche, 60131 Ancona, Italy
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Brecce Bianche, 60131 Ancona, Italy
| | - Giuseppe Paderni
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Brecce Bianche, 60131 Ancona, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Anna Reale
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Floriana Boscaino
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Nadja Raicevic
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Masa Ilincic
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Brecce Bianche, 60131 Ancona, Italy.
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Brecce Bianche, 60131 Ancona, Italy
| | - Aleksandra Martinovic
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
3
|
Rampanti G, Raffo A, Melini V, Moneta E, Nardo N, Saggia Civitelli E, Bande-De León C, Tejada Portero L, Ferrocino I, Franciosa I, Cardinali F, Osimani A, Aquilanti L. Chemical, microbiological, textural, and sensory characteristics of pilot-scale Caciofiore cheese curdled with commercial Cynara cardunculus rennet and crude extracts from spontaneous and cultivated Onopordum tauricum. Food Res Int 2023; 173:113459. [PMID: 37803784 DOI: 10.1016/j.foodres.2023.113459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
The aim of this study was the chemical, microbiological, textural, and sensory characterization of pilot-scale prototypes of an Italian ewe's raw milk cheese (Caciofiore) curdled with commercial Cynara cardunculus rennet, used as a control, and crude extracts obtained from flowers of either spontaneous or cultivated Onopordum tauricum. Hence, the control and experimental cheese prototypes produced in two rounds of cheesemaking trials were assayed, at the end of their 60-day maturation, for the following features: pH, titratable acidity, dry matter, fat, total and soluble nitrogen (TN and SN, respectively), ash, salt, protein, lactose, viable plate counts and composition of the bacterial and fungal populations, color, texture, volatile organic compounds (VOCs), and olfactory attributes by sensory analysis (the latter for the sole prototypes curdled with the commercial rennet and the extract obtained from cultivated O. tauricum). The data overall collected showed a very low impact of the type of thistle rennet on the analyzed cheese traits, with significant differences being exclusively found for SN/TN%, titratable acidity, color, and adhesiveness. By contrast, a higher impact of the cheesemaking round was seen, with significant differences being observed for salt content, load of presumptive lactobacilli, thermophilic cocci, and Escherichia coli, and levels of the following VOCs: 2,3-butanedione, 2-pentanone, 1-butanol, 2-heptanone, 3-methyl-1-butanol, 2-heptanol, 2-nonanone, dimethyl trisulfide, 2-methyl propanoic acid, butanoic acid, and 3-methyl butanoic acid. Sensory analysis revealed a strong ewe's cheese odor, accompanied by other olfactory notes, such as pungent, sour curd, sweet, and Parmesan cheese-like notes, in all the analysed cheese prototypes. Moreover, key odor active compounds, including butanoic acid, ethyl butanoate, 2,3-butanedione, 1-octen-3-one, and dimethyl trisulfide, were identified by GC-olfactometry analysis. Regarding the odor attributes as determined by sensory analysis, again the type of rennet had an almost negligible impact, with significant differences being only perceived for 1 or 2 out of 20 odor attributes, depending on the analytical conditions applied. Although some aspects deserve further investigation, the results herein collected confirm that O. tauricum can be regarded as an alternative source of thistle rennet for the manufacture of Caciofiore cheese, and more in general, Mediterranean ewe's milk cheeses.
Collapse
Affiliation(s)
- Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Antonio Raffo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy.
| | - Valentina Melini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| | - Elisabetta Moneta
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| | - Nicoletta Nardo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| | | | - Cindy Bande-De León
- Department of Human Nutrition and Food Technology, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Luis Tejada Portero
- Department of Human Nutrition and Food Technology, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin (UNITO), Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Irene Franciosa
- Department of Agricultural, Forest, and Food Science, University of Turin (UNITO), Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
4
|
Güley Z, Fallico V, Cabrera-Rubio R, O’Sullivan D, Marotta M, Pennone V, Smith S, Beresford T. Diversity of the Microbiota of Traditional Izmir Tulum and Izmir Brined Tulum Cheeses and Selection of Potential Probiotics. Foods 2023; 12:3482. [PMID: 37761191 PMCID: PMC10528788 DOI: 10.3390/foods12183482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
High-throughput DNA sequencing (HTS) was used to study the microbial diversity of commercial traditional Izmir Tulum (IT) and Izmir Brined Tulum (IBT) cheeses from Izmir, Türkiye. Simultaneously, cultivation-dependent methods were used to isolate, identify and characterize bacterial strains displaying probiotic potential. At the phylum level, Firmicutes dominated the microbiota of both cheese types comprising >98% of the population. Thirty genera were observed, with Streptococcus being the most abundant genus and with Streptococcus thermophilus and S. infantarius subsp. infantarius being the most abundant species. Genera, including Bifidobacterium and Chryseobacterium, not previously associated with IT and IBT, were detected. IT cheeses displayed higher operational taxonomic units (OTUs; Richness) and diversity index (Simpson) than IBT cheeses; however, the difference between the diversity of the microbiota of IT and IBT cheese samples was not significant. Three Lacticaseibacillus paracasei strains isolated from IBT cheeses exhibited probiotic characteristics, which included capacity to survive under in vitro simulated gastrointestinal conditions, resistance to bile salts and potential to adhere to HT-29 human intestinal cells. These findings demonstrate that Tulum cheeses harbor bacterial genera not previously reported in this cheese and that some strains display probiotic characteristics.
Collapse
Affiliation(s)
- Ziba Güley
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
- Department of Food Engineering, Alanya Alaaddin Keykubat University, 07425 Antalya, Türkiye
| | - Vincenzo Fallico
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
- APC Microbiome Ireland, University College Cork, T12Y120 Cork, Ireland
| | - Daniel O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
- School of Food and Nutritional Sciences, University College Cork, T12K8AF Cork, Ireland
| | - Mariarosaria Marotta
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
| | - Vincenzo Pennone
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
| | - Sandra Smith
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
| | - Tom Beresford
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
| |
Collapse
|
5
|
Zhang S, Zhang Y, Wu L, Zhang L, Wang S. Characterization of microbiota of naturally fermented sauerkraut by high-throughput sequencing. Food Sci Biotechnol 2023; 32:855-862. [PMID: 37041807 PMCID: PMC10082884 DOI: 10.1007/s10068-022-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/28/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Sauerkraut is a traditionally fermented cabbage, with a unique taste and beneficial properties, in northeast China. The taste and flavor of sauerkraut vary from region to region, owing to the differences in microorganisms. Illumina MiSeq sequencing was used to identify and quantify the microbial community composition of the broth and leaves of the naturally fermented Suan-cai collected from northeast China. The alpha and beta diversity of the samples from three areas in Heilongjiang province shown that the complexity of bacterial diversity of the three samples was C, A and B in turn. The Lactobacillus widely existed in fermented sauerkraut, of these, Latilactobacillus sakei, Loigolactobacillus coryniformis subsp. torquens, Lactiplantibacillus plantarum subsp. plantarum, and Secundilactobacillus malefermentans were more abundant in the sauerkraut leaves than in fermentation broth. Other genera of lactic acid bacteria Pediococcus and Leuconostoc, which have potential probiotic properties, were also present. However, some harmful bacteria such as Arcobacter and Acinetobacter were also detected.
Collapse
Affiliation(s)
- Shuang Zhang
- Food Science College, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Yichen Zhang
- Food Science College, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Lihong Wu
- Food Science College, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Lili Zhang
- Food Science College, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Song Wang
- Food Science College, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
6
|
Guo L, Xu W, Li C, Wang F, Guo Y, Ya M. Determination of the microbial community of traditional Mongolian cheese by using culture-dependent and independent methods. Food Sci Nutr 2023; 11:828-837. [PMID: 36789043 PMCID: PMC9922113 DOI: 10.1002/fsn3.3117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Mongolian cheese is not only a requisite source of food for the nomadic Mongolian but also follows a unique Mongolian dairy artisanal method of production, possessing high nutritional value and long shelf-life. In this study, the ancient technique for the production of Mongolian cheese was investigated. The nutritional value of Mongolian cheese was characterized by its high-protein content (30.13 ± 2.99%) and low-fat content (9.66 ± 3.36%). Lactobacillus, Lactococcus, and Dipodascus were the predominant bacterial and fungal genera, and Lactobacillus helveticus, Lactococcus piscium, and Dipodascus geotrichum were the predominant species in the Mongolian cheese. The microbiota of products from different cheese factories varies significantly. The high-temperature (85°C-90°C) kneading of coagulated curds could eliminate most of the thermosensitive microorganisms for extending the shelf-life of cheese. The indigenous spore-forming microbes, which included yeasts, belonging to Pichia and Candida genera, and molds, belonging to Mucor and Penicillium genera, which originated from the surroundings during the process of cooling, drying, demolding, and vacuum packaging could survive and cause the package to swell and the cheese to grow mold. The investigation of production technology, nutrition, microbiota, and viable microbes related to shelf-life contributes to the protection of traditional technologies, extraction of highlights (nutritional profiles and curd scalding) for merchandise marketing, and standardization of Mongolian cheese production, including culture starters and aseptic technique.
Collapse
Affiliation(s)
- Liang Guo
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| | - Wei‐Liang Xu
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| | - Chun‐Dong Li
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| | - Fu‐Chao Wang
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| | - Yuan‐Sheng Guo
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| | - Mei Ya
- Xilingol Vocational CollegeXilin Gol Institute of BioengineeringXilinhotChina
| |
Collapse
|
7
|
Zhang X, Zheng Y, Feng J, Zhou R, Ma M. Integrated metabolomics and high-throughput sequencing to explore the dynamic correlations between flavor related metabolites and bacterial succession in the process of Mongolian cheese production. Food Res Int 2022; 160:111672. [DOI: 10.1016/j.foodres.2022.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
8
|
Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions. Foods 2022; 11:foods11152276. [PMID: 35954043 PMCID: PMC9368153 DOI: 10.3390/foods11152276] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional cheeses produced from raw milk exhibit a complex microbiota, characterized by a sequence of different microorganisms from milk coagulation and throughout maturation. Lactic acid bacteria (LAB) play an essential role in traditional cheese making, either as starter cultures that cause the rapid acidification of milk or as secondary microbiota that play an important role during cheese ripening. The enzymes produced by such dynamic LAB communities in raw milk are crucial, since they support proteolysis and lipolysis as chief drivers of flavor and texture of cheese. Recently, several LAB species have been characterized and used as probiotics that successfully promote human health. This review highlights the latest trends encompassing LAB acting in traditional raw milk cheeses (from cow, sheep, and goat milk), and their potential as probiotics and producers of bioactive compounds with health-promoting effects.
Collapse
|
9
|
Characterization of Microbial Shifts during the Production and Ripening of Raw Ewe Milk-Derived Idiazabal Cheese by High-Throughput Sequencing. BIOLOGY 2022; 11:biology11050769. [PMID: 35625497 PMCID: PMC9138791 DOI: 10.3390/biology11050769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Idiazabal is a traditional cheese produced from raw ewe milk in the Basque Country (Southwestern Europe). The sensory properties of raw milk cheeses have been attributed, among other factors, to microbial shifts that occur during the production and ripening processes. In this study, we used high-throughput sequencing technologies to investigate the microbiota of Latxa ewe raw milk and the dynamics during cheese production and ripening processes. The microbiota of raw milk was composed of lactic acid bacteria (LAB), environmental bacteria and non-desirable bacteria. Throughout the cheese making and ripening processes, the growth of LAB was promoted, whereas that of non-desirable and environmental bacteria was inhibited. Moreover, some genera not reported previously in raw ewe milk were detected and clear differences were observed in the bacterial composition of raw milk and cheese among producers, in relation to LAB and environmental or non-desirable bacteria, some of which could be attributed to the production of flavour related compounds. Abstract In this study, we used high-throughput sequencing technologies (sequencing of V3–V4 hypervariable regions of 16S rRNA gene) to investigate for the first time the microbiota of Latxa ewe raw milk and the bacterial shifts that occur during the production and ripening of Idiazabal cheese. Results revealed several bacterial genera not reported previously in raw ewe milk and cheese, such as Buttiauxella and Obesumbacterium. Both the cheese making and ripening processes had a significant impact on bacterial communities. Overall, the growth of lactic acid bacteria (LAB) (Lactococcus, Lactobacillus, Leuconostoc, Enterococcus, Streptococcus and Carnobacterium) was promoted, whereas that of non-desirable and environmental bacteria was inhibited (such as Pseudomonas and Clostridium). However, considerable differences were observed among producers. It is noteworthy that the starter LAB (Lactococcus) predominated up to 30 or 60 days of ripening and then, the growth of non-starter LAB (Lactobacillus, Leuconostoc, Enterococcus and Streptococcus) was promoted. Moreover, in some cases, bacteria related to the production of volatile compounds (such as Hafnia, Brevibacterium and Psychrobacter) also showed notable abundance during the first few weeks of ripening. Overall, the results of this study enhance our understanding of microbial shifts that occur during the production and ripening of a raw ewe milk-derived cheese (Idiazabal), and could indicate that the practices adopted by producers have a great impact on the microbiota and final quality of this cheese.
Collapse
|
10
|
Lacorte GA, Cruvinel LA, de Paula Ávila M, Dias MF, de Abreu Pereira A, Nascimento AMA, de Melo Franco BDG. Investigating the influence of Food Safety Management Systems (FSMS) on microbial diversity of Canastra cheeses and their processing environments. Food Microbiol 2022; 105:104023. [DOI: 10.1016/j.fm.2022.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
|
11
|
Yang C, You L, Kwok LY, Jin H, Peng J, Zhao Z, Sun Z. Strain-level multiomics analysis reveals significant variation in cheeses from different regions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Dimov SG. The unusual microbiota of the traditional Bulgarian dairy product Krokmach – A pilot metagenomics study. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Svetoslav G Dimov
- Department of Genetics Faculty of Biology Sofia University “St. Kliment Ohridski” 8, Dragan Tzankov blvd. Sofia 1164 Bulgaria
| |
Collapse
|
13
|
Mycobiota Composition of Robiola di Roccaverano Cheese along the Production Chain. Foods 2021; 10:foods10081859. [PMID: 34441636 PMCID: PMC8392574 DOI: 10.3390/foods10081859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Robiola di Roccaverano is a Protected Designation of Origin (PDO) cheese from the Piedmont region of Italy. In this study, the mycobiota occurring during Robiola di Roccaverano production was elucidated. Samples of milk, Natural Milk Cultures (NMC), curd, 5- and 15-days ripened cheese were collected from one dairy plant and the mycobiota was analyzed by the metataxonomic approach. Milk samples showed a high diversity and Cladosporium, Kluyveromyces marxianus, Geotrichum candidum and Debaryomyces hansenii were found with higher relative abundance. This mycobiota remains quite stable in NMC and curd matrices although the relative abundance of K. marxianus and G. candidum yeasts increased significantly and shaped the fungal composition of 5- and 15-day ripened cheese.
Collapse
|
14
|
Nam JH, Cho YS, Rackerby B, Goddik L, Park SH. Shifts of microbiota during cheese production: impact on production and quality. Appl Microbiol Biotechnol 2021; 105:2307-2318. [PMID: 33661344 DOI: 10.1007/s00253-021-11201-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
The high-throughput DNA sequencing (HTS) method is used to identify microbes in cheese and their potential functional properties. The technique can be applied to the microbiota of the cheese processing environment, raw milk, curd, whey, and starter cultures, and be used to improve the quality, safety, and other physicochemical properties of the final product. The HTS method is also utilized to study the microbiota shift of different types of cheeses during processing, as the composition and functional properties of the microbiome provide unique characteristics to different cheeses. Although there are several reviews that focused on microbiota of various types of cheeses, this review focuses on evaluating the microbiota shift of different types of cheese production and highlights key bacteria in each step of the processing as well as microbiota of various types of cheeses. KEY POINTS: • High-throughput sequencing can be applied to identify microbiota in cheese. • Microbiota in cheese is changed during making process and aging. • Starter culture plays an important role to establish microbiota in cheese.
Collapse
Affiliation(s)
- Jun Haeng Nam
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Yong Sun Cho
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Bryna Rackerby
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Lisbeth Goddik
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA.
| |
Collapse
|