1
|
Vieira-Neto A, Lean IJ, Santos JEP. Periparturient Mineral Metabolism: Implications to Health and Productivity. Animals (Basel) 2024; 14:1232. [PMID: 38672379 PMCID: PMC11047658 DOI: 10.3390/ani14081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mineral metabolism, in particular Ca, and to a lesser extent phosphorus (P) and magnesium (Mg), is altered with the onset of lactation because of extensive irreversible loss to synthesize colostrum and milk. The transient reduction in the concentration of Ca in blood, particularly when it lasts days, increases the risk of mineral-related disorders such as hypocalcemia and, to a lesser extent, hypophosphatemia. Although the incidence of clinical hypocalcemia can be reduced by prepartum dietary interventions, subclinical hypocalcemia remains prevalent, affecting up to 60% of the dairy cows in the first 3 d postpartum. More importantly, strong associations exist between hypocalcemia and increased susceptibility to other peripartum diseases and impaired reproductive performance. Mechanistic experiments have demonstrated the role of Ca on innate immune response in dairy cows, which presumably predisposes them to other diseases. Hypocalcemia is not related to inadequate Ca intake as prepartum diets marginal to deficient in Ca reduce the risk of the disease. Therefore, the understanding of how Ca homeostasis is regulated, in particular how calciotropic hormones such as parathyroid hormone and 1,25-dihydroxyvitamin D3, affect blood Ca concentrations, gastrointestinal Ca absorption, bone remodeling, and renal excretion of Ca become critical to develop novel strategies to prevent mineral imbalances either by nutritional or pharmacological interventions. A common method to reduce the risk of hypocalcemia is the manipulation of the prepartum dietary cation-anion difference. Feeding acidogenic diets not only improves Ca homeostasis and reduces hypocalcemia, but also reduces the risk of uterine diseases and improves productive performance. Feeding diets that induce a negative Ca balance in the last weeks of gestation also reduce the risk of clinical hypocalcemia, and recent work shows that the incorporation of mineral sequestering agents, presumably by reducing the absorption of P and Ca prepartum, increases blood Ca at calving, although benefits to production and health remain to be shown. Alternative strategies to minimize subclinical hypocalcemia with the use of vitamin D metabolites either fed prepartum or as a pharmacological agent administered immediately after calving have shown promising results in reducing hypocalcemia and altering immune cell function, which might prove efficacious to prevent diseases in early lactation. This review summarizes the current understanding of Ca homeostasis around parturition, the limited knowledge of the exact mechanisms for gastrointestinal Ca absorption in bovine, the implications of hypocalcemia on the health of dairy cows, and discusses the methods to minimize the risk of hypocalcemia and their impacts on productive performance and health in dairy cows.
Collapse
Affiliation(s)
- Achilles Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Ian J. Lean
- Scibus, Camden, NSW 2570, Australia;
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - José Eduardo P. Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
- DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Glosson K, Zhang X, Zanzalari K, Bascom S, Rowson A, Wang Z, Drackley J. Negative dietary cation-anion difference and amount of calcium in prepartum diets: Effects on urine and serum minerals. JDS COMMUNICATIONS 2023; 4:449-453. [PMID: 38045892 PMCID: PMC10692355 DOI: 10.3168/jdsc.2023-0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/17/2023] [Indexed: 12/05/2023]
Abstract
Negative dietary cation-anion difference (DCAD) diets fed prepartum induce a compensated metabolic acidosis, which stimulates metabolic Ca flux before calving and decreases clinical and subclinical hypocalcemia after calving. Effects of low or high dietary Ca in these diets are unclear. Our objective was to determine the effects of inducing a prepartum metabolic acidosis and the amount of dietary Ca on urinary mineral excretion and serum mineral concentrations during the transition period in multiparous Holstein cows (n = 81). Treatment diets fed during the last 28 d before calving were (1) positive DCAD, +6 mEq/100 g of dry matter (DM), target urine pH >7.5, low dietary Ca (0.40% DM; CON); (2) negative DCAD, -24 mEq/100 g of DM, target urine pH 5.5 to 6.0, low dietary Ca (0.40% DM; ND); or (3) negative DCAD, -24 mEq/100 g of DM, target urine pH 5.5 to 6.0, high dietary Ca (2.0% DM; NDCA). Urine was sampled on -21, -14, -7, +1, +2, and +7 d relative to calving. Blood samples were collected on d -30, -21, -14, -7, -4, -2, -1, 0, 1, 2, and 4 relative to parturition. Preplanned treatment contrasts were (1) CON versus ND and NDCA, and (2) ND versus NDCA. Cows fed ND or NDCA had increased urinary volume and excretion of Ca, Cl, and SO4-2, along with decreased excretion of K. Supplementation of Ca to the acidogenic diet increased urinary excretion of Ca at d -21, but this difference lessened as cows approached parturition. Additional Ca increased prepartum urinary excretion of K and Cl. Differences in excretion decreased quickly after parturition, although urinary excretion of Cl remained greater for cows previously fed negative DCAD diets. Acidogenic diets increased serum K and Cl concentrations prepartum. Supplemental Ca decreased serum P relative to ND. During d 0 to 4, serum P and K were greater for cows fed ND or NDCA than for cows fed CON; these differences disappeared by d 4. Acidogenic diets increased serum Ca by increasing Ca flux and excretion in urine. Supplemental Ca in the acidogenic diet modestly increased Ca excretion early in the close-up period.
Collapse
Affiliation(s)
- K.M. Glosson
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
- Phibro Animal Health Corporation, Teaneck, NJ 07666-6712
| | - X. Zhang
- Institute of Animal Nutrition, Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China 611130
| | - K.P. Zanzalari
- Phibro Animal Health Corporation, Teaneck, NJ 07666-6712
| | - S.S. Bascom
- Phibro Animal Health Corporation, Teaneck, NJ 07666-6712
| | - A.D. Rowson
- Phibro Animal Health Corporation, Teaneck, NJ 07666-6712
| | - Z. Wang
- Institute of Animal Nutrition, Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China 611130
| | - J.K. Drackley
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| |
Collapse
|
3
|
Poindexter MB, Zimpel R, Vieira-Neto A, Husnain A, Silva ACM, Faccenda A, Sanches de Avila A, Celi P, Cortinhas C, Santos JEP, Nelson CD. Effect of source and amount of vitamin D on serum concentrations and retention of calcium, magnesium, and phosphorus in dairy cows. J Dairy Sci 2023; 106:954-973. [PMID: 36543649 DOI: 10.3168/jds.2022-22386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/25/2022] [Indexed: 12/24/2022]
Abstract
The objectives of the experiment were to determine the effects of supplementing 2 amounts of 25-hydroxyvitamin D3 (calcidiol; CAL) compared with equal amounts of vitamin D3 (cholecalciferol; CHOL) on serum concentrations, absorptions, and retentions of Ca, Mg, and P in periparturient dairy cows. One hundred seventy-seven (133 parous and 44 nulliparous) pregnant Holstein cows were enrolled in the experiment. Cows were blocked by parity and previous lactation milk yield (parous) or genetic merit for energy-corrected milk yield (nulliparous) and assigned randomly to receive 1 or 3 mg/d of CAL or CHOL in a 2 × 2 factorial arrangement of treatments. Treatments were provided to individual cows as a top-dress to the prepartum diet from 250 d gestation until parturition. The prepartum diet had a dietary cation-anion difference of -128 mEq/kg of dry matter. All cows were fed a common postpartum diet containing 46 μg of vitamin D3/kg of dry matter without further supplementation of treatments. Concentrations of vitamin D metabolites, Ca, Mg, and P in serum were measured pre- and postpartum, in addition to total-tract digestibility and urinary excretion of Ca, Mg, and P in the prepartum period. Feeding 3 mg compared with 1 mg of CAL increased serum 25-hydroxyvitamin D3 (CAL1 = 94 vs. CAL3 = 173 ± 3 ng/mL). In comparison, the increment in serum 25-hydroxyvitamin D3 from feeding 3 mg compared with 1 mg of CHOL was small (CHOL1 = 58 vs. CHOL3 = 64 ± 3 ng/mL). Feeding CAL increased prepartum concentration of P in serum compared with CHOL (CHOL = 1.87 vs. CAL = 2.01 ± 0.02 mM), regardless of the amount fed, but neither source nor amount affected prepartum Ca or Mg in serum. Feeding CAL increased serum Ca and P for the first 11 d postpartum compared with CHOL (CHOL = 2.12 vs. CAL = 2.16 ± 0.01 mM serum Ca; CHOL = 1.70 vs. CAL = 1.78 ± 0.02 mM serum P) but the amount of vitamin D did not affect postpartum concentrations of Ca, Mg, and P in serum. Feeding CAL increased prepartum apparent digestibility of Ca compared with CHOL (CHOL = 26.6 vs. CAL = 33.5 ± 2.8%) but treatments did not affect Ca retention prepartum. Neither source nor amount of vitamin D affected Mg and P apparent digestibility, but CAL decreased the concentration of P excreted in urine during the prepartum period (CHOL = 1.8 vs. CAL = 0.8 ± 0.3 g/d). Calcidiol tended to increase the amount of Ca secreted in colostrum (CHOL = 9.1 vs. CAL = 11.2 ± 0.9 g/d) and Ca excreted in urine postpartum (CHOL = 0.4 vs. CAL = 0.6 ± 0.1 g/d) compared with CHOL. Collectively, feeding CAL at 1 or 3 mg/d compared with CHOL in the last 24 d of gestation is an effective way to increase periparturient serum P concentration and postpartum serum Ca of dairy cows fed a prepartum diet with negative DCAD.
Collapse
Affiliation(s)
- M B Poindexter
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - R Zimpel
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - A Vieira-Neto
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - A Husnain
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611
| | - A C M Silva
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A Faccenda
- Department of Animal Sciences, University of Florida, Gainesville 32611; Department of Animal Science, State University of Western Paraná, Marechal Condido Rondon, PR 85960-000, Brazil
| | - A Sanches de Avila
- Department of Animal Sciences, University of Florida, Gainesville 32611; Department of Animal Science, State University of Western Paraná, Marechal Condido Rondon, PR 85960-000, Brazil
| | - P Celi
- DSM Nutritional Products, Columbia, MD 21045; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia
| | - C Cortinhas
- DSM Nutritional Products, Columbia, MD 21045
| | - J E P Santos
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611; Department of Animal Sciences, University of Florida, Gainesville 32611
| | - C D Nelson
- Animal Molecular and Cellular Biology Program, University of Florida, Gainesville 32611; Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
4
|
Silva AS, Cortinhas CS, Acedo TS, Morenz MJF, Lopes FCF, Arrigoni MB, Ferreira MH, Jaguaribe TL, Ferreira LD, Gouvêa VN, Pereira LGR. Effects of feeding 25-hydroxyvitamin D 3 with an acidogenic diet during the prepartum period in dairy cows: Mineral metabolism, energy balance, and lactation performance of Holstein dairy cows. J Dairy Sci 2022; 105:5796-5812. [PMID: 35570040 DOI: 10.3168/jds.2021-21727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Our objective was to determine the effects of feeding 25-hydroxyvitamin D3 [25(OH)D3], or vitamin D3 (cholecalciferol) on plasma, mineral, and metabolite concentrations, mineral balance, mineral excretion, rumination, energy balance, and milk production of dairy cows. We hypothesized that supplementing 3 mg/d of 25(OH)D3 during the prepartum period would be more effective than supplementing vitamin D3 at the National Research Council (2001) levels to minimize calcium imbalance during the transition period and improve milk production of dairy cows. Forty multiparous, pregnant nonlactating-Holstein cows were enrolled in this study. Body weight, body condition score, parity, and milk yield in the previous lactation (mean ± standard deviation) were 661 ± 59.2, 3.46 ± 0.35, 1.79 ± 0.87, and 33.2 ± 6.43 kg/d, respectively. Cows were enrolled into the blocks (n = 20 for each treatment) at 30 d of the expected day of calving to receive an acidogenic diet (373 g/kg of neutral detergent fiber and 136 g/kg of crude protein, dry matter basis; -110 mEq/kg) associated with the treatments: (1) control (CTRL), vitamin D3 at 0.625 mg/d (equivalent to 25,000 IU of vitamin D3/d) or (2) 25(OH)D3 at 3 mg/d (equivalent to 120,000 IU of vitamin D3/d). All cows were fed with the base ration for 49 d after calving. Blood samples were taken on d 7, 0, 1, 2, 21, and 42, relative to calving. No effect of treatment was observed for prepartum dry matter intake or body condition score. A trend for increase of ionized Ca was observed for the cows fed 25(OH)D3, compared with the CTRL, but no effect of treatment was detected for total Ca or total P. Feeding 25(OH)D3 increased colostrum yield. The plasmatic concentration of 25-hydroxyvitamin D3 was increased with 25(OH)D3 supplementation. 25-Hydroxyvitamin D3 supplementation increased plasma glucose concentration at parturition. The postpartum dry matter intake was not influenced by treatments. Feeding 25(OH)D3 increases milk yield, 3.5% fat-corrected milk, and energy-corrected milk and improves milk yield components in early lactation. Overall, these findings suggest that 25(OH)D3 at 3 mg/d can improve the energy metabolism and lactation performance, compared with the current-feeding practice of supplementing vitamin D3 at 0.625 mg/d.
Collapse
Affiliation(s)
- A S Silva
- Department of Animal Production, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho", Botucatu, SP, 18618-68, Brazil
| | - C S Cortinhas
- DSM Nutritional Products, São Paulo, SP, 04543-907, Brazil
| | - T S Acedo
- DSM Nutritional Products, São Paulo, SP, 04543-907, Brazil
| | - M J F Morenz
- Embrapa Dairy Cattle, Juiz de Fora, MG, 36038-330, Brazil.
| | - F C F Lopes
- Embrapa Dairy Cattle, Juiz de Fora, MG, 36038-330, Brazil
| | - M B Arrigoni
- Department of Animal Production, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho", Botucatu, SP, 18618-68, Brazil
| | - M H Ferreira
- Department of Animal Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - T L Jaguaribe
- Department of Animal Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - L D Ferreira
- Department of Veterinary Clinics and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - V N Gouvêa
- Texas A&M AgriLife Research and Extension Center, Amarillo 79106
| | - L G R Pereira
- Embrapa Dairy Cattle, Juiz de Fora, MG, 36038-330, Brazil
| |
Collapse
|
5
|
Melendez P, Chelikani P, Patel D, Garbarino E. Effect of a very low negative dietary cation-anion difference (DCAD) diet on plasma and urine metabolomics of prepartum Holstein cows. JDS COMMUNICATIONS 2022; 3:59-65. [PMID: 36340673 PMCID: PMC9623625 DOI: 10.3168/jdsc.2021-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 06/16/2023]
Abstract
The objectives of this cross-sectional, nonintervention, observational study were to compare urine and blood parameters between cows consuming a positive dietary cation-anion difference (DCAD) diet [early dry cows, DCAD + 250 mEq/kg of dry matter (DM), n = 15] with the same cows consuming a negative DCAD diet (-220 mEq/kg of DM) 10 d after moving them from the early dry to the prepartum group. The most remarkable finding was that cows consuming the anionic diet had very low urine pH and very low base excess in blood, suggestive of uncompensated metabolic acidosis. Importantly, the metabolomics data revealed that only urine concentrations of essential and aromatic amino acids were decreased, and that concentrations of total nonessential amino acids and glucogenic amino acids were increased in plasma and reciprocally decreased in urine, suggesting that the cows fed anionic salts were attempting to meet a high glucose demand by mobilizing gluconeogenic amino acid reserves. Notably, the dietary anionic salts exerted marked effects on glycerophospholipids, with a reduction in most phosphatidylcholine containing diacyl (PC aa) and acyl-alkyl (PC ae) moieties in plasma and urine. Further characterization of these metabolomic profiles may lead to the development of novel biomarkers to identify cows susceptible to metabolic acidosis and other metabolic diseases.
Collapse
Affiliation(s)
- P. Melendez
- School of Veterinary Medicine, Texas Tech University, Amarillo 79106
| | - P.K. Chelikani
- School of Veterinary Medicine, Texas Tech University, Amarillo 79106
| | - D. Patel
- Health Science Center, Texas Tech University, Amarillo 79106
| | - E. Garbarino
- Progressive Dairy Health Service, Clovis, NM 88101
| |
Collapse
|
6
|
Cavani L, Poindexter MB, Nelson CD, Santos JEP, Peñagaricano F. Gene mapping, gene-set analysis, and genomic prediction of postpartum blood calcium in Holstein cows. J Dairy Sci 2021; 105:525-534. [PMID: 34756434 DOI: 10.3168/jds.2021-20872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
The onset of lactation results in a sudden irreversible loss of Ca for colostrum and milk synthesis. Some cows are unable to quickly adapt to this demand and succumb to clinical hypocalcemia, whereas a larger proportion of cows develop subclinical hypocalcemia that predisposes them to other peripartum diseases. The objective of this study was to perform a comprehensive genomic analysis of blood total Ca concentration in periparturient Holstein cows. We first performed a genomic scan and a subsequent gene-set analysis to identify candidate genes, biological pathways, and molecular mechanisms affecting postpartum Ca concentration. Then, we assessed the prediction of postpartum Ca concentration using genomic information. Data consisted of 7,691 records of plasma or serum concentrations of Ca measured in the first, second, and third day after parturition of 959 primiparous and 1,615 multiparous cows that calved between December 2015 and June 2020 in 2 dairy herds. All cows were genotyped with 80k SNPs. The statistical model included lactation (1 to 5+), calf category (male, females, twins), and day as fixed effects, and season-treatment-experiment, animal, and permanent environmental as random effects. Model predictive ability was evaluated using 10-fold cross-validation. Heritability and repeatability estimates were 0.083 (standard error = 0.017) and 0.444 (standard error = 0.028). The association mapping identified 2 major regions located on Bos taurus autosome (BTA)6 and BTA16 that explained 1.2% and 0.7% of additive genetic variance of Ca concentration, respectively. Interestingly, the region on BTA6 harbors the GC gene, which encodes the vitamin D binding protein, and the region on BTA16 harbors LRRC38, which is actively involved in K transport. Other sizable peaks were identified on BTA5, BTA2, BTA7, BTA14, and BTA9. These regions harbor genes associated with Ca channels (CACNA1S, CRACR2A), K channels (KCNK9), bone remodeling (LRP6), and milk production (SOCS2). The gene-set analysis revealed terms related to vitamin transport, calcium ion transport, calcium ion binding, and calcium signaling. Genomic predictions of phenotypic and genomic estimated breeding values of Ca concentration yielded predictive correlations up to 0.50 and 0.15, respectively. Overall, the present study contributes to a better understanding of the genetic basis of postpartum blood Ca concentration in Holstein cows. In addition, the findings may contribute to the development of novel selection and management strategies for reducing periparturient hypocalcemia in dairy cattle.
Collapse
Affiliation(s)
- Ligia Cavani
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| | | | - Corwin D Nelson
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - José E P Santos
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | | |
Collapse
|
7
|
Zimpel R, Marinho MN, Almeida KV, Ruiz AR, Perdomo MC, Poindexter MB, Vieira-Neto A, Arshad U, Husnain A, Nelson CD, Santos JEP. Prepartum level of dietary cation-anion difference fed to nulliparous cows: Acid-base balance, mineral metabolism, and health responses. J Dairy Sci 2021; 104:12580-12599. [PMID: 34593226 DOI: 10.3168/jds.2021-20486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/18/2021] [Indexed: 11/19/2022]
Abstract
Objectives were to determine the effects of 3 different levels of dietary cation-anion difference (DCAD) fed during the last 22 d of gestation to pregnant nulliparous cows on pre- and postpartum acid-base balance, mineral metabolism, and health responses. In all, 132 pregnant nulliparous Holstein cows were enrolled at 250 (248-253) d of gestation, blocked by genomic merit of energy-corrected milk yield, and assigned randomly to diets varying in DCAD: +200 (P200, n = 43), -50 (N50, n = 45), or -150 (N150, n = 44) mEq/kg of dry matter. Dietary treatments were fed until calving, after which cows received the same lactation diet for the first 100 d postpartum. Urine and blood were sampled throughout the prepartum period and in the first weeks postpartum, and urine was assessed for pH, whereas blood was analyzed for gases, measures of acid-base balance, minerals, and metabolites. Calcium (Ca) and magnesium (Mg) retention and phosphorus (P) digestibility were evaluated in the last week of gestation and first week of lactation. Incidence of diseases was evaluated for the first 100 d postpartum. Data are presented in sequence as P200, N50, N150 (LSM ± SEM). Reducing the DCAD reduced urine (8.17 vs. 6.50 vs. 5.51 ± 0.11) and blood pH (7.442 vs. 7.431 vs. 7.410 ± 0.004) and induced a state of compensated metabolic acidosis with a reduction in blood HCO3- (28.4 vs. 26.7 vs. 24.9 ± 0.3 mM) and partial pressure of CO2 (41.8 vs. 40.1 vs. 39.1 ± 0.4 mmHg) prepartum. Reducing the DCAD linearly increased blood ionized Ca (iCa; 1.224 vs. 1.243 vs. 1.259 ± 0.008 mM) and serum total Ca (tCa; 2.50 vs. 2.53 vs. 2.56 ± 0.02 mM) prepartum, blood iCa on the day of calving, and serum Mg in the first days postpartum. Reducing the DCAD linearly increased the apparent absorption of Ca (12.9 vs. 19.0 vs. 20.9 ± 1.4 g/d) and Mg (7.0 vs. 9.9 vs. 10.4 ± 1.4 g/d) prepartum, but apparent retention of both Ca (13.9 g/d) and Mg (3.4 g/d) did not differ with treatment. Treatment did not affect digestibility of P pre- or postpartum or retention of Ca or Mg postpartum. Treatment did not affect the incidence or prevalence of subclinical hypocalcemia, hepatic composition, or the prevalence of fatty liver. Reducing the DCAD had a quadratic effect on incidence of fever (46.5 vs. 17.6 vs. 33.9 ± 7.0%), uterine diseases (36.3 vs. 25.6 vs. 46.0 ± 7.3%), and morbidity (41.4 vs. 28.1 vs. 55.6 ± 7.3%). Feeding a diet with -50 mEq/kg of dry matter promoted moderate changes in acid-base balance, altered mineral metabolism, and benefited health of nulliparous cows; however, further reducing the DCAD to -150 mEq/kg negated the benefits to health.
Collapse
Affiliation(s)
- R Zimpel
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - M Nehme Marinho
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - K V Almeida
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A Revilla Ruiz
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - M C Perdomo
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - M B Poindexter
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - U Arshad
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - A Husnain
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - C D Nelson
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - J E P Santos
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611.
| |
Collapse
|
8
|
Yuan M, Shah A, Zeng L, Wang Z, Wang L, Xue B, Yu P, Peng Q. Effects of dietary cation-anion differences at the early stage of transitional period on dry matter intake and plasma Ca metabolism in beef cows. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Vieira-Neto A, Duarte GA, Zimpel R, Thatcher WW, Santos JEP. Days in the prepartum group are associated with subsequent performance in Holstein cows. J Dairy Sci 2021; 104:5964-5978. [PMID: 33663839 DOI: 10.3168/jds.2020-18889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/21/2020] [Indexed: 01/18/2023]
Abstract
Our objective was to evaluate the association between days in the prepartum group (DPG) with performance and survival in Holstein cows. Data from 18,657 Holstein cow-lactations (6,993 nulliparous and 9,390 parous prepartum) were collected. Cows with a gestation length shorter than 256 d (n = 267) or longer than 296 d (n = 131) and cows that spent 0 DPG (n = 238) were removed, resulting in 18,021 cow-lactations. Data were collected for the first 300 d postpartum, and responses included milk yield, incidence of diseases by 90 d postpartum, reproduction, and survival. Days in the prepartum group were analyzed as a continuous variable, and regression coefficients were used to estimate the responses when cows spent 7, 28, or 42 DPG, representing cows with a short, moderate, or an extended time in the prepartum group, respectively. An interaction between DPG as a quadratic covariate and parity-diet was observed for milk yield by 300 d postpartum. Means were 9,331; 9,665; and 9,261 kg for 7, 28, or 42 DPG, respectively, in nulliparous cows, and 9,886; 10,939; and 10,117 kg for 7, 28, or 42 DPG, respectively, in parous cows. Also, the interaction between DPG and parity-diet affected retained placenta, metritis, mastitis, and morbidity. Morbidity affected 49.5, 52.9, and 59.5% of nulliparous and 49.7, 26.5, and 47.4% of parous cows that spent 7, 28, or 42 DPG, respectively. A linear association between DPG and pregnancy at first artificial insemination was observed with estimates of 37.0, 32.6, and 29.8% for 7, 28, and 42 DPG, respectively. On the other hand, a quadratic association was observed between DPG and the proportion of pregnant cows at 300 d postpartum, and estimates for 7, 28, and 42 DPG were, respectively, 71.7, 73.5, and 58.8%. A quadratic relationship was also observed for DPG and removal from the herd by 300 d postpartum, and estimates were 25.2, 22.9, and 34.4% for 7, 28, or 42 DPG, respectively. Associations between DPG with production, health, reproduction, and survival were detected, and they varied with parity-diet group. For several responses evaluated, a quadratic association was observed, which suggested that there was an optimal period for cows to spend in the prepartum group, and reduced or extended number of days were detrimental to performance.
Collapse
Affiliation(s)
- A Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - G A Duarte
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - R Zimpel
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - W W Thatcher
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - J E P Santos
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611.
| |
Collapse
|