1
|
Santarosa BP, Padilha LM, da Silva KN, Camargo L, Massoco Salles Gomes CDO, Gomes V. Waste milk consumption in dairy calves: Effects on innate immunity and inflammatory profile. Vet Immunol Immunopathol 2025; 280:110885. [PMID: 39847848 DOI: 10.1016/j.vetimm.2025.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025]
Abstract
Waste milk (WM) is commonly used in calf feeding to reduce rearing costs; however, its effects on the innate immune response remain unexplored. Therefore, this study aimed to evaluate the effects of WM on the innate immune response and inflammatory profile of pre-weaned dairy calves. Thirty male Holstein calves were assigned to receive pasteurized waste milk (PWM), saleable milk (SM), and WM (n = 10 in each group). Blood samples were collected on D7, D21, D35, D49, and D63 (days of life) to assess the white blood cell (WBC) count, phagocytic activity of polymorphonuclear cells (PMN), and nitric oxide (NO) production by monocyte-derived macrophages, in addition to the measurement of oxidative stress biomarkers and haptoglobin concentration. A trend towards a higher occurrence of respiratory disease was detected in calves that received WM, followed by PWM. A group effect (P = 0.00) was observed in absolute monocyte values, with higher values found in the WM group. Only the TBARS concentration showed a group × time interaction among all oxidative stress biomarkers, with the highest mean found in calves receiving WM, followed by those receiving PWM and SM. Elevated TBARS concentrations indicated higher lipid peroxidation, which may have resulted from the accumulation of reactive oxygen species (ROS) due to immune challenges from ingesting pathogens present in WM. Haptoglobin concentration was unaffected. WM promoted lipid peroxidation and antioxidant enzyme activity, suggesting a pro-inflammatory effect. The time-effects of PMN phagocytosis reflected the development of the immune system in neonatal calves, which is consistent with previous studies.
Collapse
Affiliation(s)
- Bianca Paola Santarosa
- Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
| | - Larissa Miranda Padilha
- Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
| | - Karen Nascimento da Silva
- Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
| | - Luana Camargo
- Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
| | | | - Viviani Gomes
- Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Zhang S, Li J, Zhao Y, Tang Y, Li H, Song T, An T, Guan J, Li X, Zhang M. Whole-genome resequencing reveals genetic diversity, differentiation, and selection signatures of yak breeds/populations in southwestern China. Front Genet 2024; 15:1382128. [PMID: 38873117 PMCID: PMC11169580 DOI: 10.3389/fgene.2024.1382128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
The Sichuan-Yunnan region is the main production area of yaks in southwestern China, with rich genetic resources of Yaks. Nevertheless, there have been limited study on the genetic characteristics of the entire yak populations in Tibet and southwestern China. In this study, we performed whole-genome resequencing to identify genetic variation information in a total of 198 individuals from six yak breeds (populations) in Sichuan (Muli yak, Jinchuan yak, Changtai yak, Maiwa yak), Yunnan (Zhongdian yak), and Tibet (Tibetan yak). The aim was to investigate the whole-genome genetic diversity, population genetic structure, and genome selection signatures. We observed that all six populations exhibit abundant genetic diversity. Except for Tibetan yaks, which showed low nucleotide diversity (0.00104), the remaining yak populations generally displayed high nucleotide diversity (0.00129-0.00153). Population genetic structure analysis revealed that, among the six yak populations, Muli yak exhibited greater differentiation from other yak populations and formed a distinct cluster independently. The Maiwa yak population displayed a complex genetic structure and exhibited gene exchange with Jinchuan and Changtai yaks. Positive selection signals were detected in candidate genes associated with growth (GNB4, HMGA2, TRPS1, and LTBP1), reproduction (PI4KB, DYNC1I1, and GRIP1), immunity (CD200 and IL1RAP), lactation (SNX13 and CPM), hypoxia adaptation (NDUFB6, PRKN, and MRPS9), hair (KRT24, KRT25, and KRT26), meat quality (SUCLG2), digestion and absorption (CLDN1), and pigment deposition (OCA2) using the integrated Pi and F ST methods. This study provides significant insights into understanding the whole-genome genetic characteristics of yak populations in Tibet and southwestern China.
Collapse
Affiliation(s)
- Shilin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jing Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanhua Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yujun Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hao Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tianzeng Song
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Tianwu An
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiaowei Li
- Breeding Fram of Longri, Agriculture and Rural Bureau of Aba Prefecture in Sichuan, Hongyuan, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Migdał A, Migdał Ł, Oczkowicz M, Tombarkiewicz B, Okólski A. Impact of the mare colostral immunoglobulins on the expression of TLR3, TLR4, and TLR7 in foals. Anim Sci J 2024; 95:e70007. [PMID: 39523490 DOI: 10.1111/asj.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Colostrum contains substances such as hormones, enzymes, polyamides, nucleic acid derivatives, and amino acid derivatives and also includes immunomodulating substances, proline-rich polypeptides, immunoglobulins (Ig) as well as bacteriostatic compounds. The aim of the study was to evaluate the impact of colostral Ig on the level of expression of selected Toll-like receptor genes (TLR3, TLR4, and TLR7). The experiments were conducted on 25 Polish Pony foals. Blood samples were collected according to the following scheme: before first suckling, at the 1st, 3rd, 5th, 10th, 20th, and 30th, day of age. Colostrum was obtained before the first suckling, 24 hr, and 3 days after the delivery. Gene expression analyses were performed on Illumina Eco using a commercial kit TaqMan®MGB probes. The quality of colostrum was assessed via refractometer and BRIX value. The total Ig level was calculated from the spectrophotometric method. IgG levels were measured using ELISA assay. The quality of colostrum significantly correlated with TLR4 and TLR7 expression. Foals that ingested colostrum with low Ig content displayed a higher level of TLR4 gene expression, while in the case of TLR7 the opposite trend was shown. This result indicates that colostrum may play an important role in shaping the mechanisms of building the immune system's response to bacterial pathogens.
Collapse
Affiliation(s)
- Anna Migdał
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Krakow, Kraków, Poland
| | - Łukasz Migdał
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Krakow, Kraków, Poland
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Poland
| | - Barbara Tombarkiewicz
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Kraków, Poland
| | - Adam Okólski
- Institute of Veterinary Science, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
4
|
Nakandalage R, Guan LL, Malmuthuge N. Microbial Interventions to Improve Neonatal Gut Health. Microorganisms 2023; 11:1328. [PMID: 37317302 DOI: 10.3390/microorganisms11051328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
The diverse pioneer microbial community colonizing the mammalian gastrointestinal tract is critical for the developing immune system. Gut microbial communities of neonates can be affected by various internal and external factors, resulting in microbial dysbiosis. Microbial dysbiosis during early life affects gut homeostasis by changing metabolic, physiological, and immunological status, which increases susceptibility to neonatal infections and long-term pathologies. Early life is crucial for the establishment of microbiota and the development of the host immune system. Therefore, it provides a window of opportunity to reverse microbial dysbiosis with a positive impact on host health. Recent attempts to use microbial interventions during early life have successfully reversed dysbiotic gut microbial communities in neonates. However, interventions with persistent effects on microbiota and host health are still limited. This review will critically discuss microbial interventions, modulatory mechanisms, their limitations, and gaps in knowledge to understand their roles in improving neonatal gut health.
Collapse
Affiliation(s)
- Ranga Nakandalage
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Lethbridge Research and Development Center, Agriculture Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Nilusha Malmuthuge
- Lethbridge Research and Development Center, Agriculture Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
5
|
Zhao X, Qi Y, Wu T, Cheng G. Phosphoproteomic Analysis of the Jejunum Tissue Response to Colostrum and Milk Feeding in Dairy Calves during the Passive Immunity Period. Animals (Basel) 2022; 13:ani13010145. [PMID: 36611753 PMCID: PMC9817995 DOI: 10.3390/ani13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Improvements in the feeding of calves are of increasing importance for the development of the dairy industry. While colostrum is essential for the health of newborn calves, knowledge of protein phosphorylation alterations in neonatal calves that are fed colostrum or mature milk is lacking. Here, mid-jejunum tissue samples were collected from calves that received colostrum or milk. Subsequently, the jejunum phosphoproteome was analyzed using a phosphopeptide enrichment method, i.e., titanium immobilized metal ion affinity chromatography, coupled with liquid chromatography-tandem mass spectrometry. A total of 2093 phosphopeptides carrying unique 1851 phosphorylation sites corresponding to 1180 phosphoproteins were identified. Of the 1180 phosphoproteins, 314 phosphorylation sites on 241 proteins were differentially expressed between the groups. Gene ontology analysis indicated that the phosphoproteins were strongly associated with developmental and macromolecule metabolic processes, signal transduction, and responses to stimuli and insulin. Pathway analysis showed that the spliceosome, Hippo, insulin, and neurotrophin signaling pathways were enriched. These results reveal the expression pattern and changes in the function of phosphoproteins in bovine jejunum tissues under different feeding conditions and provide further insights into the crucial role of colostrum feeding during the early stages of life.
Collapse
Affiliation(s)
- Xiaowei Zhao
- Correspondence: ; Tel.: +86-551-65146065; Fax: +86-551-62160275
| | | | | | | |
Collapse
|
6
|
Occurrence of Escherichia coli Pathotypes in Diarrheic Calves in a Low-Income Setting. Pathogens 2022; 12:pathogens12010042. [PMID: 36678390 PMCID: PMC9861035 DOI: 10.3390/pathogens12010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Different E. coli pathotypes are common zoonotic agents. Some of these pathotypes cause recurrent and widespread calf diarrhea and contribute to significant economic losses in the livestock sector worldwide in addition to putting humans at risk. Here, we investigated the occurrence of E. coli pathotypes in diarrheic calves in Ethiopia kept under various calf management practices. One hundred fecal samples were collected from diarrheic calves in 98 different farms. E. coli was isolated in the samples from 99 of the diarrheic calves, and virulence genes were detected in 80% of the samples. The occurrence of E. coli pathotypes in the samples was 32% ETEC, 23% STEC, 18% STEC/ETEC, 3% EPEC, 2% EAEC, and 1% EHEC. No diarrheic calves were positive for the EIEC and DAEC pathotypes. The occurrence of pathotypes was positively associated with female calves (EPEC, p = 0.006), aged less than 2 weeks (STEC, p = 0.059), and calves fed colostrum via the hand method (STEC, p = 0.008 and EAEC, p = 0.003). This study revealed that several E. coli pathotypes occurred among calves affected with diarrhea. Moreover, the presence of a mixed STEC/ETEC pathotypes infection was present in the studied low-income setting. These findings indicate a considerable risk for the zoonotic transmission from calves to humans and the options to provide the better management for younger calves in order to reduce the economic loss.
Collapse
|
7
|
Zhao XW, Zhu HL, Qi YX, Wu T, Huang DW, Cheng GL, Yang YX, Bu DP, Hu H, Meng LF. Regulatory role of phosphoproteins in the development of bovine small intestine during early life. J Dairy Sci 2022; 105:9240-9252. [PMID: 36175223 DOI: 10.3168/jds.2022-21983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
The small intestine is the primary site of nutrient digestion and absorption, which plays a key role in the survival of neonatal calves. A comprehensive assessment of the phosphoproteomic changes in the small intestine of neonatal calves is unavailable; therefore, we used phosphopeptide enrichment coupled with liquid chromatography-tandem mass spectrometry to investigate the changes in the phosphoproteome profile in the bovine small intestine during the first 36 h of life. Twelve neonatal male calves were assigned to one of the following groups: (1) calves not fed colostrum and slaughtered approximately 2 h postpartum (n = 3), (2) calves fed colostrum at 1 to 2 h and slaughtered 8 h postpartum (n = 3), (3) calves fed 2 colostrum meals (at 1-2 and 10-12 h) and slaughtered 24 h postpartum (n = 3), (4) calves fed 3 colostrum meals (at 1-2, 10-12, and 22-24 h) and slaughtered 36 h postpartum (n = 3). Mid-duodenal, jejunal, and ileal samples of the calves were collected after slaughter. We identified 1,678 phosphoproteins with approximately 3,080 phosphosites, which were mainly Ser (89.9%), Thr (9.8%), and Tyr (0.3%) residues; they belonged to the prodirected (52.9%), basic (20.4%), acidic (16.6%), and Tyr-directed (1.7%) motif categories. The regional differentially expressed phosphoproteins included zonula occludens 2, sorting nexin 12, and protein kinase C, which are mainly associated with developmental processes, intracellular transport, vesicle-mediated transport, and immune system process. They are enriched in the endocytosis, tight junction, insulin signaling, and focal adhesion pathways. The temporal differentially expressed phosphoproteins included occludin, epsin 1, and bridging integrator 1, which were mainly associated with macromolecule metabolic process, cell adhesion, and growth. They were enriched in the spliceosomes, adherens junctions, and tight junctions. The observed changes in the phosphoproteins in the tissues of small intestine suggest the protein phosphorylation plays an important role in nutrient transport and immune response of calves during early life, which needs to be confirmed in a larger study.
Collapse
Affiliation(s)
- X W Zhao
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H L Zhu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Qi
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - T Wu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - D W Huang
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - G L Cheng
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - D P Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - H Hu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - L F Meng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
8
|
Bovine colostrum promoted ileal health in newborn lambs at 24 h after birth: insight from intestinal morphology and innate immunity. Animal 2022; 16:100592. [PMID: 35841825 DOI: 10.1016/j.animal.2022.100592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
The contribution of colostrum to passive immunity transfer and intestinal protection in newborn ruminants is well known; however, it is currently unclear how colostrum intake affects intestinal innate immunity. We investigated the effects of bovine colostrum intake on ileal morphology, expression of genes involved in intestinal innate immunity, and serum concentrations of inflammatory cytokines in newborn lambs. Twenty-seven newborn male Hu lambs were used, of which 18 were bottle-fed either bovine colostrum (C24h; n = 9) or bovine mature milk (M24h; n = 9) within the first 2 h after birth at an intake of approximately 8% of BW; the remaining nine lambs did not receive any feeding (N24h). Blood and ileal tissue samples were collected after the lambs were slaughtered at 24 h after birth. Ileal villus height and villus height-to-crypt depth ratio were significantly higher in C24h than those in N24h and M24h lambs (P < 0.01). Messenger RNA (mRNA) abundance of toll-like receptor (TLR)-2, TLR3, TLR4, TLR6, TLR7, TLR8 and tumour necrosis factor alpha in the ileum was lower in C24h than that in N24h lambs (P < 0.05). Moreover, C24h lambs had a lower TLR3 mRNA abundance (P < 0.01) and a trend of lower TLR6 (P = 0.06) and interleukin 1 beta (P = 0.08) expression compared with those in M24h lambs. We also observed strong positive correlations of tumour necrosis factor alpha expression with that of TLR2 (r = 0.71; P < 0.001), TLR4 (r = 0.88; P < 0.001) and TLR8 (r = 0.83; P < 0.001). Interestingly, the expression of barrier-related molecules, including mucin-13, lysozyme, claudin (CLDN)-1, CLDN2, CLDN4, CLDN7, CLDN12, occludin, zonula occluden-1 and junctional adhesion molecule-1, was consistently lower in C24h lambs than that in N24h and M24h lambs (P < 0.05). These results indicated that the beneficial roles of colostrum intake on intestinal protection in newborn lambs were associated with low TLR expression, which was reflected by improved intestinal development and reduced inflammatory response. Further studies using fluorescence in situ hybridisation and immunohistochemical methods are needed to further explore the mechanisms underlying the lower expression of intestinal barrier-related molecules due to colostrum feeding.
Collapse
|
9
|
Ceja G, Boerman JP, Neves RC, Johnson NS, Schoonmaker JP, Jorgensen MW, Johnson JS. Technical note: A procedure to place urinary catheters in 1-week and 6-week-old preweaned Holstein heifer calves for the in vivo evaluation of intestinal permeability. J Anim Sci 2022; 100:6605033. [PMID: 35679611 DOI: 10.1093/jas/skac213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Oral administration of indigestible markers and subsequent urine collection is a useful method to determine in vivo gastrointestinal tract (GIT) permeability in cattle for research purposes. However, urine sampling techniques often rely on total waste collection, which reduces the ability to perform more frequent sampling and obtain accurate volumes and sterile samples. An alternative is urethral catheterization, though the feasibility of this technique has not been thoroughly tested in preweaned Holstein heifer calves. The study objective was to develop a urethral catheter placement procedure in preweaned Holstein heifer calves for continuous and accurate urine collection to evaluate GIT permeability using an indigestible marker. Fifteen Holstein heifer calves had catheters placed at approximately 1 week (8.0 ± 1.5 d) and 6 weeks (40.0 ± 1.5 d) of age. During the procedure, calves were individually housed and restrained. The vulva was sterilized and then a sterile, lubricated speculum was inserted into the vagina. A sterile 0.09 cm diameter guidewire was guided into a lubricated, sterile 10 French Foley catheter. The catheter was inserted at approximately 5 through 7 cm into the urethral opening, guided into the bladder, and the catheter balloon was filled with 10 mL of water. The guidewire was removed, and urine flow confirmed correct placement before a 4 L urinary drainage bag was attached to the catheter. After catheterization (24 h), 1 L of chromium (Cr)-ethylenediaminetetraacetic acid was orally dosed to the calves. Calf health observations were made six times over a 48-h period and any occurrence of vaginal discharge, tissue discharge in catheter, bleeding, inflammation, or abnormal urine was considered a localized reaction. Proportion of localized reactions for each age group was determined using Microsoft Excel, and total Cr output was analyzed using PROC GLIMMIX. Localized reactions occurred for 20.0% of the 1-week-old calves and 13.3% of the 6-week-old calves. In the first 4 h, urine was collected every 15 min and there were no overall Cr output differences (P = 0.38; 10.28 ± 3.21 mg Cr) when comparing 1- and 6-week-old calves. However, 1-week-old calves tended (P = 0.08) to have greater overall Cr output at 480 min (19.2%) and 1,440 min (41.9%) when compared to 6-week-old calves. In summary, urinary catheterization is a viable urinary collection method for the determination of in vivo GIT permeability in preweaned Holstein heifer calves.
Collapse
Affiliation(s)
- Guadalupe Ceja
- Department of Animal Sciences, Purdue University, West Lafayette, IN USA.,USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN USA
| | | | - Rafael C Neves
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN USA
| | | | - Jon P Schoonmaker
- Department of Animal Sciences, Purdue University, West Lafayette, IN USA
| | | | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN USA
| |
Collapse
|