1
|
Fang S, Wu J, Niu W, Zhang T, Hong T, Zhang H, Zhan X. Sialylation of dietary mucin modulate its digestibility and the gut microbiota of elderly individuals. Food Res Int 2024; 184:114246. [PMID: 38609225 DOI: 10.1016/j.foodres.2024.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Food-derived mucins are glycoproteins rich in sialic acid, but their digestive properties and potential health benefits for humans have been scarcely investigated. In this work, ovomucin (OVM, rich in N-acetylneuraminic acid, about 3 %), porcine small intestinal mucin (PSIM, rich in N-glycolylneuraminic acid, about 1 %), the desialylated OVM (AOVM) and the desialylated PSIM (APSIM) were selected to examine their digestion and their impact on the gut microbiota of elderly individuals. The results shown that, the proportion of low-molecular-weight proteins increased after simulated digestion of these four mucins, with concomitant comparable antioxidant activity observed. Desialylation markedly increased the degradation and digestion rate of mucins. In vitro fecal fermentation was conducted with these mucins using fecal samples from individuals of different age groups: young, low-age and high-age elderly. Fecal fermentation with mucin digestive solution stimulated the production of organic acids in the group with fecal sample of the elderly individuals. Among them, the OVM group demonstrated the most favorable outcomes. The OVM and APSIM groups elevated the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while diminishing the presence of pathogenic bacteria such as Klebsiella. Conversely, the probiotic effects of AOVM and PSIM were attenuated or even exhibited adverse effects. Hence, mucins originating from different sources and possessing distinct glycosylation patterns exhibit diverse biological functions. Our findings can offer valuable insights for developing a well-balanced and nutritious diet tailored to the elderly population.
Collapse
Affiliation(s)
- Su Fang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Wenxuan Niu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tiantian Hong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Tanambell H, Danielsen M, Devold TG, Møller AH, Dalsgaard TK. In vitro protein digestibility of RuBisCO from alfalfa obtained from different processing histories: Insights from free N-terminal and mass spectrometry study. Food Chem 2024; 434:137301. [PMID: 37734151 DOI: 10.1016/j.foodchem.2023.137301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Ribulose-1,5-bisphosphate-carboxylase/oxygenase (RuBisCO) from alfalfa is a potentially climate-friendly alternative protein with a promising amino acid composition. The balance between yield and purity is a challenge for alternative plant proteins, partly due to the naturally occurring antinutrients. Therefore, measuring the in vitro protein digestibility (IVPD) of RuBisCO with various purity levels is of interest. It was hypothesized that the digestibility of RuBisCO from alfalfa might vary with different processing histories and levels of refinement. To test this hypothesis, RuBisCO from alfalfa with 4 different processing histories were subjected to the INFOGEST IVPD protocol and measurement of free N-terminals and peptidomics. The result showed that the digestibility of RuBisCO was high regardless of the processing history and purity, as demonstrated by 77-99% sequence coverage in the gastric phase. In intestinal phase, increase of free N-terminals and lower sequence coverage (< 10%) indicated that the proteins were hydrolyzed to smaller peptides.
Collapse
Affiliation(s)
- Hartono Tanambell
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CiFOOD Aarhus University Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Marianne Danielsen
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO Aarhus University Centre for Circular Bioeconomy, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Tove Gulbrandsen Devold
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Anders Hauer Møller
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CiFOOD Aarhus University Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO Aarhus University Centre for Circular Bioeconomy, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Trine Kastrup Dalsgaard
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CiFOOD Aarhus University Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO Aarhus University Centre for Circular Bioeconomy, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark.
| |
Collapse
|
3
|
Roland IS, Aguilera-Toro M, Nielsen SDH, Poulsen NA, Larsen LB. Processing-Induced Markers in Proteins of Commercial Plant-Based Drinks in Relation to Compositional Aspects. Foods 2023; 12:3282. [PMID: 37685215 PMCID: PMC10487255 DOI: 10.3390/foods12173282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The consumption of plant-based drinks is increasing, but they represent a product category normally with lower protein content as compared with bovine milk. Furthermore, the products are highly processed and, therefore, the proteins in this product category may carry a significant processing history. In the present study, a series of 17 freshly produced, commercially available plant-based drinks were benchmarked according to protein-quality parameters. The plant-based drinks represented different plant sources, as well as some mixed products, and were investigated relative to composition, aggregate sizes, presence of non-reducible proteins complexes, and level of processing-induced markers in the proteins. Processing-induced changes in the proteins were determined by a newly developed cocktail method, determining markers related to Maillard and dehydroalanine pathways, as well as intact lysine by triple quadrupole-multiple reaction monitoring-mass spectrometry. It was found that all drinks contained non-reducible protein complexes, but specifically, oat-based drinks represented the largest span contents of processing-induced markers within the proteins, which may relate to their inherent processing histories. Furthermore, it was shown that in products containing added sugar, Maillard reaction-related processing markers were increased over the dehydroalanine pathway.
Collapse
Affiliation(s)
| | | | | | | | - Lotte Bach Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark; (I.S.R.)
| |
Collapse
|
4
|
Morzel M, Ramsamy S, Le Feunteun S. Feasibility of using a realistic food bolus for semi-dynamic in vitro gastric digestion of hard cheese with pH-stat monitoring of protein hydrolysis. Food Res Int 2023; 169:112818. [PMID: 37254396 DOI: 10.1016/j.foodres.2023.112818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Oral processing of solid foods leads to boluses made of a human saliva and particles distributed in the size range ∼ 0 to 5 mm. However, studies on the release of nutrients from realistic solid food boluses during digestion are scarce because such mechanisms are difficult to investigate in vivo, and in vitro experiments generally recommend to extensively mince solid foods during the oral stage. Similarly, it has previously been shown that the peptic hydrolysis of protein solutions during in vitro gastric digestion can be monitored by acid titration in both static and dynamic pH conditions, but such approach has never been evaluated in the presence of particles of several millimetres in size. The first objective of the study was therefore to test the feasibility of using a realistic food bolus for gastric digestion studies with a pH-stat monitoring of proteolysis, using Emmental cheese as a solid food and with consideration of gastric acidifying kinetics. Degree of hydrolysis (DH) of proteins was monitored from two series of experiments performed in the presence and absence of pepsin. Other DH measurements, estimated from an independent approach based on the amount of free NH2 groups (OPA method) contained by peptides released in the supernatant (UV absorbance) validated the pH-stat results. A second objective of this work was to test the possible influence of human saliva on gastric proteolysis (in comparison with a water-based bolus). Results showed that saliva slightly delayed initiation of proteolysis, which could be explained by the slightly higher initial pH of the saliva-based bolus, but had no statistical effects on pepsin activity. We conclude that acid titration with a pH-stat system can be a valuable approach to monitor the gastric in vitro proteolysis of realistic solid food boluses in dynamic pH conditions.
Collapse
|
5
|
Review: The effect of casein genetic variants, glycosylation and phosphorylation on bovine milk protein structure, technological properties, nutrition and product manufacture. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|