1
|
Pan Y, Sun G, Li G, Chen S, Liu H, Li H, Mei C, Yang W, Zan L. Sex-specific microbiota associations with backfat thickness, eye muscle area, and rumen fermentation in Qinchuan cattle. BMC Microbiol 2025; 25:277. [PMID: 40335895 PMCID: PMC12060573 DOI: 10.1186/s12866-025-03986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Ruminant livestock are essential for global food production, and understanding sex-specific rumen fermentation and microbial differences is key to improving production efficiency and meat quality. This study explored sex-specific variations in backfat thickness, eye muscle area, rumen fermentation, and microbiota in Qinchuan cattle. RESULTS The results revealed that heifers exhibited higher backfat thickness, butyrate concentrations, and acetate/propionate ratio, whereas bulls had larger eye muscle areas and higher propionate concentrations. Volatile fatty acids (VFAs) transport-related genes (CA4, DRA, and NHE1) were more highly expressed in bulls. Heifers showed greater microbial diversity with distinct sex-specific community structures. Bulls had a higher abundance of Prevotella, while butyrate-producing bacteria like Butyrivibrio and Pseudobutyrivibrio were more abundant in heifers. Functional predictions revealed that bulls were enriched in glycan biosynthesis and amino acid metabolism pathways, whereas heifers showed enhanced lipid metabolism pathways. Correlation analyses showed that backfat thickness was positively correlated with acetate and butyrate production, and acetate/propionate ratio, but negatively correlated with Veillonellaceae_UCG-001. Eye muscle area was negatively correlated with isobutyrate production and the abundance of Elusimicrobium and Anaeroplasma, but positively correlated with Lachnospiraceae_NK3A20_group. Redundancy analysis (RDA) identified propionate and butyrate as key drivers of microbial community differences. The Random Forest model identified key predictors for backfat thickness, including rumen fermentation parameters, microbial taxa, and metabolic pathways, explaining 28% of the variation. However, eye muscle area was not well predicted by the current parameters. CONCLUSION These findings enhance our understanding of sex-specific microbial and metabolic profiles, offering potential strategies for optimizing livestock management and breeding programs.
Collapse
Affiliation(s)
- Yueting Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gege Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guo Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shuaicheng Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Haibing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Huaxuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- National Beef Cattle Improvement Center, Yangling, 712100, China.
| |
Collapse
|
2
|
Cagliari AR, Magnani E, Loregian KE, Rigon F, Casagrande AC, Amancio BR, Giacomelli CM, da Silva JB, Santos VL, Marcondes MI, Branco RH, Del Bianco Benedeti P, de Paula EM. Evaluation of yeast-based additives on rumen fermentation in high- and low-concentrate diets using a dual-flow continuous culture system. Transl Anim Sci 2024; 8:txae169. [PMID: 39703724 PMCID: PMC11657563 DOI: 10.1093/tas/txae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The objective of this study was to evaluate the efficacy of using 3 yeast-based additives as an alternative to sodium monensin on rumen fermentation parameters using a dual-flow continuous fermentation system. Ten fermenters (1,223 ± 21 mL) were used in 2 simultaneous 5 × 5 Latin squares arrangement with 3 periods of 10 d each, with 7 d for diet adaptation and 3 d for sample collections. Each Latin square assigning either a low or high level of concentrate to beef cattle diets, with 5 specified treatments: Control: no additives; Blend 1: yeast culture (Saccharomyces cerevisiae), beta-glucans, fructooligosaccharides, galactooligosaccharides, and mannanoligosaccharides [1,600 mg/kg dry matter (DM)]; Blend 2: Beta-glucan and mannanoligosaccharide fractions from S. cerevisiae (1,600 mg/kg DM); Yeast Cells: hydrolyzed, inactivated, and spray-dried yeast cells (S. cerevisiae; 2,133 mg/kg DM); monensin (25 mg/kg DM). On days 8, 9, and 10, samples of 500 mL of solid and liquid digesta effluent were mixed, homogenized, and stored at -20 °C. Subsamples of 10 mL were collected for later determination of ammonia nitrogen (NH3-N) and volatile fatty acids (VFA). Diets with high-concentrate showed higher organic matter (OM) digestibility but lower crude protein and neutral detergent fiber (NDF) digestibilities (P < 0.01). There were no feed additive effects for DM, OM, and NDF digestibilities (P > 0.05). Total VFA concentration and butyrate concentration were higher for the high-concentrate diet (P < 0.01). Conversely, pH and concentrations of acetate and iso-butyrate were higher for the low-concentrate diet (P < 0.01). Treatments with Blend 1, Blend 2, and Yeast Cells had higher VFA concentrations compared to the control (P = 0.04). Blend 1 treatment exhibited higher propionate concentration in fermenters fed with a high-concentrate diet (P < 0.01). In the high-concentrate diet, Blend 1 had a lower acetate: propionate ratio compared to Control, Yeast Cells, and Blend 2 treatments (P < 0.01). The high-concentrate diet showed higher means for all other parameters: Microbial efficiency, N efficiency, N flow, and Bacterial N flow (P < 0.01). Treatments with Blend 2 and Control showed higher rumen undegradable protein N flow compared to Yeast Cells and Blend 1 treatments (P < 0.01). Our findings imply that yeast-based additives might be used as alternatives to monensin, improving ruminal fermentation and promoting enhanced sustainability in livestock.
Collapse
Affiliation(s)
| | - Elaine Magnani
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, Brazil
| | - Kalista Eloisa Loregian
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, Brazil
- Department of Animal Science, Universidade Estadual Paulista Julio de Mesquita Filho, Jaboticabal, Brazil
| | - Fernanda Rigon
- Department of Animal Science, Universidade Estadual Paulista Julio de Mesquita Filho, Jaboticabal, Brazil
| | | | | | | | | | | | - Marcos Inacio Marcondes
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
- William H. Miner Agricultural Research Institute, Chazy, NY, USA
| | | | | | | |
Collapse
|
3
|
Parchami M, Rustas BO, Taherzadeh MJ, Mahboubi A. Effect of Agro-Industrial by Products Derived from Volatile Fatty Acids on Ruminant Feed In Vitro Digestibility. Animals (Basel) 2024; 14:2330. [PMID: 39199864 PMCID: PMC11350707 DOI: 10.3390/ani14162330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The growing demand for sustainable ruminant feed alternatives has motivated the application of bioconversion approaches for the valorization of agro-food byproducts (AFB) into feed additives and supplements. The present study thoroughly investigated substituting volatile fatty acids (VFAs) obtained from acidogenic fermentation (AF) of AFB as an energy source in ruminant feed. Rumen in vitro digestibility assays were conducted utilizing the gas production method, wherein the VFAs obtained from AF of apple pomace and potato protein liquor was substituted with partial silage and concentrate energy at levels of 10%, 20%, and 30%. The results indicate that substituting 20% of the concentrate's energy with VFA mixture significantly reduced methane production and had no adverse effect on the production and accumulation of VFAs in the simulated rumen media. Conversely, replacing 10% of the silage energy with VFAs led to a decrease in methane production and further enhanced the production of VFAs. Readily digestible VFAs in ruminant feed have the potential to enhance energy availability and sustainability in ruminant farming practices, aligning with the principles of circular economy and waste valorization.
Collapse
Affiliation(s)
- Milad Parchami
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; (M.P.); (M.J.T.)
| | - Bengt-Ove Rustas
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, P.O. Box 7024, 750 07 Uppsala, Sweden;
| | - Mohammad J. Taherzadeh
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; (M.P.); (M.J.T.)
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; (M.P.); (M.J.T.)
| |
Collapse
|
4
|
Luo C, Duan J, Zhong R, Liu L, Gao Q, Liu X, Chen L, Zhang H. In vitro fermentation characteristics of different types of fiber-rich ingredients by pig fecal inoculum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5296-5304. [PMID: 38308576 DOI: 10.1002/jsfa.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/12/2023] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Dietary fibers with varying physicochemical properties have different fermentation characteristics, which may differently impact host health. The present study aimed to determine the fermentation characteristics including gas production kinetics, short-chain fatty acids (SCFAs) production and microbial composition of different fibrous ingredients using in vitro fermentation by fecal microbiota. RESULTS Sugar beet pule (SBP), wheat bran (WB), dried corn distillers grains with solubles (DDGS), rice bran (RB) and alfalfa meal (AM) were selected to fermentation in vitro for 36 h. The results showed that SBP had the greatest gas production. SBP had the highest in vitro dry matter fermentability (IVDMF) and production of acetate, propionate and total SCFAs, followed by WB, which were all greater than DDGS, AM and RB. The alpha-diversity was higher in the DDGS, AM and RB groups than in the WB and SBP groups. Differences in microbial community composition were observed among groups. The relative abundance of Treponema was highest in WB group. RB group showed lower Prevotella abundance than other groups but had higher Succinivibrio abundance. Interestingly, the Lactobacillus reached the highest abundances in the DDGS group. Correlation analysis indicated that the relative abundance of Treponema and Prevotella was positively associated with the gas production, IVDMF and SCFAs, whereas norank_f_Muribaculaceae, Rikenellaceae_RC9_gut_group, Lysinibacillus and Succinivibrio were the opposite. CONCLUSION Collectively, WB and SBP were fermented rapidly by fecal microbiota compared to DDGS, AM and RB. Different fiber sources have different fiber compositions and fermentation properties that affect the microbial compositins and SCFAs production. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengzeng Luo
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jiujun Duan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingtao Gao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Yu Q, Sun C, Cao W, Liu R, Abd-Alla MH, Rasmey AHM. Rumen fluid pretreatment promotes anaerobic methane production: revealing microbial dynamics driving increased acid yield from different concentrations of corn straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33615-0. [PMID: 38733442 DOI: 10.1007/s11356-024-33615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
In this work, the corn straw (CS) with concentrations of 3%, 6%, and 9% (w/v) were pretreated by rumen fluid (RF) and then used for batched mesophilic biogas production. The results showed that after a 6-day pretreatment, volatile fatty acid (VFAs) production of 3.78, 8.27, and 10.4 g/L could be found in 3%, 6%, and 9%, respectively. When concerning with biogas production, the highest accumulative methane production of 149.1 mL CH4/g volatile solid was achieved by 6% pretreated CS, which was 22% and 45% higher than 3% and 9%, respectively. Also, it was 3.6 times higher than the same concentration of unpretreated CS. The results of the microbial community structure analysis revealed that the 6% CS pretreatment not only maintained a microbial community with the highest richness and diversity, but also exhibited the highest relative abundance of Firmicutes (45%) and Euryarchaeota (3.9%). This high abundance was conducive to its elevated production of VFAs and methane. These findings provide scientific reference for the utilization of CS and support the development of agricultural waste resource utilization and environmental protection.
Collapse
Affiliation(s)
- Qing Yu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Weixing Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez, 43518, Egypt
| |
Collapse
|
6
|
Godoi PFA, Magalhães ALR, de Araújo GGL, de Melo AAS, Silva TS, Gois GC, dos Santos KC, do Nascimento DB, da Silva PB, de Oliveira JS, Santos EM, da Silva TGF, Zanine ADM, Ferreira DDJ, Voltolini TV, Campos FS. Chemical Properties, Ruminal Fermentation, Gas Production and Digestibility of Silages Composed of Spineless Cactus and Tropical Forage Plants for Sheep Feeding. Animals (Basel) 2024; 14:552. [PMID: 38396518 PMCID: PMC10886150 DOI: 10.3390/ani14040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The aim was to evaluate the chemical composition, carbohydrates, protein fractionation and in vitro gas production of silages composed of spineless cactus and tropical forages and their effect on sheep performance. Treatments consisted of silages: corn silage (CS), spineless cactus silage (SCS), spineless cactus + gliricidia (SCG), spineless cactus + buffel grass silage (SCBG) and spineless cactus + pornunça (SCP). Silos were opened 60 days after ensiling, and analyses were carried out. The digestibility test lasted for 36 days, with eight animals per treatment. A completely randomized design was adopted. Considering carbohydrate fractionation, CS, SCS and SCBG silages had higher total carbohydrate content (p = 0.001). The SCS silage presented a higher A + B1 fraction (p = 0.001). The SCBG and SCG silages showed a higher B2 fraction (p < 0.0001) compared to the CS and SCS silages. The SCBG and SCP silages presented a higher C fraction (p = 0.001). For protein fractionation, the SCP and SCG silages showed higher crude protein contents (p = 0.001). The CS and SCS silages showed a higher A fraction (p = 0.001). The SCBG silage presented a higher B1 + B2 fraction (p = 0.001). The SCG silage showed a higher B3 fraction (p = 0.006) compared to SCBG silage. The SCS and SCP silages showed a higher C fraction (p = 0.001). Exclusive SCS silage showed higher in vitro dry matter digestibility (p = 0.001), dry matter degradability (p = 0.001) and total gas production (p = 0.001). The use of the SCBG, SCP and SCG silages to feed sheep increased the dry matter intake (p < 0.001). Sheep fed the SCG silage showed greater dry matter and crude protein digestibility compared to the sheep fed the CS, SCS and SCP silages (p = 0.002). There was a higher water intake (p < 0.001) with the use of the SCS and SCG silages to feed the sheep. The SCP and SCG silages provided a greater intake (p < 0.001) and excretion (p < 0.001) of nitrogen by the animals. Although there were no differences between the treatments for daily gains, lambs that received the spineless cactus-based silage associated with tropical forages showed higher gains (160-190 g/day) than lambs that received CS silage (130 g/day). Thus, the use of spineless cactus associated with buffelgrass, pornunça and gliricidia to prepare mixed silages (60:40) to feed sheep has potential use to feed sheep, with positive effects on nutrient degradation and increases in dry matter intake. Under experimental conditions, we recommend the exclusive use of spineless cactus silage associated with buffel grass, pornunça and gliricidia in feeding sheep in semi-arid regions, as it provides nutrients, water and greater daily gains compared to corn silage.
Collapse
Affiliation(s)
- Paulo Fernando Andrade Godoi
- Programa de Pós-Graduação em Ciência Animal e Pastagens, Universidade Federal do Agreste de Pernambuco, Garanhuns 55292-270, Pernambuco, Brazil; (P.F.A.G.); (A.L.R.M.); (A.A.S.d.M.); (P.B.d.S.)
| | - André Luiz Rodrigues Magalhães
- Programa de Pós-Graduação em Ciência Animal e Pastagens, Universidade Federal do Agreste de Pernambuco, Garanhuns 55292-270, Pernambuco, Brazil; (P.F.A.G.); (A.L.R.M.); (A.A.S.d.M.); (P.B.d.S.)
| | - Gherman Garcia Leal de Araújo
- Setor de Produção Animal, Empresa Brasileira de Pesquisa Agropecuária, Embrapa Semiárido, Petrolina 56302-970, Pernambuco, Brazil; (G.G.L.d.A.); (T.V.V.)
| | - Airon Aparecido Silva de Melo
- Programa de Pós-Graduação em Ciência Animal e Pastagens, Universidade Federal do Agreste de Pernambuco, Garanhuns 55292-270, Pernambuco, Brazil; (P.F.A.G.); (A.L.R.M.); (A.A.S.d.M.); (P.B.d.S.)
| | - Tiago Santos Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Sertão, Ouricuri 56200-000, Pernambuco, Brazil;
| | - Glayciane Costa Gois
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal do Maranhão, Chapadinha 65500-000, Maranhão, Brazil; (A.d.M.Z.); (F.S.C.)
| | - Kelly Cristina dos Santos
- Programa de Pós-Graduação em Zootecnia, Universidade Federal Rural de Pernambuco, Recife 52171-900, Pernambuco, Brazil; (K.C.d.S.); (D.B.d.N.)
| | - Daniel Bezerra do Nascimento
- Programa de Pós-Graduação em Zootecnia, Universidade Federal Rural de Pernambuco, Recife 52171-900, Pernambuco, Brazil; (K.C.d.S.); (D.B.d.N.)
| | - Priscila Barreto da Silva
- Programa de Pós-Graduação em Ciência Animal e Pastagens, Universidade Federal do Agreste de Pernambuco, Garanhuns 55292-270, Pernambuco, Brazil; (P.F.A.G.); (A.L.R.M.); (A.A.S.d.M.); (P.B.d.S.)
| | - Juliana Silva de Oliveira
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Paraíba, Areia 58397-000, Paraíba, Brazil; (J.S.d.O.); (E.M.S.)
| | - Edson Mauro Santos
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Paraíba, Areia 58397-000, Paraíba, Brazil; (J.S.d.O.); (E.M.S.)
| | - Thieres George Freire da Silva
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal Rural de Pernambuco, Serra Talhada 56909-535, Pernambuco, Brazil;
| | - Anderson de Moura Zanine
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal do Maranhão, Chapadinha 65500-000, Maranhão, Brazil; (A.d.M.Z.); (F.S.C.)
| | - Daniele de Jesus Ferreira
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal do Maranhão, Chapadinha 65500-000, Maranhão, Brazil; (A.d.M.Z.); (F.S.C.)
| | - Tadeu Vinhas Voltolini
- Setor de Produção Animal, Empresa Brasileira de Pesquisa Agropecuária, Embrapa Semiárido, Petrolina 56302-970, Pernambuco, Brazil; (G.G.L.d.A.); (T.V.V.)
| | - Fleming Sena Campos
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal do Maranhão, Chapadinha 65500-000, Maranhão, Brazil; (A.d.M.Z.); (F.S.C.)
| |
Collapse
|
7
|
Sujani S, Gleason CB, dos Reis BR, White RR. Rumen fermentation of meal-fed sheep in response to diets formulated to vary in fiber and protein degradability. J Anim Sci 2024; 102:skad406. [PMID: 38066694 PMCID: PMC11282958 DOI: 10.1093/jas/skad406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
The concentration of volatile fatty acid (VFA) provides an imprecise view of VFA dynamics due to the confounding effects of fluid pool size and dynamics. Determination of VFA flux using isotope is expensive and a complex methodology. Therefore, a rapid and affordable approach to explore VFA dynamics may allow comprehensive characterization of VFA availability. The objective of this study was to explore the use of VFA dynamics generated by meal feeding to derive time-series rates of VFA apparent appearance and disappearance driven by different protein and fiber sources. Six ruminally cannulated wethers were fed diets containing timothy hay or beet pulp (TH and BP) and soybean meal (SBM) or heated soybean meal (HSBM). Diets were, TH + HSBM; TH + SBM; BP + HSBM; and BP + SBM and the experimental design was a partially replicated 4 × 4 Latin Square. Concentrations of VFA and polyethylene glycol (PEG) in rumen fluid samples were estimated. Concentrations of PEG were used to estimate fluid passage and volume to calculate VFA mass, and fluid-mediated exit. Maximum apparent appearance rate (mmol/h), the rate of apparent appearance decline (mmol/mmol/h), mean apparent appearance flux (mmol/h), mean apparent disappearance (mmol/h), and apparent disappearance rate (mmol/mmol/h) were estimated by deriving a 1 pool model for each VFA on a mass basis where appearance was assumed to follow an exponential decay pattern and disappearance followed mass-action kinetics. Statistical analyses were conducted using a linear mixed effect regression with fixed effects for fiber source, protein source, and their interaction, as well as random effects for animal and period. Rumen fluid volume (L) was greater in HSBM diets (P = 0.033) and fluid passage (%/h) was greater in SBM diets (P = 0.048). Concentrations (higher acetate and butyrate, P = 0.002 and 0.004, respectively) and molar proportions (higher valerate, P = 0.035) of VFA were affected only by fiber source; however, protein source and fiber source interacted to significantly influence apparent appearance rates and absorption rates of many major VFA. On a flux basis, HSBM supported significantly elevated mean disappearance of propionate (P = 0.033). This data demonstrates that time-series evaluation of fermentation dynamics, including fluid dynamics and VFA concentrations can be used to estimate apparent appearance and disappearance of VFA. Although further work is needed to confirm the alignment of these estimates with measurements of VFA supplies to the animal, this modeling approach may provide a simpler way to better understand the kinetics of rumen.
Collapse
Affiliation(s)
- Sathya Sujani
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Claire B Gleason
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Barbara R dos Reis
- White Sand Research Unit, Mississippi State University, Poplarville, MS 32970, USA
| | - Robin R White
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Zhen Y, Xi Z, Nasr SM, He F, Han M, Yin J, Ge L, Chen Y, Wang Y, Wei W, Zhang Y, Wang M. Multi-Omics Reveals the Impact of Exogenous Short-Chain Fatty Acid Infusion on Rumen Homeostasis: Insights into Crosstalk between the Microbiome and the Epithelium in a Goat Model. Microbiol Spectr 2023; 11:e0534322. [PMID: 37439665 PMCID: PMC10433986 DOI: 10.1128/spectrum.05343-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Emerging data have underscored the significance of exogenous supplementation of butyrate in the regulation of rumen development and homeostasis. However, the effects of other short-chain fatty acids (SCFAs), such as acetate or propionate, has received comparatively less attention, and the consequences of extensive exogenous SCFA infusion remain largely unknown. In our study, we conducted a comprehensive investigation by infusion of three SCFAs to examine their respective roles in regulating the rumen microbiome, metabolism, and epithelium homeostasis. Data demonstrated that the infusion of sodium acetate (SA) increased rumen index while also promoting SCFA production and absorption through the upregulation of SCFA synthetic enzymes and the mRNA expression of SLC9A1 gene. Moreover, both SA and sodium propionate infusion resulted in an enhanced total antioxidant capacity, an increased concentration of occludin, and higher abundances of specific rumen bacteria, such as "Candidatus Saccharimonas," Christensenellaceae R-7, Butyrivibrio, Rikenellaceae RC9 gut, and Alloprevotella. In addition, sodium butyrate (SB) infusion exhibited positive effects by increasing the width of rumen papilla and the thickness of the stratum basale. SB infusion further enhanced antioxidant capacity and barrier function facilitated by cross talk with Monoglobus and Incertae Sedis. Furthermore, metabolome and transcriptome data revealed distinct metabolic patterns in rumen contents and epithelium, with a particular impact on amino acid and fatty acid metabolism processes. In conclusion, our data provided novel insights into the regulator effects of extensive infusion of the three major SCFAs on rumen fermentation patterns, antioxidant capacity, rumen barrier function, and rumen papilla development, all achieved without inducing rumen epithelial inflammation. IMPORTANCE The consequences of massive exogenous supplementation of SCFAs on rumen microbial fermentation and rumen epithelium health remain an area that requires further exploration. In our study, we sought to investigate the specific impact of administering high doses of exogenous acetate, propionate, and butyrate on rumen homeostasis, with a particular focus on understanding the interaction between the rumen microbiome and epithelium. Importantly, our findings indicated that the massive infusion of these SCFAs did not induce rumen inflammation. Instead, we observed enhancements in antioxidant capacity, strengthening of rumen barrier function, and promotion of rumen papilla development, which were facilitated through interactions with specific rumen bacteria. By addressing existing knowledge gaps and offering critical insights into the regulation of rumen health through SCFA supplementation, our study holds significant implications for enhancing the well-being and productivity of ruminant animals.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Zanna Xi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Shaima Mohamed Nasr
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Feiyang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Mengli Han
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, People’s Republic of China
| | - Junliang Yin
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, People’s Republic of China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yifei Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yusu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Wenjun Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yihui Zhang
- Experimental Farm of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, People’s Republic of China
| |
Collapse
|
9
|
Firkins JL, Mitchell KE. Invited review: Rumen modifiers in today's dairy rations. J Dairy Sci 2023; 106:3053-3071. [PMID: 36935236 DOI: 10.3168/jds.2022-22644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/23/2022] [Indexed: 03/19/2023]
Abstract
Our aim was to review feed additives that have a potential ruminal mechanism of action when fed to dairy cattle. We discuss how additives can influence ruminal fermentation stoichiometry through electron transfer mechanisms, particularly the production and usage of dihydrogen. Lactate accumulation should be avoided, especially when acidogenic conditions suppress ruminal neutral detergent fiber digestibility or lead to subclinical acidosis. Yeast products and other probiotics are purported to influence lactate uptake, but growing evidence also supports that yeast products influence expression of gut epithelial genes promoting barrier function and resulting inflammatory responses by the host to various stresses. We also have summarized methane-suppressing additives for potential usage in dairy rations. We focused on those with potential to decrease methane production without decreasing fiber digestibility or milk production. We identified some mitigating factors that need to be addressed more fully in future research. Growth factors such as branched-chain volatile fatty acids also are part of crucial cross-feeding among groups of microbes, particularly to optimize fiber digestibility in the rumen. Our developments of mechanisms of action for various rumen-active modifiers should help nutrition advisors anticipate when a benefit in field conditions is more likely.
Collapse
Affiliation(s)
- J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210.
| | - K E Mitchell
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| |
Collapse
|
10
|
Sujani S, White RR, Firkins JL, Wenner BA. Network analysis to evaluate complexities in relationships among fermentation variables measured within continuous culture experiments. J Anim Sci 2023; 101:skad085. [PMID: 37078886 PMCID: PMC10158529 DOI: 10.1093/jas/skad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023] Open
Abstract
The objective of this study was to leverage a frequentist (ELN) and Bayesian learning (BLN) network analyses to summarize quantitative associations among variables measured in 4 previously published dual-flow continuous culture fermentation experiments. Experiments were originally designed to evaluate effects of nitrate, defaunation, yeast, and/or physiological shifts associated with pH or solids passage rates on rumen conditions. Measurements from these experiments that were used as nodes within the networks included concentrations of individual volatile fatty acids, mM and nitrate, NO3-,%; outflows of non-ammonia nitrogen (NAN, g/d), bacterial N (BN, g/d), residual N (RN, g/d), and ammonia N (NH3-N, mg/dL); degradability of neutral detergent fiber (NDFd, %) and degradability of organic matter (OMd, %); dry matter intake (DMI, kg/d); urea in buffer (%); fluid passage rate (FF, L/d); total protozoa count (PZ, cells/mL); and methane production (CH4, mmol/d). A frequentist network (ELN) derived using a graphical LASSO (least absolute shrinkage and selection operator) technique with tuning parameters selected by Extended Bayesian Information Criteria (EBIC) and a BLN were constructed from these data. The illustrated associations in the ELN were unidirectional yet assisted in identifying prominent relationships within the rumen that were largely consistent with current understanding of fermentation mechanisms. Another advantage of the ELN approach was that it focused on understanding the role of individual nodes within the network. Such understanding may be critical in exploring candidates for biomarkers, indicator variables, model targets, or other measurement-focused explorations. As an example, acetate was highly central in the network suggesting it may be a strong candidate as a rumen biomarker. Alternatively, the major advantage of the BLN was its unique ability to imply causal directionality in relationships. Because the BLN identified directional, cascading relationships, this analytics approach was uniquely suited to exploring the edges within the network as a strategy to direct future work researching mechanisms of fermentation. For example, in the BLN acetate responded to treatment conditions such as the source of N used and the quantity of substrate provided, while acetate drove changes in the protozoal populations, non-NH3-N and residual N flows. In conclusion, the analyses exhibit complementary strengths in supporting inference on the connectedness and directionality of quantitative associations among fermentation variables that may be useful in driving future studies.
Collapse
Affiliation(s)
- Sathya Sujani
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robin R White
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin A Wenner
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|