1
|
Opgenorth J, Goetz BM, Rodriguez-Jimenez S, Freestone AD, Combs GJ, Flemming TA, McGill JL, Gorden PJ, Tikofsky L, Baumgard LH. Comparing oral versus intravenous calcium administration on alleviating markers of production, metabolism, and inflammation during an intravenous lipopolysaccharide challenge in mid-lactation dairy cows. J Dairy Sci 2025; 108:2883-2896. [PMID: 39603495 DOI: 10.3168/jds.2024-24831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Animals, including dairy cows, develop hypocalcemia during infection. Prior independent research suggests supplementing oral Ca, but not i.v. Ca, improves multiple health metrics after immune activation. Therefore, study objectives were to directly compare the effects of administering an oral Ca bolus versus i.v. Ca on mineral and energetic metabolism variables and inflammatory parameters following an i.v. LPS challenge. Mid-lactation cows (124 ± 43 DIM) were assigned to 1 of 4 treatments: (1) saline control (CON; 4 mL of saline; n = 4), (2) LPS control (CON-LPS; 0.375 µg/kg BW; n = 6), (3) LPS with oral Ca bolus (OCa-LPS; 0.375 µg/kg BW and a 192-g bolus of Bovikalc [Boehringer Ingelheim Animal Health USA Inc., Duluth, GA] containing 43 g of Ca [71% CaCl2 and 29% CaSO4] supplemented at -0.5 and 6 h relative to LPS administration; n = 8), and (4) LPS with i.v. Ca (IVCa-LPS; 0.375 µg/kg BW and 500 mL of Ca-gluconate, 23% [VetOne, Boise, ID]) supplemented at -0.5 and 6 h relative to LPS infusion; n = 8). During period (P) 1 (4 d), baseline data were obtained. At the initiation of P2 (5 d), LPS and Ca supplements were administered. As anticipated, CON-LPS became hypocalcemic, but OCa-LPS and IVCa-LPS had increased ionized Ca compared with CON-LPS cows (1.11 and 1.28 vs. 0.95 ± 0.02 mmol/L, respectively). Rectal temperature increased after LPS and was additionally elevated in IVCa-LPS from 3 to 4 h (38.9 and 39.8 ± 0.1°C in CON-LPS and IVCa-LPS, respectively). Administering LPS decreased DMI and milk yield relative to CON. Circulating glucose was decreased in OCa-LPS compared with CON-LPS and IVCa-LPS during the initial hyperglycemic phase at 1 h (75.1 vs. 94.9 and 95.7 ± 3.4 mg/dL, respectively, but all LPS infused cows regardless of treatment had similar glucose concentrations thereafter, which were decreased relative to baseline during the first 12 h. Blood urea nitrogen increased after LPS but this was attenuated in OCa-LPS compared with CON-LPS and IVCa-LPS cows (8.7 vs. 10.0 and 10.4 ± 0.3 mg/dL). Glucagon increased in OCa-LPS and IVCa-LPS compared with CON-LPS cows (459 and 472 vs. 335 ± 28 pg/mL, respectively), and insulin markedly increased over time regardless of LPS treatment. Lipopolysaccharide substantially increased serum amyloid A, LPS-binding protein (LBP), and haptoglobin in all treatments, but OCa-LPS tended to have increased LBP concentrations relative to IVCa-LPS (10.7 vs. 8.6 ± 0.7 µg/mL, respectively). Several cytokines increased after LPS administration, but most temporal cytokine profiles did not differ by treatment. In summary, LPS administration intensely activated the immune system and both Ca delivery routes successfully ameliorated the hypocalcemia. The i.v. and oral Ca treatments had differential effects on multiple metabolism variables and appeared to mildly influence production responses to LPS.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - G J Combs
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - T A Flemming
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011
| | - P J Gorden
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011
| | - L Tikofsky
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA 30096
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
2
|
Frizzarini W, Campolina J, Connelly M, Fricke H, Hernandez L. Effects of induced subclinical hypocalcemia in early-lactation Holstein cows without milking during infusion on parathyroid hormone and serotonin concentrations. JDS COMMUNICATIONS 2024; 5:729-734. [PMID: 39650027 PMCID: PMC11624329 DOI: 10.3168/jdsc.2024-0589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 12/11/2024]
Abstract
The transition to lactation demands a substantial amount of calcium (Ca) to support colostrum and milk production. Extensive research has been focused on elucidating the interplay between the traditional Ca-parathyroid hormone-vitamin D axis and mammary-derived factors, such as serotonin (5-HT) and parathyroid-hormone-like hormone (PTHLH), in regulating Ca metabolism during the transition period. Here, we investigate the impact of induced subclinical hypocalcemia (SCH) on 5-HT and parathyroid hormone (PTH) concentrations in early-lactation dairy cows under conditions of 24-h milk stasis. Twelve multiparous Holstein cows in early lactation received either continuous intravenous infusion of saline solution or 5% ethylene glycol tetraacetic acid (EGTA) to maintain blood ionized calcium (iCa) below 1 mM (n = 6/treatment). Blood samples were collected hourly during infusion and 4, 8, 12, 24, and 48 h post-infusion. Urine samples were collected every 4 h during infusion and at 12, 24, and 48 h post-infusion, and milk samples were collected daily from 2 d pre-infusion to 4 d post-infusion. Infusion of EGTA resulted in decreased blood iCa during the infusion period, with iCa concentrations rebounding 24 h post-infusion. No significant treatment effects were observed on 5-HT and PTH blood concentrations. These findings underscore the importance of considering physiological distinctions in studies of Ca metabolism during the transition period.
Collapse
Affiliation(s)
- W.S. Frizzarini
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706
| | - J.P. Campolina
- Departmento de Zootecnia, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - M.K. Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706
| | - H.P. Fricke
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706
| | - L.L. Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706
| |
Collapse
|
3
|
Opgenorth J, Abeyta MA, Goetz BM, Rodriguez-Jimenez S, Freestone AD, Rhoads RP, McMillan RP, McGill JL, Baumgard LH. Intramammary lipopolysaccharide challenge in early- versus mid-lactation dairy cattle: Immune, production, and metabolic responses. J Dairy Sci 2024; 107:6252-6267. [PMID: 38460880 DOI: 10.3168/jds.2023-24488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Study objectives were to compare the immune response, metabolism, and production following intramammary LPS (IMM LPS) administration in early and mid-lactation cows. Early (E-LPS; n = 11; 20 ± 4 DIM) and mid- (M-LPS; n = 10; 155 ± 40 DIM) lactation cows were enrolled in an experiment consisting of 2 periods (P). During P1 (5 d) cows were fed ad libitum and baseline data were collected, including liver and muscle biopsies. At the beginning of P2 (3 d) cows received 10 mL of sterile saline containing 10 µg of LPS from Escherichia coli O111:B4/mL into the left rear quarter of the mammary gland, and liver and muscle biopsies were collected at 12 h after LPS. Tissues were analyzed for metabolic flexibility, which measures substrate switching capacity from pyruvic acid to palmitic acid oxidation. Data were analyzed with the MIXED procedure in SAS 9.4. Rectal temperature was assessed hourly for the first 12 h after LPS and every 6 h thereafter for the remainder of P2. All cows developed a febrile response following LPS, but E-LPS had a more intense fever than M-LPS cows (0.7°C at 5 h after LPS). Blood samples were collected at 0, 3, 6, 9, 12, 24, 36, 48, and 72 h after LPS for analysis of systemic inflammation and metabolism parameters. Total serum Ca decreased after LPS (26% at 6 h nadir) but did not differ by lactation stage (LS). Circulating neutrophils decreased, then increased after LPS in both LS, but E-LPS had exaggerated neutrophilia (56% from 12 to 48 h) compared with M-LPS. Haptoglobin increased after LPS (15-fold) but did not differ by LS. Many circulating cytokines were increased after LPS, and IL-6, IL-10, TNF-α, MCP-1, and IP-10 were further augmented in E-LPS compared with M-LPS cows. Relative to P1, all cows had reduced milk yield (26%) and DMI (14%) on d 1 that did not differ by LS. Somatic cell score increased rapidly in response to LPS regardless of LS and gradually decreased from 18 h onwards. Milk component yields decreased after LPS. However, E-LPS had increased fat (11%) and tended to have increased lactose (8%) yield compared with M-LPS cows throughout P2. Circulating glucose was not affected by LPS. Nonesterified fatty acids (NEFA) decreased in E-LPS (29%) but not M-LPS cows. β-Hydroxybutyrate slightly increased (14%) over time after LPS regardless of LS. Insulin increased after LPS in all cows, but E-LPS had blunted hyperinsulinemia (52%) compared with M-LPS cows. Blood urea nitrogen increased after LPS, and the relative change in BUN was elevated in E-LPS cows compared with M-LPS cows (36% and 13%, respectively, from 9 to 24 h). During P1, metabolic flexibility was increased in liver and muscle in early lactating cows compared with mid-lactation cows, but 12 h after LPS, metabolic flexibility was reduced and did not differ by LS. In conclusion, IMM LPS caused severe immune activation, and E-LPS cows had a more intense inflammatory response compared with M-LPS cows, but the effects on milk synthesis was similar between LS. Some parameters of the E-LPS metabolic profile suggest continuation of metabolic adjustments associated with early lactation to support both a robust immune system and milk synthesis.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - R P Rhoads
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - R P McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - J L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|