1
|
Xu Y, Huang Y, Wei S, Tian J, Huang Y, Nie Q, Zhang D. Changes in gut microbiota affect DNA methylation levels and development of chicken muscle tissue. Poult Sci 2025; 104:104869. [PMID: 39952142 PMCID: PMC11874558 DOI: 10.1016/j.psj.2025.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
The intestinal microbiome is essential in regulating host muscle growth and development. Antibiotic treatment is commonly used to model dysbiosis of the intestinal microbiota, yet limited research addresses the relationship between gut microbes and muscle growth in yellow-feathered broilers. In this study, Xinghua chickens were administered broad-spectrum antibiotics for eight weeks to induce gut microbiome suppression. We investigated the relationships between the gut microbiome and muscle growth using 16S rRNA sequencing and transcriptomic analysis. Results indicated that antibiotic treatment significantly reduced body weight, dressed weight, eviscerated weight, and breast and leg muscle weight. Microbial diversity and richness in the duodenum, jejunum, ileum, and cecum were significantly decreased. The relative abundances of Firmicutes, Actinobacteria, and Bacteroidetes declined, while Proteobacteria increased. This microbial imbalance led to 298 differentially expressed genes (DEGs) in muscle tissue, of which 67 down-regulated genes were enriched in skeletal muscle development, including MYF6, MYBPC1 and METTL21C genes essential for muscle development. The DEGs were primarily involved in the MAPK signaling pathway, calcium signaling pathway, ECM-receptor interaction, actin cytoskeleton regulation, and nitrogen metabolism. Correlation analysis showed that dysregulation of the cecal microbiome had the most substantial effect on muscle growth and development. Furthermore, intestinal microbiome dysregulation reduced DNMT3b and METTL21C mRNA expression in muscle tissue, lowered overall DNA methylation and SAM levels, and induced methylation changes that impacted skeletal muscle development. This study demonstrates that gut microbiota influence DNA methylation in muscle tissue, thereby associated with muscle growth and development.
Collapse
Affiliation(s)
- Yibin Xu
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Yunpeng Huang
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Shenghua Wei
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinghong Tian
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Yulin Huang
- Wens Foodstuff Group Co. Ltd., Yunfu 527400, PR China
| | - Qinghua Nie
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Dexiang Zhang
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China; Wens Foodstuff Group Co. Ltd., Yunfu 527400, PR China.
| |
Collapse
|
2
|
Huan Y, Yue H, Song Y, Zhang W, Wei B, Tang Q. Whey Protein Isolate-Encapsulated Astaxanthin Nanoemulsion More Effectively Mitigates Skeletal Muscle Atrophy in Dexamethasone-Induced Mice. Nutrients 2025; 17:750. [PMID: 40077620 PMCID: PMC11901752 DOI: 10.3390/nu17050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Skeletal muscle, as the largest organ in the body and the main protein pool, is crucial for various physiological processes, but atrophy of skeletal muscle can result from glucocorticoids, including dexamethasone, or from aging. Astaxanthin (AST) is a ketocarotenoid with a variety of physiological activities. However, the clinical application of AST is hampered by its strong hydrophobicity, intense off-flavors, and susceptibility to oxidation. METHODS In this study, we prepared whey protein isolate (WPI)-encapsulated AST nanoemulsion (WPI-AST, W-A) and investigated its alleviating effects on dexamethasone-induced skeletal muscle atrophy. RESULTS The optimal concentration of astaxanthin was determined to be 30 mg/mL with an oil/water ratio of 1:5. The W-A was a typical oil-in-water (O/W) emulsion with a particle size of about 110 nm. The bioaccessibility of astaxanthin was significantly improved, with the off-flavors of astaxanthin effectively masked. After oral administration, the W-A further ameliorated skeletal muscle atrophy by inhibiting skeletal muscle catabolism, promoting skeletal muscle production, and inhibiting mitochondrial autophagy compared with the same dose of WPI and AST. In addition to this, the W-A further improved the glycometabolism of skeletal muscle by reducing the expression of Foxo3 and increasing the expression of PGC-1α. CONCLUSIONS In conclusion, the W-A nanoemulsion demonstrated good therapeutic value in alleviating skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yuchen Huan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Han Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Yanli Song
- Department of Emergency, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Wenmei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Biqian Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| |
Collapse
|
3
|
Wang X, Zhou X, Li C, Qu C, Shi Y, Li CJ, Kang X. Integrative analysis of whole genome bisulfite and transcriptome sequencing reveals the effect of sodium butyrate on DNA methylation in the differentiation of bovine skeletal muscle satellite cells. Genomics 2024; 116:110959. [PMID: 39521294 DOI: 10.1016/j.ygeno.2024.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Butyric acid as a short-chain fatty acid (SCFA) is one of the key microbial metabolites of ruminants. Numerous studies indicate that butyrate is crucial in muscle growth and development, and plays an important molecular regulatory role mainly by inhibiting histone deacetylation. DNA methylation, a major epigenetic modification, is involved in cell differentiation. Butyrate, in addition to its role in acetylation modifications, can alter the DNA methylation status of cells. However, the impact of butyrate on the DNA methylation of bovine skeletal muscle satellite cells (SMSCs) remains unclear. In this study, we developed a differentiation model of SMSCs and employed RNA sequencing (RNA-seq) alongside whole genome bisulfite sequencing (WGBS) to explore the effects of butyrate treatment on DNA methylation status and its relationship with gene expression. Treatment of SMSCs with sodium butyrate (NaB) at 1.0 mM for 2 days significantly inhibited the expression of DNA methyltransferases (DNMT1, DNMT2, DNMT3A) at the mRNA and protein levels while promoting the expression of demethylases (TET1, TET2, TET3) at mRNA levels. WGBS identified 4292 differentially methylated regions (DMRs), comprising 2294 hypermethylated and 1998 hypomethylated regions. These DMRs were significantly enriched in the MAPK, cAMP, and Wnt signaling pathways, all of which are implicated in myogenesis and development. Combining RNA-seq and WGBS data revealed a total of 130 overlapping genes, including MDFIC, CREBBP, DMD, LTBP2 and KLF4. These genes are predominantly involved in regulating the FoxO, MAPK, PI3K-Akt, and Wnt signaling pathways. This study provides new insights into the effects of butyrate-mediated DNA methylation on SMSC development and enhances our understanding of butyrate as an epigenetic modifier beyond its role in acetylation.
Collapse
Affiliation(s)
- Xiaowei Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Ningxia Yinchuan 750002, China
| | - Xiaonan Zhou
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chenglong Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chang Qu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yuangang Shi
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| | - Xiaolong Kang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
4
|
Zhang Z, Kang Z, Deng K, Li J, Liu Z, Huang X, Wang F, Fan Y. circUSP13 facilitates the fast-to-slow myofiber shift via the MAPK/ERK signaling pathway in goat skeletal muscles. J Cell Physiol 2024; 239:e31226. [PMID: 38591363 DOI: 10.1002/jcp.31226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 04/10/2024]
Abstract
Understanding how skeletal muscle fiber proportions are regulated is essential for understanding muscle function and improving the quality of mutton. While circular RNA (circRNA) has a critical function in myofiber type transformation, the specific mechanisms are not yet fully understood. Prior evidence indicates that circular ubiquitin-specific peptidase 13 (circUSP13) can promote myoblast differentiation by acting as a ceRNA, but its potential role in myofiber switching is still unknown. Herein, we found that circUSP13 enhanced slow myosin heavy chain (MyHC-slow) and suppressed MyHC-fast expression in goat primary myoblasts (GPMs). Meanwhile, circUSP13 evidently enhanced the remodeling of the mitochondrial network while inhibiting the autophagy of GPMs. We obtained fast-dominated myofibers, via treatment with rotenone, and further demonstrated the positive role of circUSP13 in the fast-to-slow transition. Mechanistically, activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway significantly impaired the slow-to-fast shift in fully differentiated myotubes, which was restored by circUSP13 or IGF1 overexpression. In conclusion, circUSP13 promoted the fast-to-slow myofiber type transition through MAPK/ERK signaling in goat skeletal muscle. These findings provide novel insights into the role of circUSP13 in myofiber type transition and contribute to a better understanding of the genetic mechanisms underlying meat quality.
Collapse
Affiliation(s)
- Zhen Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Ziqi Kang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Zhipeng Liu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Xinai Huang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|