1
|
Nájera AI, Nieto S, Barron LJR, Albisu M. A Review of the Preservation of Hard and Semi-Hard Cheeses: Quality and Safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189789. [PMID: 34574712 PMCID: PMC8469587 DOI: 10.3390/ijerph18189789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
Cheese is a dairy product with potential health benefits. Cheese consumption has increased due to the significant diversity of varieties, versatility of product presentation, and changes in consumers’ lifestyles. Spoilage of hard and semi-hard cheeses can be promoted by their maturation period and/or by their long shelf-life. Therefore, preservation studies play a fundamental role in maintaining and/or increasing their shelf-life, and are of significant importance for the dairy sector. The aim of this review is to discuss the most effective methods to ensure the safety and sensory quality of ripened cheeses. We review traditional methods, such as freezing, and modern and innovative technologies, such as high hydrostatic pressures, chemical and natural vegetable origin preservatives, vacuum and modified atmosphere packaging, edible coatings and films, and other technologies applied at the end of storage and marketing stages, including light pulses and irradiation. For each technology, the main advantages and limitations for industrial application in the dairy sector are discussed. Each type of cheese requires a specific preservation treatment and optimal application conditions to ensure cheese quality and safety during storage. The environmental impact of the preservation technologies and their contribution to the sustainability of the food chain are discussed.
Collapse
Affiliation(s)
- Ana Isabel Nájera
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
- Correspondence: (A.I.N.); (M.A.); Tel.: +34-945-013-077 (A.I.N.); +34-945-013-072 (M.A.)
| | - Sonia Nieto
- Efficient and Sustainable Processes Department, Bizkaia Technology Park, AZTI, P.O. Box 609, 48160 Derio, Spain;
| | - Luis Javier R. Barron
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
| | - Marta Albisu
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
- Correspondence: (A.I.N.); (M.A.); Tel.: +34-945-013-077 (A.I.N.); +34-945-013-072 (M.A.)
| |
Collapse
|
2
|
|
3
|
Castilho NPAD, Todorov SD, Oliveira LL, Bersot LDS, Nero LA. Inhibition of Listeria monocytogenes in fresh sausage by bacteriocinogenic Lactobacillus curvatus UFV-NPAC1 and its semi-purified bacteriocin. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Quorum Sensing Circuits in the Communicating Mechanisms of Bacteria and Its Implication in the Biosynthesis of Bacteriocins by Lactic Acid Bacteria: a Review. Probiotics Antimicrob Proteins 2019; 12:5-17. [DOI: 10.1007/s12602-019-09555-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Volatile compounds and sensory changes after high pressure processing of mature “Torta del Casar” (raw ewe's milk cheese) during refrigerated storage. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Silva CCG, Silva SPM, Ribeiro SC. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front Microbiol 2018; 9:594. [PMID: 29686652 PMCID: PMC5900009 DOI: 10.3389/fmicb.2018.00594] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/15/2018] [Indexed: 11/24/2022] Open
Abstract
In the last years, consumers are becoming increasingly aware of the human health risk posed by the use of chemical preservatives in foods. In contrast, the increasing demand by the dairy industry to extend shelf-life and prevent spoilage of dairy products has appeal for new preservatives and new methods of conservation. Bacteriocins are antimicrobial peptides, which can be considered as safe since they can be easily degraded by proteolytic enzymes of the mammalian gastrointestinal tract. Also, most bacteriocin producers belong to lactic acid bacteria (LAB), a group that occurs naturally in foods and have a long history of safe use in dairy industry. Since they pose no health risk concerns, bacteriocins, either purified or excreted by bacteriocin producing strains, are a great alternative to the use of chemical preservatives in dairy products. Bacteriocins can be applied to dairy foods on a purified/crude form or as a bacteriocin-producing LAB as a part of fermentation process or as adjuvant culture. A number of applications of bacteriocins and bacteriocin-producing LAB have been reported to successful control pathogens in milk, yogurt, and cheeses. One of the more recent trends consists in the incorporation of bacteriocins, directly as purified or semi-purified form or in incorporation of bacteriocin-producing LAB into bioactive films and coatings, applied directly onto the food surfaces and packaging. This review is focused on recent developments and applications of bacteriocins and bacteriocin-producing LAB for reducing the microbiological spoilage and improve safety of dairy products.
Collapse
Affiliation(s)
- Célia C. G. Silva
- Instituto de Investigação e Tecnologias Agrárias e do Ambiente, Universidade dos Açores, Angra do Heroísmo, Portugal
| | | | | |
Collapse
|
7
|
Trujillo AJ, Ferragut V, Juan B, Roig-Sagués AX, Guamis B. Processing of Dairy Products Utilizing High Pressure. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-3234-4_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
8
|
Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05. Int J Food Microbiol 2015; 214:159-167. [PMID: 26310130 DOI: 10.1016/j.ijfoodmicro.2015.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 08/11/2015] [Indexed: 11/21/2022]
Abstract
Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p<0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption.
Collapse
|
9
|
Physicochemical, proteolysis and texture changes during the storage of a mature soft cheese treated by high-pressure hydrostatic. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2420-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Calzada J, del Olmo A, Picon A, Gaya P, Nuñez M. Effect of High-Pressure Processing on the Microbiology, Proteolysis, Biogenic Amines and Flavour of Cheese Made from Unpasteurized Milk. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1406-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Calzada J, del Olmo A, Picon A, Gaya P, Nuñez M. Using High-Pressure Processing for Reduction of Proteolysis and Prevention of Over-ripening of Raw Milk Cheese. FOOD BIOPROCESS TECH 2013. [DOI: 10.1007/s11947-013-1141-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Microstructural, Textural and Colour Characteristics During Ripening of Hispánico Cheese Made Using High-Pressure-Treated Ovine Milk Curd. FOOD BIOPROCESS TECH 2012. [DOI: 10.1007/s11947-012-0955-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Koca N, Balasubramaniam VM, Harper WJ. High-pressure effects on the microstructure, texture, and color of white-brined cheese. J Food Sci 2012; 76:E399-404. [PMID: 22417430 DOI: 10.1111/j.1750-3841.2011.02201.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UNLABELLED White-brined cheeses were subjected to high-pressure processing (HPP) at 50, 100, 200, and 400 MPa at 22 °C for 5 and 15 min and ripened in brine for 60 d. The effects of pressure treatment on the chemical, textural, microstructural, and color were determined. HPP did not affect moisture, protein, and fat contents of cheeses. Similar microstructures were obtained for unpressurized cheese and pressurized cheeses at 50 and 100 MPa, whereas a denser and continuous structure was obtained for pressurized cheeses at 200 and 400 MPa. These microstructural changes exhibited a good correlation with textural changes. The 200 and 400 MPa treatments resulted in significantly softer, less springy, less gummy, and less chewy cheese. Finally, marked differences were obtained in a* and b* values at higher pressure levels for longer pressure-holding time and were also supported by ΔE* values. The cheese became more greenish and yellowish with the increase in pressure level. PRACTICAL APPLICATION The quality of cheese is the very important to the consumers. This study documented the pressure-induced changes in selected quality attributes of semisoft and brine-salted cheese. The results can help the food processors to have knowledge of the process parameters resulting in quality changes and to identify optimal process parameters for preserving pressure-treated cheeses.
Collapse
Affiliation(s)
- N Koca
- Dept. of Food Engineering, Ege Univ., 35100 Bornova, Izmir, Turkey.
| | | | | |
Collapse
|
14
|
Martínez-Rodríguez Y, Acosta-Muñiz C, Olivas GI, Guerrero-Beltrán J, Rodrigo-Aliaga D, Sepúlveda DR. High Hydrostatic Pressure Processing of Cheese. Compr Rev Food Sci Food Saf 2012. [DOI: 10.1111/j.1541-4337.2012.00192.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Microbiological, chemical, and sensory characteristics of Hispánico cheese manufactured using frozen high pressure treated curds made from raw ovine milk. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Picon A, Gaya P, Fernández-García E, Rivas-Cañedo A, Avila M, Nuñez M. Proteolysis, lipolysis, volatile compounds, texture, and flavor of Hispánico cheese made using frozen ewe milk curds pressed for different times. J Dairy Sci 2010; 93:2896-905. [PMID: 20630207 DOI: 10.3168/jds.2009-3041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/21/2010] [Indexed: 11/19/2022]
Abstract
Hispánico cheese is manufactured in Spain from a mixture of cow and ewe milk. Production of ewe milk varies throughout the year, with a peak in spring and a valley in summer and autumn. To overcome this seasonal shortage, curd from spring ewe milk may be frozen and used for cheese manufacture some months later. In the present work, ewe milk curds pressed for 15, 60, or 120 min were held at -24 degrees C for 4 mo, thawed, cut to 1-mm pieces, and mixed with fresh cow milk curd for the manufacture of experimental Hispánico cheeses. Control cheese was made from a mixture of pasteurized cow and ewe milk in the same (80:20) proportion. Cheeses, made in duplicate experiments, were analyzed throughout a 60-d ripening period. No significant differences between cheeses were found for lactic acid bacteria counts, dry matter content, hydrophilic peptides, 47 out of 68 vol.tile compounds, texture, and flavor characteristics. On the other hand, differences of minor practical significance between experimental and control cheeses, unrelated to the use of frozen ewe milk curd or the pressing time of ewe milk curd, were found for pH value, aminopeptidase activity, proteolysis, hydrophobic peptides, free amino acids, free fatty acids, and the remaining 21 vol.tile compounds. It may be concluded that the use of frozen ewe milk curd in the manufacture of Hispánico cheese does not alter its main characteristics.
Collapse
Affiliation(s)
- A Picon
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Picon A, Alonso R, Gaya P, Fernández-García E, Rodríguez B, de Paz M, Nuñez M. Microbiological, chemical, textural and sensory characteristics of Hispánico cheese manufactured using frozen ovine milk curds scalded at different temperatures. Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2009.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Gálvez A, López RL, Abriouel H, Valdivia E, Omar NB. Application of Bacteriocins in the Control of Foodborne Pathogenic and Spoilage Bacteria. Crit Rev Biotechnol 2008; 28:125-52. [DOI: 10.1080/07388550802107202] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Juan B, Ferragut V, Guamis B, Trujillo AJ. The effect of high-pressure treatment at 300MPa on ripening of ewes’ milk cheese. Int Dairy J 2008. [DOI: 10.1016/j.idairyj.2007.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Ávila M, Calzada J, Garde S, Nuñez M. Effect of a bacteriocin-producing Lactococcus lactis strain and high-pressure treatment on the esterase activity and free fatty acids in Hispánico cheese. Int Dairy J 2007. [DOI: 10.1016/j.idairyj.2007.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Arqués JL, Garde S, Fernández-García E, Gaya P, Nuñez M. Volatile Compounds, Odor, and Aroma of La Serena Cheese High-Pressure Treated at Two Different Stages of Ripening. J Dairy Sci 2007; 90:3627-39. [PMID: 17638973 DOI: 10.3168/jds.2007-0185] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
La Serena cheeses made from raw Merino ewe's milk were high-pressure (HP) treated at 300 or 400 MPa for 10 min on d 2 or 50 after manufacture. Ripening of HP-treated and control cheeses proceeded until d 60 at 8 degrees C. Volatile compounds were determined throughout ripening, and analysis of related sensory characteristics was carried out on ripe cheeses. High-pressure treatments on d 2 enhanced the formation of branched-chain aldehydes and of 2-alcohols except 2-butanol, but retarded that of n-aldehydes, 2-methyl ketones, dihydroxy-ketones, n-alcohols, unsaturated alcohols, ethyl esters, propyl esters, and branched-chain esters. Differences between HP-treated and control cheeses in the levels of some volatile compounds tended to disappear during ripening. The odor of ripe cheeses was scarcely affected by HP treatments on d 2, but aroma quality and intensity scores were lowered in comparison with control cheese of the same age. On the other hand, HP treatments on d 50 did not influence either the volatile compound profile or the sensory characteristics of 60-d-old cheese.
Collapse
Affiliation(s)
- J L Arqués
- Departamento de Tecnología de Alimentos Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, 28040 Spain
| | | | | | | | | |
Collapse
|
22
|
Juan B, Ferragut V, Buffa M, Guamis B, Trujillo AJ. Effects of High Pressure on Proteolytic Enzymes in Cheese: Relationship with the Proteolysis of Ewe Milk Cheese. J Dairy Sci 2007; 90:2113-25. [PMID: 17430908 DOI: 10.3168/jds.2006-791] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ewe milk cheeses were submitted to 200, 300, 400, and 500 MPa (2P to 5P) at 2 stages of ripening (after 1 and 15 d of manufacturing; P1 and P15). The high-pressure-treated cheeses showed a more important hydrolysis of beta-casein than control and 2P1 cheeses. Degradation of alpha(s1)-casein was more important in 3P1, 4P1, and P15 cheeses than control and 2P1 cheeses. The 5P1 cheeses exhibited the lowest degradation of alpha(s)-caseins, probably as a consequence of the inactivation of residual chymosin. Treatment at 300 MPa applied on the first day of ripening increased the peptidolytic activity, accelerating the secondary proteolysis of cheeses. The 3P1 cheeses had extensive peptide degradation and the highest content of free amino acids. Treatments at 500 MPa, however, decelerated the proteolysis of cheeses due to a reduction of microbial population and inactivation of enzymes.
Collapse
Affiliation(s)
- B Juan
- Centre Especial de Recerca Planta de Tecnologia dels Aliments, CeRTA, XiT, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | |
Collapse
|