1
|
Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications. Stem Cell Reports 2016; 7:557-570. [PMID: 27569063 PMCID: PMC5032182 DOI: 10.1016/j.stemcr.2016.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022] Open
Abstract
Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC) lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain. Human induced neural stem cell (hiNSC) lines can be passaged and cryopreserved Rapid and robust media-independent differentiation in as few as 4 days hiNSCs contribute to both central and peripheral nervous systems in vivo Demonstration of utility in innervated muscle co-culture and 3D human brain model
Collapse
|
2
|
Bjørnstad S, Austdal LPE, Roald B, Glover JC, Paulsen RE. Cracking the Egg: Potential of the Developing Chicken as a Model System for Nonclinical Safety Studies of Pharmaceuticals. J Pharmacol Exp Ther 2015; 355:386-96. [PMID: 26432906 DOI: 10.1124/jpet.115.227025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/01/2015] [Indexed: 03/08/2025] Open
Abstract
The advance of perinatal medicine has improved the survival of extremely premature babies, thereby creating a new and heterogeneous patient group with limited information on appropriate treatment regimens. The developing fetus and neonate have traditionally been ignored populations with regard to safety studies of drugs, making medication during pregnancy and in newborns a significant safety concern. Recent initiatives of the Food and Drug Administration and European Medicines Agency have been passed with the objective of expanding the safe pharmacological treatment options in these patients. There is a consensus that neonates should be included in clinical trials. Prior to these trials, drug leads are tested in toxicity and pharmacology studies, as governed by several guidelines summarized in the multidisciplinary International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use M3 (R2). Pharmacology studies must be performed in the major organ systems: cardiovascular, respiratory, and central nervous system. The chicken embryo and fetus have features that make the chicken a convenient animal model for nonclinical safety studies in which effects on all of these organ systems can be tested. The developing chicken is inexpensive, accessible, and nutritionally self-sufficient with a short incubation time and is ideal for drug-screening purposes. Other high-throughput models have been implemented. However, many of these have limitations, including difficulty in mimicking natural tissue architecture and function (human stem cells) and obvious differences from mammals regarding the respiratory organ system and certain aspects of central nervous system development (Caenorhabditis elegans, zebrafish).This minireview outlines the potential and limitations of the developing chicken as an additional model for the early exploratory phase of development of new pharmaceuticals.
Collapse
Affiliation(s)
- Sigrid Bjørnstad
- Department of Pathology, Oslo University Hospital HF, Ullevål, Oslo, Norway (S.B., B.R.); Institute of Clinical Medicine (B.R.), Department of Pharmaceutical Biosciences, School of Pharmacy (L.P.E.A., R.E.P.), and NDEVOR, Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (J.C.G.), University of Oslo, Oslo, Norway; and Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway (J.C.G.)
| | - Lars Peter Engeset Austdal
- Department of Pathology, Oslo University Hospital HF, Ullevål, Oslo, Norway (S.B., B.R.); Institute of Clinical Medicine (B.R.), Department of Pharmaceutical Biosciences, School of Pharmacy (L.P.E.A., R.E.P.), and NDEVOR, Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (J.C.G.), University of Oslo, Oslo, Norway; and Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway (J.C.G.)
| | - Borghild Roald
- Department of Pathology, Oslo University Hospital HF, Ullevål, Oslo, Norway (S.B., B.R.); Institute of Clinical Medicine (B.R.), Department of Pharmaceutical Biosciences, School of Pharmacy (L.P.E.A., R.E.P.), and NDEVOR, Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (J.C.G.), University of Oslo, Oslo, Norway; and Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway (J.C.G.)
| | - Joel Clinton Glover
- Department of Pathology, Oslo University Hospital HF, Ullevål, Oslo, Norway (S.B., B.R.); Institute of Clinical Medicine (B.R.), Department of Pharmaceutical Biosciences, School of Pharmacy (L.P.E.A., R.E.P.), and NDEVOR, Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (J.C.G.), University of Oslo, Oslo, Norway; and Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway (J.C.G.)
| | - Ragnhild Elisabeth Paulsen
- Department of Pathology, Oslo University Hospital HF, Ullevål, Oslo, Norway (S.B., B.R.); Institute of Clinical Medicine (B.R.), Department of Pharmaceutical Biosciences, School of Pharmacy (L.P.E.A., R.E.P.), and NDEVOR, Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (J.C.G.), University of Oslo, Oslo, Norway; and Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway (J.C.G.)
| |
Collapse
|
4
|
Grimm WD, Dannan A, Giesenhagen B, Schau I, Varga G, Vukovic MA, Sirak SV. Translational Research: Palatal-derived Ecto-mesenchymal Stem Cells from Human Palate: A New Hope for Alveolar Bone and Cranio-Facial Bone Reconstruction. Int J Stem Cells 2014; 7:23-9. [PMID: 24921024 PMCID: PMC4049728 DOI: 10.15283/ijsc.2014.7.1.23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 12/13/2022] Open
Abstract
The management of facial defects has rapidly changed in the last decade. Functional and esthetic requirements have steadily increased along with the refinements of surgery. In the case of advanced atrophy or jaw defects, extensive horizontal and vertical bone augmentation is often unavoidable to enable patients to be fitted with implants. Loss of vertical alveolar bone height is the most common cause for a non primary stability of dental implants in adults. At present, there is no ideal therapeutic approach to cure loss of vertical alveolar bone height and achieve optimal pre-implantological bone regeneration before dental implant placement. Recently, it has been found that specific populations of stem cells and/or progenitor cells could be isolated from different dental resources, namely the dental follicle, the dental pulp and the periodontal ligament. Our research group has cultured palatal-derived stem cells (paldSCs) as dentospheres and further differentiated into various cells of the neuronal and osteogenic lineage, thereby demonstrating their stem cell state. In this publication will be shown whether paldSCs could be differentiated into the osteogenic lineage and, if so, whether these cells are able to regenerate alveolar bone tissue in vivo in an athymic rat model. Furthermore, using these data we have started a proof of principle clinical- and histological controlled study using stem cell-rich palatal tissues for improving the vertical alveolar bone augmentation in critical size defects. The initial results of the study demonstrate the feasibility of using stem cell-mediated tissue engineering to treat alveolar bone defects in humans.
Collapse
Affiliation(s)
| | - Aous Dannan
- Periodontology, Syrian Private University - Damascus, Syrian Arab Republic
| | | | - Ingmar Schau
- Implantology, Implantology Center Detmold, Germany
| | - Gabor Varga
- Cell Biology, SE University Budapest, Hungary
| | | | | |
Collapse
|
5
|
Chick stem cells: current progress and future prospects. Stem Cell Res 2013; 11:1378-92. [PMID: 24103496 PMCID: PMC3989061 DOI: 10.1016/j.scr.2013.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 12/15/2022] Open
Abstract
Chick embryonic stem cells (cESCs) can be derived from cells obtained from stage X embryos (blastoderm stage); these have the ability to contribute to all somatic lineages in chimaeras, but not to the germ line. However, lines of stem cells that are able to contribute to the germ line can be established from chick primordial germ cells (cPGCs) and embryonic germ cells (cEGCs). This review provides information on avian stem cells, emphasizing different sources of cells and current methods for derivation and culture of pluripotent cells from chick embryos. We also review technologies for isolation and derivation of chicken germ cells and the production of transgenic birds. Chick embryonic stem cells (cESCs) can be derived from a variety of sources. cESCs can contribute to all somatic cell types but not to the germ line. germ cells can be isolated from early embryos, embryonic blood and gonads. germ cells can establish self-renewing lines and contribute to the germline.
Collapse
|