1
|
Smerdi D, Moutafi M, Kotsantis I, Stavrinou LC, Psyrri A. Overcoming Resistance to Temozolomide in Glioblastoma: A Scoping Review of Preclinical and Clinical Data. Life (Basel) 2024; 14:673. [PMID: 38929657 PMCID: PMC11204771 DOI: 10.3390/life14060673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GB) is the most common and most aggressive primary brain tumor in adults, with an overall survival almost 14.6 months. Optimal resection followed by combined temozolomide chemotherapy and radiotherapy, also known as Stupp protocol, remains the standard of treatment; nevertheless, resistance to temozolomide, which can be obtained throughout many molecular pathways, is still an unsurpassed obstacle. Several factors influence the efficacy of temozolomide, including the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. The blood-brain barrier, which serves as both a physical and biochemical obstacle, the tumor microenvironment's pro-cancerogenic and immunosuppressive nature, and tumor-specific characteristics such as volume and antigen expression, are the subject of ongoing investigation. In this review, preclinical and clinical data about temozolomide resistance acquisition and possible ways to overcome chemoresistance, or to treat gliomas without restoration of chemosensitinity, are evaluated and presented. The objective is to offer a thorough examination of the clinically significant molecular mechanisms and their intricate interrelationships, with the aim of enhancing understanding to combat resistance to TMZ more effectively.
Collapse
Affiliation(s)
- Dimitra Smerdi
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Myrto Moutafi
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioannis Kotsantis
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Lampis C. Stavrinou
- Department of Neurosurgery and Neurotraumatology, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
2
|
Molecular mechanisms and therapeutic relevance of gasdermin E in human diseases. Cell Signal 2021; 90:110189. [PMID: 34774988 DOI: 10.1016/j.cellsig.2021.110189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023]
Abstract
Gasdermin E (GSDME) is one of the main members of the GSDM family and is originally involved in hereditary hearing loss. Recent studies have reported that GSDME expression is epigenetically silenced by methylation in several common tumours, thereby enhancing tumour proliferation and metastasis. GSDME is also downregulated in cancer tissues compared with normal tissues, which suggests that GSDME can be considered a tumour suppressor. Furthermore, GSDME is the effector protein of caspase-3 and granzyme B in pyroptosis, and it plays a significant role in innate immunity, tissue damage, cancer, and hearing loss, thus revealing potential novel therapeutic avenues. A great deal of evidence reveals that GSDME can be implemented as a biomarker in cancer diagnosis and monitoring, chemotherapy, immunotherapy, and chemoresistance. Based on the current knowledge of GSDME, this review is focussed on its mechanism of action and the most recent advances in its role in cancer and normal physiology.
Collapse
|
3
|
Tetraarsenic oxide affects non-coding RNA transcriptome through deregulating polycomb complexes in MCF7 cells. Adv Biol Regul 2021; 80:100809. [PMID: 33932728 DOI: 10.1016/j.jbior.2021.100809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
Non-coding RNAs (ncRNAs) play important and diverse roles in mammalian cell biology and pathology. Although the functions of an increasing number of ncRNAs have been identified, the mechanisms underlying ncRNA gene expression remain elusive and are incompletely understood. Here, we investigated ncRNA gene expression in Michigan cancer foundation 7 (MCF7), a malignant breast cancer cell line, on treatment of tetraarsenic oxide (TAO), a potential anti-cancer drug. Our genomic analyses found that TAO up- or down-regulated ncRNA genes genome-wide. A subset of identified ncRNAs with critical biological and clinical functions were validated by real-time quantitative polymerase chain reaction. Intriguingly, these TAO-regulated genes included CDKN2B-AS, HOXA11-AS, SHH, and DUSP5 that are known to interact with or be targeted by polycomb repressive complexes (PRCs). In addition, the PRC subunits were enriched in these TAO-regulated ncRNA genes and TAO treatment deregulated the expression of PRC subunits. Strikingly, TAO decreased the cellular and gene-specific levels of EZH2 expression and H3K27me3. In particular, TAO reduced EZH2 and H3K27me3 and increased transcription at MALAT1 gene. Inhibiting the catalytic activity of EZH2 using GSK343 increased representative TAO-inducible ncRNA genes. Together, our findings suggest that the expression of a subset of ncRNA genes is regulated by PRC2 and that TAO could be a potent epigenetic regulator through PRCs to modulate the ncRNA gene expression in MCF7 cells.
Collapse
|
4
|
Arsenic hexoxide has differential effects on cell proliferation and genome-wide gene expression in human primary mammary epithelial and MCF7 cells. Sci Rep 2021; 11:3761. [PMID: 33580144 PMCID: PMC7881197 DOI: 10.1038/s41598-021-82551-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Arsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer effects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA-sequencing and bioinformatics analyses, differentially expressed genes in significantly affected biological pathways in these cell types were validated by real-time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly differential effects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without affecting the growth of HUMEC in a dose-dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are significantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6-treated MCF7 cells. Together, we provide the first evidence of differential effects of AS6 on normal and cancerous breast epithelial cells, suggesting that AS6 at moderate concentrations induces cell cycle arrest and apoptosis through modulating genome-wide gene expression, leading to compromised DNA repair and increased genome instability selectively in human breast cancer cells.
Collapse
|
5
|
An H, Heo JS, Kim P, Lian Z, Lee S, Park J, Hong E, Pang K, Park Y, Ooshima A, Lee J, Son M, Park H, Wu Z, Park KS, Kim SJ, Bae I, Yang KM. Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis 2021; 12:159. [PMID: 33558527 PMCID: PMC7870965 DOI: 10.1038/s41419-021-03454-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/21/2023]
Abstract
Although tetraarsenic hexoxide is known to exert an anti-tumor effect by inducing apoptosis in various cancer cells, its effect on other forms of regulated cell death remains unclear. Here, we show that tetraarsenic hexoxide induces the pyroptotic cell death through activation of mitochondrial reactive oxygen species (ROS)-mediated caspase-3/gasdermin E (GSDME) pathway, thereby suppressing tumor growth and metastasis of triple-negative breast cancer (TNBC) cells. Interestingly, tetraarsenic hexoxide-treated TNBC cells exhibited specific pyroptotic characteristics, including cell swelling, balloon-like bubbling, and LDH releases through pore formation in the plasma membrane, eventually suppressing tumor formation and lung metastasis of TNBC cells. Mechanistically, tetraarsenic hexoxide markedly enhanced the production of mitochondrial ROS by inhibiting phosphorylation of mitochondrial STAT3, subsequently inducing caspase-3-dependent cleavage of GSDME, which consequently promoted pyroptotic cell death in TNBC cells. Collectively, our findings highlight tetraarsenic hexoxide-induced pyroptosis as a new therapeutic strategy that may inhibit cancer progression of TNBC cells.
Collapse
Affiliation(s)
- Haein An
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon,, 16419, Gyeonggi-do, Republic of Korea
| | - Jin Sun Heo
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Pyunggang Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Gyeonggi-do, Republic of Korea
| | - Zenglin Lian
- Beijing Yichuang Biotechnology Industry Research Institute, Beijing, China
| | - Siyoung Lee
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jinah Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Eunji Hong
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon,, 16419, Gyeonggi-do, Republic of Korea
| | - Kyoungwha Pang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Yuna Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jihee Lee
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Gyeonggi-do, Republic of Korea
| | - Minjung Son
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Hyeyeon Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon,, 16419, Gyeonggi-do, Republic of Korea
| | - Zhaoyan Wu
- Chemas Co., Ltd., Seoul, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Gyeonggi-do, Republic of Korea
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Medpacto Inc., Seoul, Republic of Korea
| | - Illju Bae
- Chemas Co., Ltd., Seoul, Republic of Korea.
| | - Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea.
- Medpacto Inc., Seoul, Republic of Korea.
| |
Collapse
|
6
|
Xiong X, Li Y, Liu L, Qi K, Zhang C, Chen Y, Fang J. Arsenic trioxide induces cell cycle arrest and affects Trk receptor expression in human neuroblastoma SK-N-SH cells. Biol Res 2018; 51:18. [PMID: 29898774 PMCID: PMC5998579 DOI: 10.1186/s40659-018-0167-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/06/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Arsenic trioxide (As2O3), a drug that has been used in China for approximately two thousand years, induces cell death in a variety of cancer cell types, including neuroblastoma (NB). The tyrosine kinase receptor (Trk) family comprises three members, namely TrkA, TrkB and TrkC. Various studies have confirmed that TrkA and TrkC expression is associated with a good prognosis in NB, while TrkB overexpression can lead to tumor cell growth and invasive metastasis. Previous studies have shown that As2O3 can inhibit the growth and proliferation of a human NB cell line and can also affect the N-Myc mRNA expression. It remains unclear whether As2O3 regulates Trks for the purposes of treating NB. METHODS The aim of the present study was to investigate the effect of As2O3 on Trk expression in NB cell lines and its potential therapeutic efficacy. SK-N-SH cells were grown with increasing doses of As2O3 at different time points. We cultured SK-N-SH cells, which were treated with increasing doses of As2O3 at different time points. Trk expression in the NB samples was quantified by immunohistochemistry, and the cell cycle was analyzed by flow cytometry. TrkA, TrkB and TrkC mRNA expression was evaluated by real-time PCR analysis. RESULTS Immunohistochemical and real-time PCR analyses indicated that TrkA and TrkC were over-expressed in NB, and specifically during stages 1, 2 and 4S of the disease progression. TrkB expression was increased in stage 3 and 4 NB. As2O3 significantly arrested SK-N-SH cells in the G2/M phase. In addition, TrkA, TrkB and TrkC expression levels were significantly upregulated by higher concentrations of As2O3 treatment, notably in the 48-h treatment period. Our findings suggested that to achieve the maximum effect and appropriate regulation of Trk expression in NB stages 1, 2 and 4S, As2O3 treatment should be at relatively higher concentrations for longer delivery times;however, for NB stages 3 and 4, an appropriate concentration and infusion time for As2O3 must be carefully determined. CONCLUSION The present findings suggested that As2O3 induced Trk expression in SK-N-SH cells to varying degrees and may be a promising adjuvant to current treatments for NB due to its apoptotic effects.
Collapse
Affiliation(s)
- Xilin Xiong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Ling Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Department of Pediatric Hematology/Oncology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524000 Guangdong China
| | - Kai Qi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Chi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yueqin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Department of Life Sciences, Sun Yat-Sen University, Guangzhou, 510120 Guangdong China
| | - Jianpei Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| |
Collapse
|
7
|
Inhibition of STAT3/VEGF/CDK2 axis signaling is critically involved in the antiangiogenic and apoptotic effects of arsenic herbal mixture PROS in non-small lung cancer cells. Oncotarget 2017; 8:101771-101783. [PMID: 29254203 PMCID: PMC5731913 DOI: 10.18632/oncotarget.21973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022] Open
Abstract
Despite the antitumor effects of asrsenic trioxide (As2O3), tetraarsenic hexoxide (As4O6 or PR) and tetraarsenic tetrasulfide (As4S4) in several cancers, their adverse poisoning, toxicity and resistance are still hot issues for effective cancer therapy. Here, antitumor mechanism of arsenic herbal mixture PROS including PR and OS (Oldenlandia diffusa and Salvia miltiorrhiza extract) was elucidated in non-small cell lung cancer cells (NSCLCs), since PR alone showed resistant cytotoxicity in NSCLCs compared to other cancers. PROS exerted significant cytotoxicity, induced sub-G1 phase and S phase arrest, increased apoptotic bodies, and attenuated the expression of pro-PARP, Bcl-2, Cyclin E, Cyclin A, CDK2, E2F1, p-Src, p-STAT3, p-ERK, p-AKT, COX-2 and SOCS-1 in A549 and H460 cells along with disrupted binding of STAT3 with CDK2 or VEGF. Notably, PROS inhibited VEGF induced proliferation, migration and tube formation in HUVECs and suppressed angiogenesis in chorioallantoic membrane (CAM) assay via reduced phosphorylation of VEGFR2, Src and STAT3. Consistently, PROS reduced the growth of H460 cells implanted in BALB/c athymic nude mice via inhibition of STAT3, and VEGF and activation of caspase 3. Overall, these findings suggest that PROS exerts antiangiogenic and apoptotic effects via inhibition of STAT3/ VEGF/ CDK2 axis signaling as a potent anticancer agent for lung cancer treatment.
Collapse
|
8
|
Qu L, Gao Y, Sun H, Wang H, Liu X, Sun D. Role of PTEN-Akt-CREB Signaling Pathway in Nervous System impairment of Rats with Chronic Arsenite Exposure. Biol Trace Elem Res 2016; 170:366-72. [PMID: 26296331 DOI: 10.1007/s12011-015-0478-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022]
Abstract
The nervous system is a target of arsenic toxicity. Phosphatase and tensin homologue deleted on chromosome 10/protein kinase B/cAMP-response element binding protein (PTEN/Akt/CREB) signaling pathway has been reported to be involved in maintaining normal function of the nervous system, modulating growth and proliferation of neurocyte, regulating neuron synaptic plasticity, and long-term memory. And many studies have demonstrated that expressions of PTEN, Akt, and CREB protein were influenced by arsenic, but it is not clear whether this signaling pathway is involved in the nervous system impairment of rats induced by chronic arsenite exposure, and we have addressed this in this study. Eighty male Sprague-Dawley (SD) rats were randomly divided into eight groups (n = 10 each), four groups exposed to NaAsO2 (0, 5, 10, and 50 mg/L NaAsO2 in drinking water) for 3 months, the other four groups exposed to NaAsO2 (0, 5, 10, 50 mg/L NaAsO2 in drinking water) for 6 months. Hematoxylin and eosin (HE) staining showed that chronic arsenite exposure induced varying degrees of damage in cerebral neurons. And arsenite exposure increased arsenic amount in serum and brain samples in a dose- and time-dependent manner. Moreover, the protein levels of PTEN and Akt in brain tissue were not significantly changed compared with the control group, but p-Akt, CREB, and p-CREB were all significantly downregulated in arsenite-exposed groups with a dose-dependent pattern. These results suggested that chronic arsenite exposure negatively regulated the PTEN-Akt-CREB signaling pathway, and dysfunction of the signaling pathway might be one of the mechanisms of nervous system impairment induced by chronic arsenite exposure.
Collapse
Affiliation(s)
- Lisha Qu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Hongna Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Hui Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
| |
Collapse
|
9
|
Effect of siRNA on Wisp-1 gene expression, proliferation, migration and adhesion of mouse hepatocellular carcinoma cells. ASIAN PAC J TROP MED 2015; 8:821-8. [DOI: 10.1016/j.apjtm.2015.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/20/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022] Open
|
10
|
Mechanisms regulating glioma invasion. Cancer Lett 2015; 362:1-7. [PMID: 25796440 DOI: 10.1016/j.canlet.2015.03.015] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/10/2023]
Abstract
Glioblastoma (GBM) is the most aggressive, deadliest, and most common brain malignancy in adults. Despite the advances made in surgical techniques, radiotherapy and chemotherapy, the median survival for GBM patients has remained at a mere 14 months. GBM poses several unique challenges to currently available treatments for the disease. For example, GBM cells have the propensity to aggressively infiltrate/invade into the normal brain tissues and along the vascular tracks, which prevents complete resection of all malignant cells and limits the effect of localized radiotherapy while sparing normal tissue. Although anti-angiogenic treatment exerts anti-edematic effect in GBM, unfortunately, tumors progress with acquired increased invasiveness. Therefore, it is an important task to gain a deeper understanding of the intrinsic and post-treatment invasive phenotypes of GBM in hopes that the gained knowledge would lead to novel GBM treatments that are more effective and less toxic. This review will give an overview of some of the signaling pathways that have been shown to positively and negatively regulate GBM invasion, including, the PI3K/Akt, Wnt, sonic hedgehog-GLI1, and microRNAs. The review will also discuss several approaches to cancer therapies potentially altering GBM invasiveness.
Collapse
|