1
|
Pesonen EK, Lammi A, Qian C, Von und Zu Fraunberg M, Korhonen TK, Tetri S. Decompressive craniectomy in subarachnoid hemorrhage compared to other etiologies: An institutional experience of 11 years. BRAIN & SPINE 2025; 5:104203. [PMID: 40007802 PMCID: PMC11850783 DOI: 10.1016/j.bas.2025.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Introduction Decompressive craniectomy (DC) is a last-tier procedure to lower intracranial pressure in otherwise fatal brain injuries. DC significantly reduces mortality following traumatic brain injury (TBI) and ischemic stroke, but benefits in subarachnoid hemorrhage (SAH) are less clear. Research question We compared the mortality and functional outcomes in patients who underwent DC after SAH with those who underwent DC following TBI or ischemic stroke. Materials and methods All DC procedures performed in the Oulu University Hospital between January 2009 and December 2019 were retrospectively identified. Mortality and functional outcomes were assessed during a median follow-up of 20.7 months. Extended Glasgow Outcome Scale scores ≥5 were considered favorable. Results One hundred twenty-four DCs were conducted to patients aged a median of 40 years (SD 16), of whom 88 (71%) were male. Fifty-eight (47%) DCs were due to TBI and 66 (53%) due to stroke. Of the strokes, 41 (62%) were ischemic and 21 (32%) SAH.In multivariate models, the rates of unfavorable outcome were 48% in TBI, 78% in ischemic stroke (OR 2.73, 95% CI 0.70-10.64) and 86% in SAH (OR 3.15, 95%CI 0.67-14.77). Mortality rates were 22% in TBI, 17% in ischemic stroke (OR 0.50, 95%CI 0.11-2.31) and 33% in SAH (OR 0.97, 95%CI 0.24-3.99). Discussion and conclusion Favorable outcomes were more common in TBI compared to stroke in univariate but not in multivariate analysis. There was no statistically significant difference in the rates of favorable outcomes between SAH and ischemic stroke.
Collapse
Affiliation(s)
| | | | - Cheng Qian
- Department of Neurosurgery, Oulu University Hospital & University of Oulu, Kajaanintie 52, 90029, Oulu, Finland
| | - Mikael Von und Zu Fraunberg
- Department of Neurosurgery, Oulu University Hospital & University of Oulu, Kajaanintie 52, 90029, Oulu, Finland
| | | | | |
Collapse
|
2
|
Tas J, Czosnyka M, van der Horst ICC, Park S, van Heugten C, Sekhon M, Robba C, Menon DK, Zeiler FA, Aries MJH. Cerebral multimodality monitoring in adult neurocritical care patients with acute brain injury: A narrative review. Front Physiol 2022; 13:1071161. [PMID: 36531179 PMCID: PMC9751622 DOI: 10.3389/fphys.2022.1071161] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 07/27/2023] Open
Abstract
Cerebral multimodality monitoring (MMM) is, even with a general lack of Class I evidence, increasingly recognized as a tool to support clinical decision-making in the neuroscience intensive care unit (NICU). However, literature and guidelines have focused on unimodal signals in a specific form of acute brain injury. Integrating unimodal signals in multiple signal monitoring is the next step for clinical studies and patient care. As such, we aimed to investigate the recent application of MMM in studies of adult patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), acute ischemic stroke (AIS), and hypoxic ischemic brain injury following cardiac arrest (HIBI). We identified continuous or daily updated monitoring modalities and summarized the monitoring setting, study setting, and clinical characteristics. In addition, we discussed clinical outcome in intervention studies. We identified 112 MMM studies, including 11 modalities, over the last 7 years (2015-2022). Fifty-eight studies (52%) applied only two modalities. Most frequently combined were ICP monitoring (92 studies (82%)) together with PbtO2 (63 studies (56%). Most studies included patients with TBI (59 studies) or SAH (53 studies). The enrollment period of 34 studies (30%) took more than 5 years, whereas the median sample size was only 36 patients (q1- q3, 20-74). We classified studies as either observational (68 studies) or interventional (44 studies). The interventions were subclassified as systemic (24 studies), cerebral (10 studies), and interventions guided by MMM (11 studies). We identified 20 different systemic or cerebral interventions. Nine (9/11, 82%) of the MMM-guided studies included clinical outcome as an endpoint. In 78% (7/9) of these MMM-guided intervention studies, a significant improvement in outcome was demonstrated in favor of interventions guided by MMM. Clinical outcome may be improved with interventions guided by MMM. This strengthens the belief in this application, but further interdisciplinary collaborations are needed to overcome the heterogeneity, as illustrated in the present review. Future research should focus on increasing sample sizes, improved data collection, refining definitions of secondary injuries, and standardized interventions. Only then can we proceed with complex outcome studies with MMM-guided treatment.
Collapse
Affiliation(s)
- Jeanette Tas
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Marek Czosnyka
- Brain Physics Laboratory, Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - Iwan C. C. van der Horst
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, Netherlands
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY, United States
| | - Caroline van Heugten
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico Santino IRCCS for Oncology and Neuroscience, Dipartimento di Scienze Chirurgiche Diagnostiche Integrate, University of Genova, Genova, Italy
| | - David K. Menon
- University Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Frederick A. Zeiler
- University Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marcel J. H. Aries
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
3
|
El-Swaify ST, Kamel M, Ali SH, Bahaa B, Refaat MA, Amir A, Abdelrazek A, Beshay PW, Basha AKMM. Initial neurocritical care of severe traumatic brain injury: New paradigms and old challenges. Surg Neurol Int 2022; 13:431. [DOI: 10.25259/sni_609_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022] Open
Abstract
Background:
Early neurocritical care aims to ameliorate secondary traumatic brain injury (TBI) and improve neural salvage. Increased engagement of neurosurgeons in neurocritical care is warranted as daily briefings between the intensivist and the neurosurgeon are considered a quality indicator for TBI care. Hence, neurosurgeons should be aware of the latest evidence in the neurocritical care of severe TBI (sTBI).
Methods:
We conducted a narrative literature review of bibliographic databases (PubMed and Scopus) to examine recent research of sTBI.
Results:
This review has several take-away messages. The concept of critical neuroworsening and its possible causes is discussed. Static thresholds of intracranial pressure (ICP) and cerebral perfusion pressure may not be optimal for all patients. The use of dynamic cerebrovascular reactivity indices such as the pressure reactivity index can facilitate individualized treatment decisions. The use of ICP monitoring to tailor treatment of intracranial hypertension (IHT) is not routinely feasible. Different guidelines have been formulated for different scenarios. Accordingly, we propose an integrated algorithm for ICP management in sTBI patients in different resource settings. Although hyperosmolar therapy and decompressive craniectomy are standard treatments for IHT, there is a lack high-quality evidence on how to use them. A discussion of the advantages and disadvantages of invasive ICP monitoring is included in the study. Addition of beta-blocker, anti-seizure, and anticoagulant medications to standardized management protocols (SMPs) should be considered with careful patient selection.
Conclusion:
Despite consolidated research efforts in the refinement of SMPs, there are still many unanswered questions and novel research opportunities for sTBI care.
Collapse
Affiliation(s)
- Seif Tarek El-Swaify
- Department of Neurosurgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Menna Kamel
- School of Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sara Hassan Ali
- School of Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Bassem Bahaa
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Abdelrahman Amir
- School of Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Pavly Wagih Beshay
- School of Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
4
|
Matin N, Sarhadi K, Crooks CP, Lele AV, Srinivasan V, Johnson NJ, Robba C, Town JA, Wahlster S. Brain-Lung Crosstalk: Management of Concomitant Severe Acute Brain Injury and Acute Respiratory Distress Syndrome. Curr Treat Options Neurol 2022; 24:383-408. [PMID: 35965956 PMCID: PMC9363869 DOI: 10.1007/s11940-022-00726-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
Purpose of Review To summarize pathophysiology, key conflicts, and therapeutic approaches in managing concomitant severe acute brain injury (SABI) and acute respiratory distress syndrome (ARDS). Recent Findings ARDS is common in SABI and independently associated with worse outcomes in all SABI subtypes. Most landmark ARDS trials excluded patients with SABI, and evidence to guide decisions is limited in this population. Potential areas of conflict in the management of patients with both SABI and ARDS are (1) risk of intracranial pressure (ICP) elevation with high levels of positive end-expiratory pressure (PEEP), permissive hypercapnia due to lung protective ventilation (LPV), or prone ventilation; (2) balancing a conservative fluid management strategy with ensuring adequate cerebral perfusion, particularly in patients with symptomatic vasospasm or impaired cerebrovascular blood flow; and (3) uncertainty about the benefit and harm of corticosteroids in this population, with a mortality benefit in ARDS, increased mortality shown in TBI, and conflicting data in other SABI subtypes. Also, the widely adapted partial pressure of oxygen (PaO2) target of > 55 mmHg for ARDS may exacerbate secondary brain injury, and recent guidelines recommend higher goals of 80-120 mmHg in SABI. Distinct pathophysiology and trajectories among different SABI subtypes need to be considered. Summary The management of SABI with ARDS is highly complex, and conventional ARDS management strategies may result in increased ICP and decreased cerebral perfusion. A crucial aspect of concurrent management is to recognize the risk of secondary brain injury in the individual patient, monitor with vigilance, and adjust management during critical time windows. The care of these patients requires meticulous attention to oxygenation and ventilation, hemodynamics, temperature management, and the neurological exam. LPV and prone ventilation should be utilized, and supplemented with invasive ICP monitoring if there is concern for cerebral edema and increased ICP. PEEP titration should be deliberate, involving measures of hemodynamic, pulmonary, and brain physiology. Serial volume status assessments should be performed in SABI and ARDS, and fluid management should be individualized based on measures of brain perfusion, the neurological exam, and cardiopulmonary status. More research is needed to define risks and benefits in corticosteroids in this population.
Collapse
Affiliation(s)
- Nassim Matin
- Department of Neurology, University of Washington, Seattle, WA USA
| | - Kasra Sarhadi
- Department of Neurology, University of Washington, Seattle, WA USA
| | | | - Abhijit V. Lele
- Department of Anesthesiology, University of Washington, Seattle, WA USA
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| | - Vasisht Srinivasan
- Department of Emergency Medicine, University of Washington, Seattle, WA USA
| | - Nicholas J. Johnson
- Department of Emergency Medicine, University of Washington, Seattle, WA USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA USA
| | - Chiara Robba
- Departments of Anesthesia and Intensive Care, Policlinico San Martino IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Genoa, Italy
| | - James A. Town
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA USA
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, WA USA
- Department of Anesthesiology, University of Washington, Seattle, WA USA
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| |
Collapse
|
5
|
Gagnon A, Laroche M, Williamson D, Giroux M, Giguère JF, Bernard F. Incidence and characteristics of cerebral hypoxia after craniectomy in brain-injured patients: a cohort study. J Neurosurg 2021; 135:554-561. [PMID: 33157533 DOI: 10.3171/2020.6.jns20776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/30/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE After craniectomy, although intracranial pressure (ICP) is controlled, episodes of brain hypoxia might still occur. Cerebral hypoxia is an indicator of poor outcome independently of ICP and cerebral perfusion pressure. No study has systematically evaluated the incidence and characteristics of brain hypoxia after craniectomy. The authors' objective was to describe the incidence and characteristics of brain hypoxia after craniectomy. METHODS The authors included 25 consecutive patients who underwent a craniectomy after traumatic brain injury or intracerebral hemorrhage and who were monitored afterward with a brain tissue oxygen pressure monitor. RESULTS The frequency of hypoxic values after surgery was 14.6% despite ICP being controlled. Patients had a mean of 18 ± 23 hypoxic episodes. Endotracheal (ET) secretions (17.4%), low cerebral perfusion pressure (10.3%), and mobilizing the patient (8.6%) were the most common causes identified. Elevated ICP was rarely identified as the cause of hypoxia (4%). No cause of cerebral hypoxia could be determined 31.2% of the time. Effective treatments that were mainly used included sedation/analgesia (20.8%), ET secretion suctioning (15.4%), and increase in fraction of inspired oxygen or positive end-expiratory pressure (14.1%). CONCLUSIONS Cerebral hypoxia is common after craniectomy, despite ICP being controlled. ET secretion and patient mobilization are common causes that are easily treatable and often not identified by standard monitoring. These results suggest that monitoring should be pursued even if ICP is controlled. The authors' findings might provide a hypothesis to explain the poor functional outcome in the recent randomized controlled trials on craniectomy after traumatic brain injury where in which brain tissue oxygen pressure was not measured.
Collapse
Affiliation(s)
- Alexandrine Gagnon
- 1Nursing School, Université de Montréal
- 2Neurosurgical Department, Université de Montréal
- 3Pharmacy Department, Université de Montréal
- 4Medicine Department, Université de Montréal; and
- 5Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Mathieu Laroche
- 2Neurosurgical Department, Université de Montréal
- 3Pharmacy Department, Université de Montréal
- 4Medicine Department, Université de Montréal; and
- 5Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - David Williamson
- 3Pharmacy Department, Université de Montréal
- 4Medicine Department, Université de Montréal; and
- 5Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Marc Giroux
- 2Neurosurgical Department, Université de Montréal
- 3Pharmacy Department, Université de Montréal
- 4Medicine Department, Université de Montréal; and
- 5Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Jean-François Giguère
- 2Neurosurgical Department, Université de Montréal
- 3Pharmacy Department, Université de Montréal
- 4Medicine Department, Université de Montréal; and
- 5Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Francis Bernard
- 4Medicine Department, Université de Montréal; and
- 5Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| |
Collapse
|
6
|
Brasil S, Solla DJF, Nogueira RDC, Jacobsen Teixeira M, Malbouisson LMS, Paiva WS. Intracranial Compliance Assessed by Intracranial Pressure Pulse Waveform. Brain Sci 2021; 11:brainsci11080971. [PMID: 34439590 PMCID: PMC8392489 DOI: 10.3390/brainsci11080971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Morphological alterations in intracranial pressure (ICP) pulse waveform (ICPW) secondary to intracranial hypertension (ICP >20 mmHg) and a reduction in intracranial compliance (ICC) are well known indicators of neurological severity. The exclusive exploration of modifications in ICPW after either the loss of skull integrity or surgical procedures for intracranial hypertension resolution is not a common approach studied. The present study aimed to assess the morphological alterations in ICPW among neurocritical care patients with skull defects and decompressive craniectomy (DC) by comparing the variations in ICPW features according to elevations in mean ICP values. METHODS Patients requiring ICP monitoring because of acute brain injury were included. A continuous record of 10 min-length for the beat-by-beat analysis of ICPW was performed, with ICP elevation produced by means of ultrasound-guided manual internal jugular vein compression at the end of the record. ICPW features (peak amplitude ratio (P2/P1), time interval to pulse peak (TTP) and pulse amplitude) were counterweighed between baseline and compression periods. Results were distributed for three groups: intact skull (exclusive burr hole for ICP monitoring), craniotomy/large fractures (group 2) or DC (group 3). RESULTS 57 patients were analyzed. A total of 21 (36%) presented no skull defects, 21 (36%) belonged to group 2, whereas 15 (26%) had DC. ICP was not significantly different between groups: ±15.11 for intact, 15.33 for group 2 and ±20.81 mmHg for group 3, with ICP-induced elevation also similar between groups (p = 0.56). Significant elevation was observed for the P2/P1 ratio for groups 1 and 2, whereas a reduction was observed in group 3 (elevation of ±0.09 for groups 1 and 2, but a reduction of 0.03 for group 3, p = 0.01), and no significant results were obtained for TTP and pulse amplitudes. CONCLUSION In the present study, intracranial pressure pulse waveform analysis indicated that intracranial compliance was significantly more impaired among decompressive craniectomy patients, although ICPW indicated DC to be protective for further influences of ICP elevations over the brain. The analysis of ICPW seems to be an alternative to real-time ICC assessment.
Collapse
Affiliation(s)
- Sérgio Brasil
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05508-070, Brazil; (D.J.F.S.); (R.d.C.N.); (M.J.T.); (W.S.P.)
- Correspondence:
| | - Davi Jorge Fontoura Solla
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05508-070, Brazil; (D.J.F.S.); (R.d.C.N.); (M.J.T.); (W.S.P.)
| | - Ricardo de Carvalho Nogueira
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05508-070, Brazil; (D.J.F.S.); (R.d.C.N.); (M.J.T.); (W.S.P.)
| | - Manoel Jacobsen Teixeira
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05508-070, Brazil; (D.J.F.S.); (R.d.C.N.); (M.J.T.); (W.S.P.)
| | | | - Wellingson Silva Paiva
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05508-070, Brazil; (D.J.F.S.); (R.d.C.N.); (M.J.T.); (W.S.P.)
| |
Collapse
|
7
|
Endoscopic Surgery Without Decompressive Craniectomy in Large Putaminal Intracerebral Hemorrhage: Assessment of Efficacy and Safety. Neurocrit Care 2021; 32:392-399. [PMID: 31845172 PMCID: PMC7082409 DOI: 10.1007/s12028-019-00880-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Decompressive craniectomy (DC) is performed conventionally for large putaminal intracerebral hemorrhage (ICH). However, DC causes local skull defect and leads to post-surgical cranioplasty. The aim of this study is to investigate the effectiveness and safety of an endoscopic procedure to treat large putaminal ICH without DC. Methods This retrospective study included 112 large putaminal ICH patients who underwent hematoma evacuations with either an endoscopic procedure (group A) or with DC (group B) between January 2009 and June 2017. The efficacy was evaluated by mean modified Rankin Scale (mRS) three months after surgery. Safety was evaluated by mortality rate and postoperative complications. Univariate and multivariate logistic regression analyses were performed to determine the risk factors for clinical outcomes. Results The study included 49 patients in group A and 63 in group B. The mRS scores in both groups were similar after 3 months’ follow-up (p = 0.709). There was no difference in the mortality rate between the two groups (p = 0.538). The rate of complications was lower in group A than that in group B (p = 0.024). Smaller preoperative midline shift (p = 0.008) and absent intraventricular extension (p = 0.044) have contributed significantly to better outcomes. Conclusion Endoscopic hematoma evacuation without DC is safe and effective for patients with large putaminal ICH and deserves further investigation, preferably in a randomized controlled setting.
Collapse
|
8
|
Fu C, Ma K, Li Z, Wang H, Chen T, Zhang D, Wang S, Mu N, Yang C, Zhao L, Gong S, Feng H, Li F. Rapid, label-free detection of cerebral ischemia in rats using hyperspectral imaging. J Neurosci Methods 2019; 329:108466. [PMID: 31628961 DOI: 10.1016/j.jneumeth.2019.108466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Stroke is the third most common cause of disability and the second most common cause of death worldwide. Ischemia, one of the two broad categories of stroke, is characterized by a lack of sufficient amounts of blood in order to supply an adequate amount of oxygen and nutrients. It is important to assess the part of the brain that becomes ischemic and necrotic during neurosurgery or experiments in real time. However, there is currently no effective means to achieve this goal. NEW METHOD We proposed a method based on hyperspectral imaging (HSI) for the real-time detection of a varied range of ischemic brain tissues in vivo or ex vivo and assessed the practical utility of a model of ischemic stroke in rats. RESULTS The results showed that hyperspectral images processed with a ratio of spectral reflectance at 545 and 560 nm (R545/R560) could identify early brain ischemia and accurately show regions of ischemia. COMPARISON WITH EXISTING METHODS We verified the area imaged by HSI using hematoxylin and eosin (HE) and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining methods. This technique could precisely image the ischemic part of the brain in vivo and ex vivo. CONCLUSIONS These results demonstrate the practical utility of HSI for the real-time detection of cerebral ischemia in rats. By providing rapid assessment of brain tissue perfusion, HSI may help doctors recognize ischemic regions quickly and precisely during surgery as well as have great utility in the experimental process.
Collapse
Affiliation(s)
- Chuhua Fu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China; Department of Neurosurgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Kang Ma
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhao Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Haifeng Wang
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan Province, 621900, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Dayong Zhang
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan Province, 621900, China
| | - Shi Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ning Mu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Chuanyan Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lu Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Sheng Gong
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Fei Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Bor-Seng-Shu E, de-Lima-Oliveira M, Nogueira RC, Almeida KJ, Paschoal EHA, Paschoal FM. Decompressive Craniectomy for Traumatic Brain Injury: Postoperative TCD Cerebral Hemodynamic Evaluation. Front Neurol 2019; 10:354. [PMID: 31031689 PMCID: PMC6473100 DOI: 10.3389/fneur.2019.00354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/22/2019] [Indexed: 12/31/2022] Open
Abstract
Background: There are no studies describing the cerebral hemodynamic patterns that can occur in traumatic brain injury (TBI) patients following decompressive craniectomy (DC). Such data have potentially clinical importance for guiding the treatment. The objective of this study was to investigate the postoperative cerebral hemodynamic patterns, using transcranial Doppler (TCD) ultrasonography, in patients who underwent DC. The relationship between the cerebral circulatory patterns and the patients' outcome was also analyzed. Methods: Nineteen TBI patients with uncontrolled brain swelling were prospectively studied. Cerebral blood circulation was evaluated by TCD ultrasonography. Patients and their cerebral hemispheres were categorized based on TCD-hemodynamic patterns. The data were correlated with neurological status, midline shift on CT scan, and Glasgow outcome scale scores at 6 months after injury. Results: Different cerebral hemodynamic patterns were observed. One patient (5.3%) presented with cerebral oligoemia, 4 patients (21%) with cerebral hyperemia, and 3 patients (15.8%) with cerebral vasospasm. One patient (5.3%) had hyperemia in one cerebral hemisphere and vasospasm in the other hemisphere. Ten patients (52.6%) had nonspecific circulatory pattern. Abnormal TCD-circulatory patterns were found in 9 patients (47.4%). There was no association between TCD-cerebral hemodynamic findings and outcome. Conclusion: There is a wide heterogeneity of postoperative cerebral hemodynamic findings among TBI patients who underwent DC, including hemodynamic heterogeneity between their cerebral hemispheres. DC was proved to be effective for the treatment of cerebral oligoemia. Our data support the concept of heterogeneous nature of the pathophysiology of the TBI and suggest that DC as the sole treatment modality is insufficient.
Collapse
Affiliation(s)
- Edson Bor-Seng-Shu
- Laboratory for Neurosonology and Cerebral Hemodynamics, Division of Neurological Surgery, Hospital das Clinicas, São Paulo University Medical School, São Paulo, Brazil
| | - Marcelo de-Lima-Oliveira
- Laboratory for Neurosonology and Cerebral Hemodynamics, Division of Neurological Surgery, Hospital das Clinicas, São Paulo University Medical School, São Paulo, Brazil
| | - Ricardo Carvalho Nogueira
- Laboratory for Neurosonology and Cerebral Hemodynamics, Division of Neurological Surgery, Hospital das Clinicas, São Paulo University Medical School, São Paulo, Brazil
| | - Kelson James Almeida
- Department of Neurology, Federal University of Piauí Medical School, Teresina, Brazil
| | | | - Fernando Mendes Paschoal
- Laboratory for Neurosonology and Cerebral Hemodynamics, Division of Neurological Surgery, Hospital das Clinicas, São Paulo University Medical School, São Paulo, Brazil.,Department of Neurology, Federal University of Pará Medical School, São Paulo, Brazil
| |
Collapse
|
10
|
Regional Cerebral Oxygen Saturation Changes After Decompressive Craniectomy for Malignant Cerebral Venous Thrombosis: A Prospective Cohort Study. J Neurosurg Anesthesiol 2019; 31:241-246. [DOI: 10.1097/ana.0000000000000498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
de Lima Oliveira M, Caldas JR, Teixeira MJ, Bor-Seng-Shu E. Letter to the Editor. PbtO₂ and prognosis after decompressive craniectomy. J Neurosurg 2018; 129:1655-1657. [PMID: 30239319 DOI: 10.3171/2018.6.jns181444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|