1
|
Musmar B, Adeeb N, Abdalrazeq H, Salim HA, Roy JM, Aslan A, Tjoumakaris SI, Ogilvy CS, Baskaya MK, Kondziolka D, Sheehan J, Riina H, Kandregula S, Dmytriw AA, Abushehab A, El Naamani K, Abdelsalam A, Ironside N, Kumbhare D, Gummadi S, Ataoglu C, Essibayi MA, Keles A, Muram S, Sconzo D, Rezai A, Alwakaa O, Tos SM, Mantziaris G, Park MS, Hanalioglu S, Erginoglu U, Pöppe J, Sen RD, Griessenauer CJ, Burkhardt JK, Starke RM, Sekhar LN, Levitt MR, Altschul DJ, Haranhalli N, McAvoy M, Zeineddine HA, Abla AA, Atallah E, Gooch MR, Rosenwasser RH, Stapleton C, Koch M, Srinivasan VM, Chen PR, Blackburn S, Bulsara K, Kim LJ, Choudhri O, Pukenas B, Smith E, Mosimann PJ, Alaraj A, Aziz-Sultan MA, Patel AB, Savardekar A, Notarianni C, Cuellar HH, Lawton M, Guthikonda B, Morcos J, Jabbour P. Comparative outcomes of arteriovenous malformations treatment in eloquent versus non-eloquent brain: A multicenter study with propensity-score weighting. Int J Stroke 2025:17474930251323503. [PMID: 39948730 DOI: 10.1177/17474930251323503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
BACKGROUND Arteriovenous malformations (AVMs) are complex vascular anomalies with a high risk of hemorrhage and neurological deficits, especially when located in eloquent brain regions. The eloquence of an AVM location is a critical factor in the treatment planning, influencing both the risk of complications and long-term functional outcomes. This study aims to compare outcomes between eloquent and non-eloquent AVMs. METHODS This multicenter, retrospective study utilized data from the Multicenter International Study for Treatment of Brain AVMs (MISTA) consortium. Patients with eloquent and non-eloquent AVMs were compared on baseline characteristics, angiographic outcomes, and functional outcomes using the modified Rankin Scale (mRS). Propensity score weighting (IPTW) was applied to adjust for confounding variables. RESULTS The study included 1013 patients, with 498 (49.2%) AVMs located in eloquent regions and 515 (50.8%) in non-eloquent regions. In unadjusted analysis, eloquent AVMs had lower complete obliteration rates (67.6% vs 79.5%, OR: 0.53, 95% CI: 0.39-0.72, p < 0.001) and higher complication rates (24.5% vs 19.0%, OR: 1.38, 95% CI: 1.02-1.86, p = 0.03) compared to non-eloquent AVMs. After IPTW adjustment, eloquent AVMs continued to show significantly higher odds of overall complications (OR: 1.68, 95% CI: 1.12-2.52, p = 0.01) and symptomatic complications (OR: 1.77, 95% CI: 1.12-2.80, p = 0.01). Secondary analysis within the eloquent group indicated that embolization was linked to an elevated risk of complications. Surgery and radiosurgery showed comparable functional outcomes at last follow-up and complications rates with higher complete obliteration rates in surgery. CONCLUSION AVMs in eloquent brain areas present higher risks of complications and lower obliteration rates, emphasizing the need for cautious, individualized treatment planning. Within the eloquent group, embolization increased the risk of complications, while surgery and radiosurgery showed comparable functional outcomes at last follow-up and complication rates with higher complete obliteration rates in surgery. These findings highlight the importance of location in AVM management and support further research focusing on comparing treatment strategies for AVMs in eloquent brain areas.
Collapse
Affiliation(s)
- Basel Musmar
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Nimer Adeeb
- Department of Radiology, Louisiana State University, Shreveport, LA, USA
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, USA
- Department of Neurosurgery, UT Health Sciences Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Hammam Abdalrazeq
- Department of Radiology, Louisiana State University, Shreveport, LA, USA
| | - Hamza Adel Salim
- Department of Radiology, Louisiana State University, Shreveport, LA, USA
| | - Joanna M Roy
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Assala Aslan
- Department of Radiology, Louisiana State University, Shreveport, LA, USA
| | | | - Christopher S Ogilvy
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mustafa K Baskaya
- Department of Neurosurgery, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Douglas Kondziolka
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Howard Riina
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Sandeep Kandregula
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam A Dmytriw
- Neuroendovascular Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kareem El Naamani
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Ahmed Abdelsalam
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Natasha Ironside
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Deepak Kumbhare
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Sanjeev Gummadi
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Cagdas Ataoglu
- Department of Neurosurgery, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Muhammed Amir Essibayi
- Montefiore Einstein Cerebrovascular Research Lab and Department of Neurological Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Abdullah Keles
- Department of Neurosurgery, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Sandeep Muram
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Sconzo
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Arwin Rezai
- Department of Neurosurgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Omar Alwakaa
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Salem M Tos
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Georgios Mantziaris
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Min S Park
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Sahin Hanalioglu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ufuk Erginoglu
- Department of Neurosurgery, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Johannes Pöppe
- Department of Neurosurgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Rajeev D Sen
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Christoph J Griessenauer
- Department of Neurosurgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert M Starke
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laligam N Sekhar
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Michael R Levitt
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - David J Altschul
- Montefiore Einstein Cerebrovascular Research Lab and Department of Neurological Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Neil Haranhalli
- Montefiore Einstein Cerebrovascular Research Lab and Department of Neurological Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Malia McAvoy
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Hussein A Zeineddine
- Department of Neurosurgery, UT Health Sciences Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Adib A Abla
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Elias Atallah
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Michael Reid Gooch
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Robert H Rosenwasser
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Christopher Stapleton
- Neuroendovascular Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew Koch
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng R Chen
- Department of Neurosurgery, UT Health Sciences Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Spiros Blackburn
- Department of Neurosurgery, UT Health Sciences Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Ketan Bulsara
- Department of Neurosurgery, University of Connecticut, Mansfield, CT, USA
| | - Louis J Kim
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Omar Choudhri
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Bryan Pukenas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Smith
- Neurointerventional Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pascal J Mosimann
- Division of Interventional and Diagnostic Neuroradiology, Department of Radiology, University of Toronto and Toronto Western Hospital, Toronto, ON, Canada
| | - Ali Alaraj
- Department of Neurosurgery, University of Illinois Chicago, Chicago, IL, USA
| | - Mohammad A Aziz-Sultan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aman B Patel
- Neuroendovascular Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amey Savardekar
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Christina Notarianni
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Hugo H Cuellar
- Department of Radiology, Louisiana State University, Shreveport, LA, USA
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Michael Lawton
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Jacques Morcos
- Department of Neurosurgery, UT Health Sciences Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Pascal Jabbour
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
2
|
Araceli T, Fischl A, Haj A, Doenitz C, Stoerr EM, Hillberg A, Vogelhuber M, Rosengarth K, Riemenschneider MJ, Hau P, Blazquez R, Pukrop T, Bumes E, Schmidt NO, Proescholdt M. Psycho-oncological burden in patients with brain metastases undergoing neurological surgery. Front Oncol 2024; 14:1463467. [PMID: 39669367 PMCID: PMC11634795 DOI: 10.3389/fonc.2024.1463467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024] Open
Abstract
Purpose The development of brain metastases (BM) can significantly increase the psycho-oncological burden in cancer patients, requiring timely intervention. In addition, this aspect may negatively affect the course of the disease and treatment outcome. However, screening for psycho-oncological burden is often overlooked in clinical routine. Therefore, we analyzed the extent of psycho-oncological distress in a patient population with BM receiving neurosurgical resection and identified clinical characteristics associated with a high need for psycho-oncological intervention. Methods We prospectively screened 353 patients (169 female, 184 male, mean age 61.9 years) scheduled for microsurgical resection of one or more BM. Psycho-oncological screening was performed on the day of admission using the Hornheider screening instrument (HSI) and the distress thermometer (DT). Screening results were correlated with demographic and clinical data. Results Most patients (73.1%) completed the screening questionnaire. Patients who failed to complete the questionnaire presented more frequently with metachronous BM (74.7% vs. 25.3%, p=0.009), were significantly older (p=0.0018), and had a significantly lower KPS score (p=0.0002). Based on the threshold values of the questionnaires, 59.3% of the patients showed a significant psycho-oncological burden requiring immediate intervention. Univariate analysis demonstrated that synchronous BM (p=0.034), tumors in eloquent areas (p=0.001), lower KPS (p=0.031), female gender (p=0.009), and presurgical aphasia (p=0.042) were significantly associated with high psycho-oncological burden. Multivariate analysis showed synchronous BM (p=0.045), female gender (p=0.005), and lower KPS (p=0.028) as independent factors associated with high psycho-oncological burden. Conclusion The majority of patients with BM have a high psycho-oncological burden. Female gender, synchronous BM, and lower KPS are independently associated with a need for psycho-oncological intervention.
Collapse
Affiliation(s)
- Tommaso Araceli
- Department of Neurosurgery, Regensburg University Medical Center, Regensburg, Germany
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
| | - Anna Fischl
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
- Department of Neurology, Regensburg University Medical Center, Regensburg, Germany
| | - Amer Haj
- Department of Neurosurgery, Regensburg University Medical Center, Regensburg, Germany
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
| | - Christian Doenitz
- Department of Neurosurgery, Regensburg University Medical Center, Regensburg, Germany
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
| | - Eva-Maria Stoerr
- Department of Neurosurgery, Regensburg University Medical Center, Regensburg, Germany
| | - Andrea Hillberg
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
- Department of Internal Medicine III, Regensburg University Medical Center, Regensburg, Germany
| | - Martin Vogelhuber
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
- Department of Internal Medicine III, Regensburg University Medical Center, Regensburg, Germany
| | - Katharina Rosengarth
- Department of Neurosurgery, Regensburg University Medical Center, Regensburg, Germany
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
| | - Markus J. Riemenschneider
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
- Department of Neuropathology, Regensburg University Medical Center, Regensburg, Germany
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
- Department of Neurology, Regensburg University Medical Center, Regensburg, Germany
| | - Raquel Blazquez
- Department of Internal Medicine III, Regensburg University Medical Center, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Tobias Pukrop
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
- Department of Internal Medicine III, Regensburg University Medical Center, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Elisabeth Bumes
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
- Department of Neurology, Regensburg University Medical Center, Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, Regensburg University Medical Center, Regensburg, Germany
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, Regensburg University Medical Center, Regensburg, Germany
- Wilhelm Sander-NeuroOncology Unit, Regensburg University Medical Center, Regensburg, Germany
| |
Collapse
|
3
|
Brunette-Clément T, Chang JW, Owens GC, Hadjinicolaou A, Weil AG, Fallah A. Brain Stiffness Correlates With Pathological Tissue in Patients With Drug-Resistant Epilepsy Due to Rasmussen Encephalitis and Focal Cortical Dysplasia. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01350. [PMID: 39329515 DOI: 10.1227/ons.0000000000001387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Complete resection of epileptogenic zone is the single most important determinant of favorable seizure outcomes in resective surgery. However, identifying and resecting this zone is challenging in patients harboring diffuse; MRI-occult malformations of cortical development, such as focal cortical dysplasia; or acquired pathology, such as Rasmussen encephalitis. Intraoperative adjuncts that can aid in identifying the lesion and/or epileptogenic zone can optimize the extent of resection and seizure outcome. We sought to study a novel intraoperative tool, brain tonometer, to measure brain stiffness and correlate with histopathological and radiological findings. METHODS Brain stiffness was measured at various presumed normal and abnormal areas of the cortex during surgery in 2 patients with drug-resistant epilepsy. These results were correlated with preoperative and intraoperative neuroimaging and histopathology. RESULTS We found brain stiffness correlated well with the degree of inflammation and cortical disorganization. CONCLUSION Brain tonometry may help to intraoperatively identify inflammatory brain tissue along with structural and histopathological abnormalities. In select cases, this could potentially allow more tailored resections of the underlying lesion, to ensure complete removal of the epileptogenic lesion and improve the probability of achieving seizure freedom, while sparing normal brain leading to better functional outcomes.
Collapse
Affiliation(s)
- Tristan Brunette-Clément
- Department of Surgery, Division of Neurosurgery, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada
- Department of Surgery, Division of Neurosurgery, University of Montreal Hospital Centre (CHUM), Montréal, Québec, Canada
| | - Julia W Chang
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Geoffrey C Owens
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aristides Hadjinicolaou
- Department of Pediatrics, Division of Neurology, Sainte-Justine University Hospital Centre, Montréal, Québec, Canada
- Brain and Development Research Axis, Sainte-Justine Research Center, Montréal, Québec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Alexander G Weil
- Department of Surgery, Division of Neurosurgery, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada
- Department of Surgery, Division of Neurosurgery, University of Montreal Hospital Centre (CHUM), Montréal, Québec, Canada
- Brain and Development Research Axis, Sainte-Justine Research Center, Montréal, Québec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
- Neurosciences Axis, Research Centre of the University of Montreal Hospital Center (CRCHUM), Montréal, Québec, Canada
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
4
|
Yueh-Hsin L, Dadario NB, Tang SJ, Crawford L, Tanglay O, Dow HK, Young I, Ahsan SA, Doyen S, Sughrue ME. Discernible interindividual patterns of global efficiency decline during theoretical brain surgery. Sci Rep 2024; 14:14573. [PMID: 38914649 PMCID: PMC11196730 DOI: 10.1038/s41598-024-64845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
The concept of functional localization within the brain and the associated risk of resecting these areas during removal of infiltrating tumors, such as diffuse gliomas, are well established in neurosurgery. Global efficiency (GE) is a graph theory concept that can be used to simulate connectome disruption following tumor resection. Structural connectivity graphs were created from diffusion tractography obtained from the brains of 80 healthy adults. These graphs were then used to simulate parcellation resection in every gross anatomical region of the cerebrum by identifying every possible combination of adjacent nodes in a graph and then measuring the drop in GE following nodal deletion. Progressive removal of brain parcellations led to patterns of GE decline that were reasonably predictable but had inter-subject differences. Additionally, as expected, there were deletion of some nodes that were worse than others. However, in each lobe examined in every subject, some deletion combinations were worse for GE than removing a greater number of nodes in a different region of the brain. Among certain patients, patterns of common nodes which exhibited worst GE upon removal were identified as "connectotypes". Given some evidence in the literature linking GE to certain aspects of neuro-cognitive abilities, investigating these connectotypes could potentially mitigate the impact of brain surgery on cognition.
Collapse
Affiliation(s)
- Lin Yueh-Hsin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW, 2031, Australia
| | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, 125 Paterson St, New Brunswick, NJ, 08901, USA
| | - Si Jie Tang
- School of Medicine, 21772 University of California Davis Medical Center, 2315 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Lewis Crawford
- Omniscient Neurotechnology, Level 10/580 George Street, Sydney, NSW, 2000, Australia
| | - Onur Tanglay
- Omniscient Neurotechnology, Level 10/580 George Street, Sydney, NSW, 2000, Australia
| | - Hsu-Kang Dow
- School of Computer Science and Engineering, University of New South Wales (UNSW), Building K17, Sydney, NSW, 2052, USA
| | - Isabella Young
- Omniscient Neurotechnology, Level 10/580 George Street, Sydney, NSW, 2000, Australia
| | - Syed Ali Ahsan
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW, 2031, Australia
| | - Stephane Doyen
- Omniscient Neurotechnology, Level 10/580 George Street, Sydney, NSW, 2000, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW, 2031, Australia.
- Omniscient Neurotechnology, Level 10/580 George Street, Sydney, NSW, 2000, Australia.
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 3, Level 7 Barker St, Randwick, NSW, 2031, USA.
| |
Collapse
|
5
|
Tasiou A, Brotis AG, Kalogeras A, Tzerefos C. Cavernous malformations of the central nervous system: An international consensus statement. BRAIN & SPINE 2023; 3:102707. [PMID: 38020995 PMCID: PMC10668094 DOI: 10.1016/j.bas.2023.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023]
Abstract
Introduction Cavernous malformations (CM) of the central nervous system constitute rare vascular lesions. They are usually asymptomatic, which has allowed their management to become quite debatable. Even when they become symptomatic their optimal mode and timing of treatment remains controversial. Research question A consensus may navigate neurosurgeons through the decision-making process of selecting the optimal treatment for asymptomatic and symptomatic CMs. Material and methods A 17-item questionnaire was developed to address controversial issues in relation to aspects of the treatment, surgical planning, optimal surgical strategy for specific age groups, the role of stereotactic radiosurgery, as well as a follow-up pattern. Consequently, a three-stage Delphi process was ran through 19 invited experts with the goal of reaching a consensus. The agreement rate for reaching a consensus was set at 70%. Results A consensus for surgical intervention was reached on the importance of the patient's age, symptomatology, and hemorrhagic recurrence; and the CM's location and size. The employment of advanced MRI techniques is considered of value for surgical planning. Observation for asymptomatic eloquent or deep-seated CMs represents the commonest practice among our panel. Surgical resection is considered when a deep-seated CM becomes symptomatic or after a second bleeding episode. Asymptomatic, image-proven hemorrhages constituted no indication for surgical resection for our panelists. Consensus was also reached on not resecting any developmental venous anomalies, and on resecting the associated hemosiderin rim only in epilepsy cases. Discussion and conclusion Our Delphi consensus provides an expert common practice for specific controversial issues of CM patient management.
Collapse
Affiliation(s)
- Anastasia Tasiou
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Alexandros G. Brotis
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Adamantios Kalogeras
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Christos Tzerefos
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
6
|
Soloukey S, Vincent AJPE, Smits M, De Zeeuw CI, Koekkoek SKE, Dirven CMF, Kruizinga P. Functional imaging of the exposed brain. Front Neurosci 2023; 17:1087912. [PMID: 36845427 PMCID: PMC9947297 DOI: 10.3389/fnins.2023.1087912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
When the brain is exposed, such as after a craniotomy in neurosurgical procedures, we are provided with the unique opportunity for real-time imaging of brain functionality. Real-time functional maps of the exposed brain are vital to ensuring safe and effective navigation during these neurosurgical procedures. However, current neurosurgical practice has yet to fully harness this potential as it pre-dominantly relies on inherently limited techniques such as electrical stimulation to provide functional feedback to guide surgical decision-making. A wealth of especially experimental imaging techniques show unique potential to improve intra-operative decision-making and neurosurgical safety, and as an added bonus, improve our fundamental neuroscientific understanding of human brain function. In this review we compare and contrast close to twenty candidate imaging techniques based on their underlying biological substrate, technical characteristics and ability to meet clinical constraints such as compatibility with surgical workflow. Our review gives insight into the interplay between technical parameters such sampling method, data rate and a technique's real-time imaging potential in the operating room. By the end of the review, the reader will understand why new, real-time volumetric imaging techniques such as functional Ultrasound (fUS) and functional Photoacoustic Computed Tomography (fPACT) hold great clinical potential for procedures in especially highly eloquent areas, despite the higher data rates involved. Finally, we will highlight the neuroscientific perspective on the exposed brain. While different neurosurgical procedures ask for different functional maps to navigate surgical territories, neuroscience potentially benefits from all these maps. In the surgical context we can uniquely combine healthy volunteer studies, lesion studies and even reversible lesion studies in in the same individual. Ultimately, individual cases will build a greater understanding of human brain function in general, which in turn will improve neurosurgeons' future navigational efforts.
Collapse
Affiliation(s)
- Sadaf Soloukey
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, Rotterdam, Netherlands
| | | | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
7
|
Juvekar P, Torio E, Bi WL, Bastos DCDA, Golby AJ, Frisken SF. Mapping Resection Progress by Tool-Tip Tracking during Brain Tumor Surgery for Real-Time Estimation of Residual Tumor. Cancers (Basel) 2023; 15:cancers15030825. [PMID: 36765783 PMCID: PMC9913508 DOI: 10.3390/cancers15030825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Surgical resection continues to be the primary initial therapeutic strategy in the treatment of patients with brain tumors. Computerized cranial neuronavigation based on preoperative imaging offers precision guidance during craniotomy and early tumor resection but progressively loses validity with brain shift. Intraoperative MRI (iMRI) and intraoperative ultrasound (iUS) can update the imaging used for guidance and navigation but are limited in terms of temporal and spatial resolution, respectively. We present a system that uses time-stamped tool-tip positions of surgical instruments to generate a map of resection progress with high spatial and temporal accuracy. We evaluate this system and present results from 80 cranial tumor resections. Regions of the preoperative tumor segmentation that are covered by the resection map (True Positive Tracking) and regions of the preoperative tumor segmentation not covered by the resection map (True Negative Tracking) are determined for each case. We compare True Negative Tracking, which estimates the residual tumor, with the actual residual tumor identified using iMRI. We discuss factors that can cause False Positive Tracking and False Negative Tracking, which underestimate and overestimate the residual tumor, respectively. Our method provides good estimates of the residual tumor when there is minimal brain shift, and line-of-sight is maintained. When these conditions are not met, surgeons report that it is still useful for identifying regions of potential residual.
Collapse
Affiliation(s)
- Parikshit Juvekar
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence: or (P.J.); (S.F.F.)
| | - Erickson Torio
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dhiego Chaves De Almeida Bastos
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra J. Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Sarah F. Frisken
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Correspondence: or (P.J.); (S.F.F.)
| |
Collapse
|
8
|
Alekseev IM, Zuev AA. [Mapping the musician brain during awake craniotomy]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:92-97. [PMID: 37011334 DOI: 10.17116/neiro20238702192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Direct cortical stimulation during awake craniotomy with speech testing became the «gold standard» in brain mapping and preserving speech zones during neurosurgical procedures. However, there are many other cerebral functions, and their loss can be very critical for certain patients. For example, such a function is production and perception of music for musicians. This review presents the latest data on functional anatomy of musician brain, as well as aspects of neurosurgical treatment with awake craniotomy and music testing under brain mapping.
Collapse
Affiliation(s)
- I M Alekseev
- Pirogov National Medical Surgical Center, Moscow, Russia
| | - A A Zuev
- Pirogov National Medical Surgical Center, Moscow, Russia
| |
Collapse
|
9
|
Wijdicks EFM. The History of Self-Fulfilling Prophesy: Sociocultural Thinkers Enter Medicine. Neurocrit Care 2022:10.1007/s12028-022-01628-7. [PMID: 36396740 DOI: 10.1007/s12028-022-01628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Eelco F M Wijdicks
- Neurocritical Care Services, Saint Marys Hospital Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
| |
Collapse
|
10
|
A consensus definition of supratotal resection for anatomically distinct primary glioblastoma: an AANS/CNS Section on Tumors survey of neurosurgical oncologists. J Neurooncol 2022; 159:233-242. [PMID: 35913556 DOI: 10.1007/s11060-022-04048-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Supratotal resection (SpTR) of glioblastoma may be associated with improved survival, but published results have varied in part from lack of consensus on the definition and appropriate use of SpTR. A previous small survey of neurosurgical oncologists with expertise performing SpTR found resection 1-2 cm beyond contrast enhancement was an acceptable definition and glioblastoma involving the right frontal and bilateral anterior temporal lobes were considered most amenable to SpTR. The general neurosurgical oncology community has not yet confirmed the practicality of this definition. METHODS Seventy-six neurosurgical oncology members of the AANS/CNS Tumor Section were surveyed, representing 34.0% of the 223 members who were administered the survey. Participants were presented with 11 definitions of SpTR and rated each definition's appropriateness. Participants additionally reviewed magnetic resonance imaging for 10 anatomically distinct glioblastomas and assessed the tumor location's eloquence, perceived equipoise of enrolling patients in a randomized trial comparing gross total to SpTR, and their personal treatment plans. RESULTS Most neurosurgeons surveyed agree that gross total plus resection of some non-contrast enhancement (n = 57, 80.3%) or resection 1-2 cm beyond contrast enhancement (n = 52, 73.2%) are appropriate definitions for SpTR. Cases were divided into three anatomically distinct groups by perceived equipoise between gross total and SpTR. The best clinical trial candidates were thought to be right anterior temporal (n = 58, 76.3%) and right frontal (n = 55, 73.3%) glioblastomas. CONCLUSION Support exists among neurosurgical oncologists with varying familiarity performing SpTR to adopt the proposed consensus definition of SpTR of glioblastoma and to potentially investigate the utility of SpTR to treat right anterior temporal and right frontal glioblastomas in a clinical trial. A smaller proportion of general neurosurgical oncologists than SpTR experts would personally treat a left anterior temporal glioblastoma with SpTR.
Collapse
|
11
|
Neurosurgical Clinical Trials for Glioblastoma: Current and Future Directions. Brain Sci 2022; 12:brainsci12060787. [PMID: 35741672 PMCID: PMC9221299 DOI: 10.3390/brainsci12060787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
The mainstays of glioblastoma treatment, maximal safe resection, radiotherapy preserving neurological function, and temozolomide (TMZ) chemotherapy have not changed for the past 17 years despite significant advances in the understanding of the genetics and molecular biology of glioblastoma. This review highlights the neurosurgical foundation for glioblastoma therapy. Here, we review the neurosurgeon’s role in several new and clinically-approved treatments for glioblastoma. We describe delivery techniques such as blood–brain barrier disruption and convection-enhanced delivery (CED) that may be used to deliver therapeutic agents to tumor tissue in higher concentrations than oral or intravenous delivery. We mention pivotal clinical trials of immunotherapy for glioblastoma and explain their outcomes. Finally, we take a glimpse at ongoing clinical trials and promising translational studies to predict ways that new therapies may improve the prognosis of patients with glioblastoma.
Collapse
|
12
|
Gómez Vecchio T, Neimantaite A, Corell A, Bartek J, Jensdottir M, Reinertsen I, Solheim O, Jakola AS. Lower-Grade Gliomas: An Epidemiological Voxel-Based Analysis of Location and Proximity to Eloquent Regions. Front Oncol 2021; 11:748229. [PMID: 34621684 PMCID: PMC8490663 DOI: 10.3389/fonc.2021.748229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023] Open
Abstract
Background Glioma is the most common intra-axial tumor, and its location relative to critical areas of the brain is important for treatment decision-making. Studies often report tumor location based on anatomical taxonomy alone since the estimation of eloquent regions requires considerable knowledge of functional neuroanatomy and is, to some degree, a subjective measure. An unbiased and reproducible method to determine tumor location and eloquence is desirable, both for clinical use and for research purposes. Objective To report on a voxel-based method for assessing anatomical distribution and proximity to eloquent regions in diffuse lower-grade gliomas (World Health Organization grades 2 and 3). Methods A multi-institutional population-based dataset of adult patients (≥18 years) histologically diagnosed with lower-grade glioma was analyzed. Tumor segmentations were registered to a standardized space where two anatomical atlases were used to perform a voxel-based comparison of the proximity of segmentations to brain regions of traditional clinical interest. Results Exploring the differences between patients with oligodendrogliomas, isocitrate dehydrogenase (IDH) mutated astrocytomas, and patients with IDH wild-type astrocytomas, we found that the latter were older, more often had lower Karnofsky performance status, and that these tumors were more often found in the proximity of eloquent regions. Eloquent regions are found slightly more frequently in the proximity of IDH-mutated astrocytomas compared to oligodendrogliomas. The regions included in our voxel-based definition of eloquence showed a high degree of association with performing biopsy compared to resection. Conclusion We present a simple, robust, unbiased, and clinically relevant method for assessing tumor location and eloquence in lower-grade gliomas.
Collapse
Affiliation(s)
- Tomás Gómez Vecchio
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Alice Neimantaite
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Alba Corell
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Margret Jensdottir
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ingerid Reinertsen
- Department of Health Research, SINTEF Digital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Ole Solheim
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
13
|
Dadario NB, Brahimaj B, Yeung J, Sughrue ME. Reducing the Cognitive Footprint of Brain Tumor Surgery. Front Neurol 2021; 12:711646. [PMID: 34484105 PMCID: PMC8415405 DOI: 10.3389/fneur.2021.711646] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
The surgical management of brain tumors is based on the principle that the extent of resection improves patient outcomes. Traditionally, neurosurgeons have considered that lesions in “non-eloquent” cerebrum can be more aggressively surgically managed compared to lesions in “eloquent” regions with more known functional relevance. Furthermore, advancements in multimodal imaging technologies have improved our ability to extend the rate of resection while minimizing the risk of inducing new neurologic deficits, together referred to as the “onco-functional balance.” However, despite the common utilization of invasive techniques such as cortical mapping to identify eloquent tissue responsible for language and motor functions, glioma patients continue to present post-operatively with poor cognitive morbidity in higher-order functions. Such observations are likely related to the difficulty in interpreting the highly-dimensional information these technologies present to us regarding cognition in addition to our classically poor understanding of the functional and structural neuroanatomy underlying complex higher-order cognitive functions. Furthermore, reduction of the brain into isolated cortical regions without consideration of the complex, interacting brain networks which these regions function within to subserve higher-order cognition inherently prevents our successful navigation of true eloquent and non-eloquent cerebrum. Fortunately, recent large-scale movements in the neuroscience community, such as the Human Connectome Project (HCP), have provided updated neural data detailing the many intricate macroscopic connections between cortical regions which integrate and process the information underlying complex human behavior within a brain “connectome.” Connectomic data can provide us better maps on how to understand convoluted cortical and subcortical relationships between tumor and human cerebrum such that neurosurgeons can begin to make more informed decisions during surgery to maximize the onco-functional balance. However, connectome-based neurosurgery and related applications for neurorehabilitation are relatively nascent and require further work moving forward to optimize our ability to add highly valuable connectomic data to our surgical armamentarium. In this manuscript, we review four concepts with detailed examples which will help us better understand post-operative cognitive outcomes and provide a guide for how to utilize connectomics to reduce cognitive morbidity following cerebral surgery.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, NJ, United States
| | - Bledi Brahimaj
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Jacky Yeung
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, NSW, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, NSW, Australia
| |
Collapse
|
14
|
Fried I. Neurosurgery as a window to the human mind: free will and the sense of self. Acta Neurochir (Wien) 2021; 163:1211-1212. [PMID: 33821316 DOI: 10.1007/s00701-021-04749-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 10/21/2022]
|
15
|
Executive functional deficits during electrical stimulation of the right frontal aslant tract. Brain Imaging Behav 2021; 15:2731-2735. [PMID: 33462780 PMCID: PMC8500906 DOI: 10.1007/s11682-020-00439-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 10/29/2022]
Abstract
Direct electrical stimulation mapping was used to map executive functions during awake surgery of a patient with a right frontal low-grade glioma. We specifically targeted the frontal aslant tract, as this pathway had been infiltrated by the tumor. The right frontal aslant tract has been implicated in executive functions in the neuroscientific literature, but is yet of unknown relevance for clinical practice. Guided by tractography, electrical stimulation of the frontal aslant tract disrupted working memory and inhibitory functions. In this report we illustrate the dilemmas that neurosurgeons face when balancing maximal tumor resection against optimal cognitive performance. In particular, we emphasize that intraoperative tasks that target cognitive functions should be carefully introduced in clinical practice to prevent clinically irrelevant responses and too early termination of the resection.
Collapse
|
16
|
Raychev R, Saber H, Saver JL, Hinman JD, Brown S, Vinuela F, Duckwiler G, Jahan R, Tateshima S, Szeder V, Nour M, Colby GP, Restrepo L, Kim D, Bahr-Hosseini M, Ali L, Starkman S, Rao N, Nogueira RG, Liebeskind D. Impact of eloquent motor cortex-tissue reperfusion beyond the traditional thrombolysis in cerebral infarction (TICI) scoring after thrombectomy. J Neurointerv Surg 2021; 13:990-994. [PMID: 33443113 PMCID: PMC8526878 DOI: 10.1136/neurintsurg-2020-016834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 11/29/2022]
Abstract
Background Targeted eloquence-based tissue reperfusion within the primary motor cortex may have a differential effect on disability as compared with traditional volume-based (thrombolysis in cerebral infarction, TICI) reperfusion after endovascular thrombectomy (EVT) in the setting of acute ischemic stroke (AIS). Methods We explored the impact of eloquent reperfusion (ER) within primary motor cortex (PMC) on clinical outcome (modified Rankin Scale, mRS) in AIS patients undergoing EVT. ER-PMC was defined as presence of flow on final digital subtraction angiography (DSA) within four main cortical branches, supplying the PMC (middle cerebral artery (MCA) – precentral, central, postcentral; anterior cerebral artery (ACA) – medial frontal branch arising from callosomarginal or pericallosal arteries) and graded as absent (0), partial (1), and complete (2). Prospectively collected data from two centers were analyzed. Multivariate analysis was conducted to assess the impact of ER-PMC on 90-day disability (mRS) among patients with anterior circulation occlusion who achieved partial reperfusion (TICI 2a and 2b). Results Among the 125 patients who met the study criteria, ER-PMC distribution was: absent (0) in 19/125 (15.2%); partial (1) in 52/125 (41.6%), and complete (2) in 54/125 (43.2%). TICI 2b was achieved in 102/125 (81.6%) and ER-PMC was substantially higher in those patients (P<0.001). In multivariate analysis, in addition to age and symptomatic intracranial hemorrhage, ER-PMC had a profound independent impact on 90-day disability (OR 6.10, P=0.001 for ER-PMC 1 vs 0 and OR 9.87, P<0.001 for ER-PMC 2 vs 0), while the extent of total partial reperfusion (TICI 2b vs 2a) was not related to 90-day mRS. Conclusions Eloquent PMC-tissue reperfusion is a key determinant of functional outcome, with a greater impact than volume-based (TICI) degree of partial reperfusion alone. PMC-targeted revascularization among patients with partial reperfusion may further diminish post-stroke disability after EVT.
Collapse
Affiliation(s)
- Radoslav Raychev
- Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Hamidreza Saber
- Radiological Sciences, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Jeffrey L Saver
- Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Jason D Hinman
- Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Scott Brown
- BRIGHT Research Partners, Minneapolis, Minnesota, USA
| | - Fernando Vinuela
- Radiological Sciences, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Gary Duckwiler
- Radiological Sciences, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Reza Jahan
- Radiological Sciences, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Satoshi Tateshima
- Radiological Sciences, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Viktor Szeder
- Radiological Sciences, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - May Nour
- Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA.,Radiological Scieneces, University of Califronia Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Geoffrey P Colby
- Neurosurgery, University of California Los Angeles, Los Angeles, California, USA
| | - Lucas Restrepo
- Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Doojin Kim
- Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Mersedeh Bahr-Hosseini
- Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Latisha Ali
- Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Sidney Starkman
- Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Neal Rao
- Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Raul G Nogueira
- Neurology, Marcus Stroke & Neuroscience Center Grady Memorial Hospital, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David Liebeskind
- Neurology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
17
|
Novel tonometer device distinguishes brain stiffness in epilepsy surgery. Sci Rep 2020; 10:20978. [PMID: 33262385 PMCID: PMC7708453 DOI: 10.1038/s41598-020-77888-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Complete surgical resection of abnormal brain tissue is the most important predictor of seizure freedom following surgery for cortical dysplasia. While lesional tissue is often visually indiscernible from normal brain, anecdotally, it is subjectively stiffer. We report the first experience of the use of a digital tonometer to understand the biomechanical properties of epilepsy tissue and to guide the conduct of epilepsy surgery. Consecutive epilepsy surgery patients (n = 24) from UCLA Mattel Children’s Hospital were recruited to undergo intraoperative brain tonometry at the time of open craniotomy for epilepsy surgery. Brain stiffness measurements were corrected with abnormalities on neuroimaging and histopathology using mixed-effects multivariable linear regression. We collected 249 measurements across 30 operations involving 24 patients through the pediatric epilepsy surgery program at UCLA Mattel Children’s Hospital. On multivariable mixed-effects regression, brain stiffness was significantly associated with the presence of MRI lesion (β = 32.3, 95%CI 16.3–48.2; p < 0.001), severity of cortical disorganization (β = 19.8, 95%CI 9.4–30.2; p = 0.001), and recent subdural grid implantation (β = 42.8, 95%CI 11.8–73.8; p = 0.009). Brain tonometry offers the potential of real-time intraoperative feedback to identify abnormal brain tissue with millimeter spatial resolution. We present the first experience with this novel intraoperative tool for the conduct of epilepsy surgery. A carefully designed prospective study is required to elucidate whether the clinical application of brain tonometry during resective procedures could guide the area of resection and improve seizure outcomes.
Collapse
|
18
|
Hervey-Jumper SL, Berger MS. Introduction: Surgical Management of Eloquent Area Tumors. Neurosurgery 2020; 87:1076-1077. [PMID: 34791465 DOI: 10.1093/neuros/nyaa358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
|
19
|
Park KY, Lee JJ, Dierker D, Marple LM, Hacker CD, Roland JL, Marcus DS, Milchenko M, Miller-Thomas MM, Benzinger TL, Shimony JS, Snyder AZ, Leuthardt EC. Mapping language function with task-based vs. resting-state functional MRI. PLoS One 2020; 15:e0236423. [PMID: 32735611 PMCID: PMC7394427 DOI: 10.1371/journal.pone.0236423] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/06/2020] [Indexed: 01/21/2023] Open
Abstract
Background Use of functional MRI (fMRI) in pre-surgical planning is a non-invasive method for pre-operative functional mapping for patients with brain tumors, especially tumors located near eloquent cortex. Currently, this practice predominantly involves task-based fMRI (T-fMRI). Resting state fMRI (RS-fMRI) offers an alternative with several methodological advantages. Here, we compare group-level analyses of RS-fMRI vs. T-fMRI as methods for language localization. Purpose To contrast RS-fMRI vs. T-fMRI as techniques for localization of language function. Methods We analyzed data obtained in 35 patients who had both T-fMRI and RS-fMRI scans during the course of pre-surgical evaluation. The RS-fMRI data were analyzed using a previously trained resting-state network classifier. The T-fMRI data were analyzed using conventional techniques. Group-level results obtained by both methods were evaluated in terms of two outcome measures: (1) inter-subject variability of response magnitude and (2) sensitivity/specificity analysis of response topography, taking as ground truth previously reported maps of the language system based on intraoperative cortical mapping as well as meta-analytic maps of language task fMRI responses. Results Both fMRI methods localized major components of the language system (areas of Broca and Wernicke) although not with equal inter-subject consistency. Word-stem completion T-fMRI strongly activated Broca's area but also several task-general areas not specific to language. RS-fMRI provided a more specific representation of the language system. Conclusion We demonstrate several advantages of classifier-based mapping of language representation in the brain. Language T-fMRI activated task-general (i.e., not language-specific) functional systems in addition to areas of Broca and Wernicke. In contrast, classifier-based analysis of RS-fMRI data generated maps confined to language-specific regions of the brain.
Collapse
Affiliation(s)
- Ki Yun Park
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John J. Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laura M. Marple
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carl D. Hacker
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jarod L. Roland
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel S. Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mikhail Milchenko
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle M. Miller-Thomas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tammie L. Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eric C. Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
20
|
Srienc AI, Chiang PP, Schmitt AJ, Newman EA. Cortical spreading depolarizations induced by surgical field blood in a mouse model of neurosurgery. J Neurosurg 2020; 132:1820-1828. [PMID: 30952117 PMCID: PMC7306253 DOI: 10.3171/2018.12.jns181130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/11/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cortical spreading depolarization (CSD) has been linked to poor clinical outcomes in the setting of traumatic brain injury, malignant stroke, and subarachnoid hemorrhage. There is evidence that electrocautery during neurosurgical procedures can also evoke CSD waves in the brain. It is unknown whether blood contacting the cortical surface during surgical bleeding affects the frequency of spontaneous or surgery-induced CSDs. Using a mouse neurosurgical model, the authors tested the hypothesis that electrocautery can induce CSD waves and that surgical field blood (SFB) is associated with more CSDs. The authors also investigated whether CSD can be reliably observed by monitoring the fluorescence of GCaMP6f expressed in neurons. METHODS CSD waves were monitored by using confocal microscopy to detect fluorescence increases at the cortical surface in mice expressing GCaMP6f in CamKII-positive neurons. The cortical surface was electrocauterized through an adjacent burr hole. SFB was simulated by applying a drop of tail vein blood to the brain through the same burr hole. RESULTS CSD waves were readily detected in GCaMP6f-expressing mice. Monitoring GCaMP6f fluorescence provided far better sensitivity and spatial resolution than detecting CSD events by observing changes in the intrinsic optical signal (IOS). Forty-nine percent of the CSD waves identified by GCaMP6f had no corresponding IOS signal. Electrocautery evoked CSD waves. On average, 0.67 ± 0.08 CSD events were generated per electrocautery episode, and multiple CSD waves could be induced in the same mouse by repeated cauterization (average, 7.9 ± 1.3 events; maximum number in 1 animal, 13 events). In the presence of SFB, significantly more spontaneous CSDs were generated (1.35 ± 0.37 vs 0.13 ± 0.16 events per hour, p = 0.002). Ketamine effectively decreased the frequency of spontaneous CSD waves (1.35 ± 0.37 to 0.36 ± 0.15 CSD waves per hour, p = 0.016) and electrocautery-stimulated CSD waves (0.80 ± 0.05 to 0.18 ± 0.08 CSD waves per electrocautery, p = 0.00002). CONCLUSIONS CSD waves are detected with far greater sensitivity and fidelity by monitoring GCaMP6f signals in neurons than by monitoring IOSs. Electrocautery reliably evokes CSD waves, and the frequency of spontaneous CSD waves is increased when blood is applied to the cortical surface. These experimental conditions recapitulate common scenarios in the neurosurgical operating room. Ketamine, a clinically available pharmaceutical agent, can block stimulated and spontaneous CSDs. More research is required to understand the clinical importance of intraoperative CSD.
Collapse
Affiliation(s)
- Anja I. Srienc
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota
| | - Pei-Pei Chiang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Abby J. Schmitt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Eric A. Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
21
|
Jooma R. Letter to the Editor. "Eloquent". J Neurosurg 2018; 129:258-259. [DOI: 10.3171/2018.1.jns18163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|