1
|
Luo X, Yang J, Zhao Y, Nagayasu T, Chen J, Hu P, He Z, Li Z, Wu J, Zhao Z, Duan G, Sun X, Zhao L, Pan Y, Wang X. Engineering spatially-confined conduits to tune nerve self-organization and allodynic responses via YAP-mediated mechanotransduction. Nat Commun 2025; 16:66. [PMID: 39746959 PMCID: PMC11695937 DOI: 10.1038/s41467-024-55118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Chronic allodynia stemming from peripheral stump neuromas can persist for extended periods, significantly compromising patients' quality of life. Conventional managements for nerve stumps have demonstrated limited effectiveness in ensuring their orderly termination. In this study, we present a spatially confined conduit strategy, designed to enhance the self-organization of regenerating nerves after truncation. This innovative approach elegantly enables the autonomous slowing of axonal outgrowth in response to the gradually constricting space, concurrently suppressing neuroinflammation through YAP-mediated mechanotransduction activation. Meanwhile, the decelerating axons exhibit excellent alignment and remyelination, thereby helping to prevent failure modes in nerve self-organization, such as axonal twisting in congested regions and overgrowth beyond the conduit's capacity. Additionally, proteins associated with mechanical allodynia, including TRPA1 and CGRP, exhibit a gradual reduction in expression as spatial constraints tighten, a trend inversely validated by the administration of the YAP-targeted inhibitor Verteporfin. This spatially confined conduit strategy significantly alleviates allodynia, thus preventing autotomy behavior and reducing pain-induced gait alterations.
Collapse
Affiliation(s)
- Xiaobin Luo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Jia Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonggang Zhao
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute of CNPC, Xi'an, 710077, China
| | - Toshitatsu Nagayasu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Junlin Chen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Peilun Hu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhi He
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zifan Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jun Wu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Zhe Zhao
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Guman Duan
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yongwei Pan
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Dong Q, Ai J, Xiao A, Wu P, Wu M, Liu X, Huselstein C, Cai L, Feng X, Chen Y. Nerve Defect Treatment with a Capping Hydroxyethyl Cellulose/Soy Protein Isolate Sponge Conduit for Painful Neuroma Prevention. ACS OMEGA 2023; 8:30850-30858. [PMID: 37663461 PMCID: PMC10468986 DOI: 10.1021/acsomega.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Painful neuroma, as one of the complications of nerve injury from disease or trauma, results in instinctive neuropathic pain that adversely affects a patient's quality of life. To intercept neuroma development, capping strategies have been performed as effective therapies. Nonetheless, the most appropriate biocompatible material to shield the nerves is an urgent clinical requirement. Herein, a compatible hydroxyethyl cellulose (HEC)/soy protein isolate (SPI) sponge capping conduit (HSSC) is used to prevent neuroma in vivo. Following capping on the sciatic nerve stump in vivo, the behavior of the rats and the structure of tissues are compared through histological assessment and autotomy scoring. The HSSCs gained a dismal autotomy score and enhanced the amelioration, where inflammatory invasions and overdeposition of collagen are defeated. The expression of myelin growth linked genes (Krox20, MPZ, and MAG) in the HSSC group at the eighth week was almost 2 times higher than that of the no capping group. The HSSC conduit served as a physical barrier to repress the infiltration of inflammation as well as provided an optimum microenvironment for facilitating nerve rejuvenation and intercepting neuroma development during nerve amelioration.
Collapse
Affiliation(s)
- Qi Dong
- Department
of Biomedical Engineering and Hubei Province Key Laboratory of Allergy
and Immune Related Disease, TaiKang Medical School (School of Basic
Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Junjie Ai
- Hubei
Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
| | - Ao Xiao
- Department
of Biomedical Engineering and Hubei Province Key Laboratory of Allergy
and Immune Related Disease, TaiKang Medical School (School of Basic
Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Ping Wu
- Department
of Biomedical Engineering and Hubei Province Key Laboratory of Allergy
and Immune Related Disease, TaiKang Medical School (School of Basic
Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Minhao Wu
- Department
of Orthopaedics, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | - Xijing Liu
- School
of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Céline Huselstein
- CNRS
UMR 7561 and FR CNRS-INSERM 32.09, Nancy
University, Vandoeuvre-lès-Nancy 54500, France
| | - Lin Cai
- Department
of Orthopaedics, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | | | - Yun Chen
- Department
of Biomedical Engineering and Hubei Province Key Laboratory of Allergy
and Immune Related Disease, TaiKang Medical School (School of Basic
Medical Sciences), Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Yu AX, Wang Z, Yi XZ. Regenerative peripheral nerve interface prevents neuroma formation after peripheral nerve transection. Neural Regen Res 2023; 18:814-818. [DOI: 10.4103/1673-5374.353498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Luo X, Li B, Zhang D, Chen H, Zhou X, Yao C, Raza MA, Wang L, Tang N, Zheng G, Yan H. A new insight on peripheral nerve repair: the technique of internal nerve splinting. J Neurosurg 2022; 137:1406-1417. [PMID: 35213834 DOI: 10.3171/2022.1.jns211916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neuropathic pain produced by symptomatic neuromas is an important problem after peripheral nerve injury (PNI). End-to-end anastomosis of the nerve stump for PNI is well established but cannot efficiently prevent neuroma-in-continuity formation. METHODS Sciatic nerve injury was used in the experimental model. Seventy-two rats were randomly divided into four groups: rats with nerve anastomosis sites supported with silicone tubes represented the internal nerve splinting (INS) group (n = 18); rats with end-to-end nerve anastomosis represented control group 1 (CON1) (n = 18); rats with INS and the nerve anastomosis site represented control group 2 (CON2) (n = 18); and rats that underwent the same surgical procedures for skin and muscle operations but without sciatic nerve injury represented the normal group (n = 18). RESULTS Gross evaluations of the nerve anastomosis sites, gastrocnemius muscle atrophy, axonal regeneration and remyelination, neuropathic pain, and scar hyperplasia of the neuromas were performed, as well as motor function evaluations. Axonal regeneration, remyelination, and gastrocnemius muscle atrophy were similar between the INS group and CON1 (p > 0.05). However, neuropathic pain and scar hyperplasia-as evaluated according to the expression of anti-sigma-1 receptor antibody and anti-α-smooth muscle actin, respectively-and the weight ratios of the neuromas were reduced in the INS group compared with those of CON1 and CON2 (p < 0.05). CONCLUSIONS Application of INS in nerve repair effectively prevented traumatic neuroma-in-continuity formation and inhibited neuropathic pain without influencing nerve regeneration in rats.
Collapse
Affiliation(s)
- Xiaobin Luo
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Baolong Li
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dupiao Zhang
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Chen
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xijie Zhou
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenglun Yao
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Mazhar Ali Raza
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liang Wang
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Nana Tang
- 4Department of Ophthalmology, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Anhui, China; and
| | - Guotong Zheng
- 5Department of Otorhinolaryngology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hede Yan
- 1Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- 2Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- 3The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Scott BB, Winograd JM, Redmond RW. Surgical Approaches for Prevention of Neuroma at Time of Peripheral Nerve Injury. Front Surg 2022; 9:819608. [PMID: 35832494 PMCID: PMC9271873 DOI: 10.3389/fsurg.2022.819608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Painful neuroma is a frequent sequela of peripheral nerve injury which can result in pain and decreased quality of life for the patient, often necessitating surgical intervention. End neuromas are benign neural tumors that commonly form after nerve transection, when axons from the proximal nerve stump regenerate in a disorganized manner in an attempt to recreate nerve continuity. Inflammation and collagen remodeling leads to a bulbous end neuroma which can become symptomatic and result in decreased quality of life. This review covers surgical prophylaxis of end neuroma formation at time of injury, rather than treatment of existing neuroma and prevention of recurrence. The current accepted methods to prevent end neuroma formation at time of injury include different mechanisms to inhibit the regenerative response or provide a conduit for organized regrowth, with mixed results. Approaches include proximal nerve stump capping, nerve implantation into bone, muscle and vein, various pharmacologic methods to inhibit axonal growth, and mechanisms to guide axonal growth after injury. This article reviews historical treatments that aimed to prevent end neuroma formation as well as current and experimental treatments, and seeks to provide a concise, comprehensive resource for current and future therapies aimed at preventing neuroma formation.
Collapse
Affiliation(s)
- Benjamin B. Scott
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Correspondence: Benjamin B. Scott
| | - Jonathan M. Winograd
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert W. Redmond
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
A Photosealed Cap Prevents Disorganized Axonal Regeneration and Neuroma following Nerve Transection in Rats. Plast Reconstr Surg Glob Open 2022; 10:e4168. [PMID: 35265445 PMCID: PMC8901221 DOI: 10.1097/gox.0000000000004168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
Neuroma is a common sequela of traumatic peripheral nerve injury that can result in pain and decreased quality of life for patients. Neuromas result from axonal outgrowth in an attempt to reestablish continuity with the disrupted distal nerve end. Photosealing is a light-activated technique whereby tissues can be securely isolated in a strong and secure manner. This study investigated whether photosealing of autologous vein and crosslinked human amniotic membrane (xHAM) to cap the proximal stump of transected sciatic nerve would prevent disorganized axonal regeneration and neuroma in a rat model.
Collapse
|
7
|
Chen H, Jiang L, Zhang D, Chen J, Luo X, Xie Y, Han T, Wang L, Zhang Z, Zhou X, Yan H. Exploring the Correlation Between the Regulation of Macrophages by Regulatory T Cells and Peripheral Neuropathic Pain. Front Neurosci 2022; 16:813751. [PMID: 35237123 PMCID: PMC8882923 DOI: 10.3389/fnins.2022.813751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveIntractable pain after peripheral nerve injury has become a major concern in the field of pain. Current evidence shows that routine medications or surgical treatment is associated with inconsistent results and different curative effects. Stable and effective treatment methods in clinical practice are also lacking. To date, there is no consensus on the pathophysiological mechanisms of pain. The present study investigates the potential regulatory role of regulatory T cells in the differentiation of macrophages on dorsal root ganglion (DRG) and explores the mechanism of nociceptive signals in the signal transfer station. The findings are expected to guide the prevention of various types of peripheral neuropathic pain.MethodsThirty-six male Sprague Dawley (SD) rats and 18 male Nude rats, of equal weight (250–300g), were used in this study. The rats were divided into 3 groups: SD rat sciatic nerve transection group (SNT group, n = 18), SD rat nerve transection experimental group (SNT/RAPA group, n = 18) and Nude rat nerve transection experimental group (SNT/NUDE group, n = 18). The behavior related to neuropathic pain of animals were comprehensively evaluated in all groups. Furthermore, we analyzed the degree of neuroma development, histology, gene, and protein expression, and compared their correlation with the ultrastructural changes of M1/M2 type differentiation of macrophages in DRG.ResultsSciatic nerve transection (SNT), induced the aggregation of several types of macrophages in lumbar DRG of SD rats leading to a higher ratio of M1/M2. Following the inhibition of the M1 type polarization of macrophages, axon outgrowth increased significantly. A significantly lower average autotomy score was reported in the SNT/NUDE group (*p < 0.05) and the SNT/RAPA group (@p < 0.05) as compared to that of the SNT group. The SNT/NUDE group showed no noticeable neuroma formation 30 days after the nerve transection. However, bulbous neuromas were observed in the nerve stumps of both the SNT control and SNT/RAPA groups. Immunofluorescence staining revealed a significant decrease in the proportion of M1/M2 macrophages in lumbar DRG of the SNT/NUDE group (**p < 0.001) and the SNT/RAPA group (@p < 0.05) compared to the SNT group. The expression of pain-related proteins was also decreased (@p < 0.05, *p < 0.05,**p < 0.001). Also, the expression of alpha-smooth muscle actin (α-SMA), neurofilament 200 (NF-200), and nerve growth factor low-affinity receptor p75 were significantly down-regulated in the nerve tissue (@p < 0.05, @@p < 0.001, **p < 0.001).ConclusionM1/M2 type differentiation of macrophages on DRG plays a significant role in the formation of traumatic painful neuroma after neurotomy. In combination with our previous study, the results of this study suggest that regulatory T cells reduce the ratio of M1/M2 macrophages and alleviate the pain of neuroma by regulating the polarization direction of macrophages on neuroma. These findings provide key insights into developing new strategies to manage painful neuroma.
Collapse
Affiliation(s)
- Hongyu Chen
- Division of Hand Surgery, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liangfu Jiang
- Division of Hand Surgery, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Dupiao Zhang
- Division of Hand Surgery, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianpeng Chen
- Division of Hand Surgery, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaobin Luo
- Division of Hand Surgery, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Yutong Xie
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tao Han
- Division of Hand Surgery, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liang Wang
- Division of Hand Surgery, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhe Zhang
- Division of Hand Surgery, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xijie Zhou
- Division of Hand Surgery, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Xijie Zhou,
| | - Hede Yan
- Division of Hand Surgery, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- Hede Yan,
| |
Collapse
|
8
|
Yao C, Zhou X, Weng W, Poonit K, Sun C, Yan H. Aligned nanofiber nerve conduits inhibit alpha smooth muscle actin expression and collagen proliferation by suppressing TGF-β1/SMAD signaling in traumatic neuromas. Exp Ther Med 2021; 22:1414. [PMID: 34676007 PMCID: PMC8527191 DOI: 10.3892/etm.2021.10850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Transforming growth factor-beta 1 (TGF-β1) is a powerful activator of connective tissue synthesis that is strongly associated with the pathophysiology of traumatic neuroma. Previous studies have demonstrated that aligned nanofiber conduits made from silk fibroin and poly (L-lactic acid-co-ε-caprolactone; PLCL) could prevent traumatic neuromas. In the present study, the possible mechanisms of conduits in treating traumatic neuromas were investigated to provide theoretical basis for procedures. Aligned nanofiber conduits were used for nerve capping. Sciatic nerves of Sprague-Dawley rats were used to create an animal model. The present study contains two parts, each including four experimental groups. SB-431542/SRI-011381 hydrochloride was used to suppress/enhance TGF-β1/SMAD signaling. Part I discussed the connections between traumatic neuroma and the proliferation of alpha smooth muscle actin (α-SMA) and collagen; it also investigated the therapeutic effect of conduits. Part II hypothesized that conduits suppressed TGF-β1/SMAD signaling. Histological characteristics, quantitative analysis of α-SMA, collagens and signaling-related parameters were assessed and compared among groups one month postoperatively. Results from Part I demonstrated that aligned nanofiber conduits suppressed the expression of α-SMA and collagens; and results from Part II revealed the downregulation of pathway-related proteins, suggesting that the suppression was mediated by TGF-β1/SMAD signaling. Aligned nanofiber conduits may be effective nerve capping biomaterials. One of the mechanisms involves suppressing TGF-β1/SMAD signaling. Novel treatments using aligned nanofiber conduits could be developed to manage traumatic neuromas.
Collapse
Affiliation(s)
- Chenglun Yao
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xijie Zhou
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Weidong Weng
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Keshav Poonit
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Chao Sun
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hede Yan
- Department of Orthopedics (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
9
|
He FL, Qiu S, Zou JL, Gu FB, Yao Z, Tu ZH, Wang YY, Liu XL, Zhou LH, Zhu QT. Covering the proximal nerve stump with chondroitin sulfate proteoglycans prevents traumatic painful neuroma formation by blocking axon regeneration after neurotomy in Sprague Dawley rats. J Neurosurg 2021; 134:1599-1609. [PMID: 32470939 DOI: 10.3171/2020.3.jns193202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neuropathic pain caused by traumatic neuromas is an extremely intractable clinical problem. Disorderly scar tissue accumulation and irregular and immature axon regeneration around the injury site mainly contribute to traumatic painful neuroma formation. Therefore, successfully preventing traumatic painful neuroma formation requires the effective inhibition of irregular axon regeneration and disorderly accumulation of scar tissue. Considering that chondroitin sulfate proteoglycans (CSPGs) can act on the growth cone and effectively inhibit axon regeneration, the authors designed and manufactured a CSPG-gelatin blocker to regulate the CSPGs' spatial distribution artificially and applied it in a rat model after sciatic nerve neurectomy to evaluate its effects in preventing traumatic painful neuroma formation. METHODS Sixty female Sprague Dawley rats were randomly divided into three groups (positive group: no covering; blank group: covering with gelatin blocker; and CSPG group: covering with the CSPG-gelatin blocker). Pain-related factors were evaluated 2 and 8 weeks postoperatively (n = 30). Neuroma growth, autotomy behavior, and histological features of the neuromas were assessed 8 weeks postoperatively (n = 30). RESULTS Eight weeks postoperatively, typical bulb-shaped neuromas did not form in the CSPG group, and autotomy behavior was obviously better in the CSPG group (p < 0.01) than in the other two groups. Also, in the CSPG group the regenerated axons showed a lower density and more regular and improved myelination (p < 0.01). Additionally, the distribution and density of collagenous fibers and the expression of α-smooth muscle actin were significantly lower in the CSPG group than in the positive group (p < 0.01). Regarding pain-related factors, c-fos, substance P, interleukin (IL)-17, and IL-1β levels were significantly lower in the CSPG group than those in the positive and blank groups 2 weeks postoperatively (p < 0.05), while substance P and IL-17 remained lower in the CSPG group 8 weeks postoperatively (p < 0.05). CONCLUSIONS The authors found that CSPGs loaded in a gelatin blocker can prevent traumatic neuroma formation and effectively relieve pain symptoms after sciatic nerve neurotomy by blocking irregular axon regeneration and disorderly collagenous fiber accumulation in the proximal nerve stump. These results indicate that covering the proximal nerve stump with CSPGs may be a new and promising strategy to prevent traumatic painful neuroma formation in the clinical setting.
Collapse
Affiliation(s)
- Fu-Lin He
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
| | - Shuai Qiu
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
| | - Jian-Long Zou
- 3School of Basic Medical Sciences, Guangzhou Medical University
| | - Fan-Bin Gu
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
| | - Zhi Yao
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
| | - Zhe-Hui Tu
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Yuan-Yuan Wang
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Xiao-Lin Liu
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
- 4Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication; and
| | - Li-Hua Zhou
- 5Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qing-Tang Zhu
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
- 4Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication; and
| |
Collapse
|