1
|
Chua MMJ, Pinzon AM, Neudorfer C, Ng PR, Blitz SE, Meyer GM, Butenko K, Dembek TA, Boutet A, Yang AZ, Schwartz M, Germann J, Lipsman N, Lozano A, Behzadi F, McDannold NJ, Rolston JD, Guttmann CRG, Fox MD, Cosgrove R, Horn A. Optimal focused ultrasound lesion location in essential tremor. SCIENCE ADVANCES 2025; 11:eadp0532. [PMID: 40367166 PMCID: PMC12077504 DOI: 10.1126/sciadv.adp0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy is an effective treatment for medically refractory essential tremor. We investigate ablation sites and potential tracts associated with optimal tremor control and side effects based on the analysis of 351 cases from three international hospitals. Lesions were segmented on day 1 thin-cut T2 axial images, mapped to standard Montreal Neurological Institute space, and used to derive probabilistic maps and tracts associated with tremor improvement and side effects. Lesioning of a specific subregion within the ventral intermediate nucleus and the cerebellothalamic tract was associated with optimal tremor improvements. Some lesion locations and tracts were associated with differential side effects. Overlaps with the optimal tremor improvement sites accounted for variance in clinical improvements in out-of-sample cases. Efficacy of this location was further confirmed by test-retest cases that underwent two MRgFUS procedures. We identify and validate a target area for optimal tremor control and sites of avoidance associated with side effects.
Collapse
Affiliation(s)
- Melissa M. J. Chua
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfredo Morales Pinzon
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick R. Ng
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Garance M. Meyer
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Konstantin Butenko
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Till A. Dembek
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | | | | | - Michael Schwartz
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Andres Lozano
- University Health Network, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | - Fardad Behzadi
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathan J. McDannold
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - John D. Rolston
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles R. G. Guttmann
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael D. Fox
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rees Cosgrove
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Network Stimulation, Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Germany
| |
Collapse
|
2
|
Volnov S, Baagil H, Winz O, Kaiser HJ, Meles SK, Schulz JB, Reetz K, Mottaghy FM, Holtbernd F. Identification of a metabolic brain network characterizing essential tremor. Sci Rep 2025; 15:2138. [PMID: 39820101 PMCID: PMC11739557 DOI: 10.1038/s41598-024-82069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025] Open
Abstract
The neuronal correlate of tremor genesis and cognitive function in essential tremor (ET) and its modulation by deep brain stimulation (DBS) are poorly understood. To explore the underlying metabolic topography of motor and cognitive symptoms, sixteen ET patients (age 63.6 ± 49.1 years) and 18 healthy controls (HC) (61.1 ± 6.3 years) underwent tremor and cognitive assessments and18F-fluorodeoxyglucose PET of the brain. Multivariate spatial covariance analysis was applied for identifying ET related metabolic brain networks. For network validation and to explore DBS effects, 8 additional ET patients (68.1 ± 8.2 years) treated with DBS were assessed in both the ON and OFF state, respectively. The ET related metabolic spatial covariance pattern (ETRP) was characterized by relatively increased metabolism in the cerebellum, brainstem, and temporo-occipital cortices, accompanied by relative metabolic decreases mainly in fronto-temporal and motor cortices. Network expression showed inverse correlations with tremor severity and disease duration and positive correlations with cognitive dysfunction. DBS substantially alleviated tremor, but had only marginal effects on cognitive performance. There were no significant DBS effects on ETRP expression at the group level, but all but one subject showed higher scores in the ON state. Our findings suggest ET is characterized by an abnormal brain network associated with disease phenotype.
Collapse
Affiliation(s)
- Solange Volnov
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Hamzah Baagil
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Oliver Winz
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Hans-Juergen Kaiser
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Sanne Katherina Meles
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Joerg Bernhard Schulz
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - Felix Manuel Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Florian Holtbernd
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Juelich GmbH, Juelich, Germany.
| |
Collapse
|
3
|
Tabari F, Berger JI, Flouty O, Copeland B, Greenlee JD, Johari K. Speech, voice, and language outcomes following deep brain stimulation: A systematic review. PLoS One 2024; 19:e0302739. [PMID: 38728329 PMCID: PMC11086900 DOI: 10.1371/journal.pone.0302739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) reliably ameliorates cardinal motor symptoms in Parkinson's disease (PD) and essential tremor (ET). However, the effects of DBS on speech, voice and language have been inconsistent and have not been examined comprehensively in a single study. OBJECTIVE We conducted a systematic analysis of literature by reviewing studies that examined the effects of DBS on speech, voice and language in PD and ET. METHODS A total of 675 publications were retrieved from PubMed, Embase, CINHAL, Web of Science, Cochrane Library and Scopus databases. Based on our selection criteria, 90 papers were included in our analysis. The selected publications were categorized into four subcategories: Fluency, Word production, Articulation and phonology and Voice quality. RESULTS The results suggested a long-term decline in verbal fluency, with more studies reporting deficits in phonemic fluency than semantic fluency following DBS. Additionally, high frequency stimulation, left-sided and bilateral DBS were associated with worse verbal fluency outcomes. Naming improved in the short-term following DBS-ON compared to DBS-OFF, with no long-term differences between the two conditions. Bilateral and low-frequency DBS demonstrated a relative improvement for phonation and articulation. Nonetheless, long-term DBS exacerbated phonation and articulation deficits. The effect of DBS on voice was highly variable, with both improvements and deterioration in different measures of voice. CONCLUSION This was the first study that aimed to combine the outcome of speech, voice, and language following DBS in a single systematic review. The findings revealed a heterogeneous pattern of results for speech, voice, and language across DBS studies, and provided directions for future studies.
Collapse
Affiliation(s)
- Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States of America
| | - Joel I. Berger
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States of America
| | - Brian Copeland
- Department of Neurology, LSU Health Sciences Center, New Orleans, LA, United States of America
| | - Jeremy D. Greenlee
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
- Iowa Neuroscience Institute, Iowa City, IA, United States of America
| | - Karim Johari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
4
|
Bhuvanasundaram R, Washburn S, Krzyspiak J, Khodakhah K. Zona incerta modulation of the inferior olive and the pontine nuclei. Netw Neurosci 2024; 8:260-274. [PMID: 38562296 PMCID: PMC10927296 DOI: 10.1162/netn_a_00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/07/2023] [Indexed: 04/04/2024] Open
Abstract
The zona incerta (ZI) is a subthalamic structure that has been implicated in locomotion, fear, and anxiety. Recently interest has grown in its therapeutic efficacy in deep brain stimulation in movement disorders. This efficacy might be due to the ZI's functional projections to the other brain regions. Notwithstanding some evidence of anatomical connections between the ZI and the inferior olive (IO) and the pontine nuclei (PN), how the ZI modulates the neuronal activity in these regions remains to be determined. We first tested this by monitoring responses of single neurons in the PN and IO to optogenetic activation of channelrhodopsin-expressing ZI axons in wild-type mice, using an in vivo awake preparation. Stimulation of short, single pulses and trains of stimuli at 20 Hz elicited rapid responses in the majority of recorded cells in the PN and IO. Furthermore, the excitatory response of PN neurons scaled with the strength of ZI activation. Next, we used in vitro electrophysiology to study synaptic transmission at ZI-IO synapses. Optogenetic activation of ZI axons evoked a strong excitatory postsynaptic response in IO neurons, which remained robust with repeated stimulation at 20 Hz. Overall, our results demonstrate a functional connection within ZI-PN and ZI-IO pathways.
Collapse
Affiliation(s)
| | - Samantha Washburn
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Joanna Krzyspiak
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Al Ali J, Lacy M, Padmanaban M, Abou Chaar W, Hagy H, Warnke PC, Xie T. Cognitive outcomes in patients with essential tremor treated with deep brain stimulation: a systematic review. Front Hum Neurosci 2024; 18:1319520. [PMID: 38371461 PMCID: PMC10869505 DOI: 10.3389/fnhum.2024.1319520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Essential tremor (ET) is a common neurological disease. Deep brain stimulation (DBS) to the thalamic ventral intermediate nucleus (VIM) or the adjacent structures, such as caudal zona incerta/ posterior subthalamic area (cZi/PSA), can be effective in treating medication refractory tremor. However, it is not clear whether DBS can cause cognitive changes, in which domain, and to what extent if so. Methods We systematically searched PubMed and the Web of Science for available publications reporting on cognitive outcomes in patients with ET who underwent DBS following the PICO (population, intervention, comparators, and outcomes) concept. The PRISMA guideline for systematic reviews was applied. Results Twenty relevant articles were finally identified and included for review, thirteen of which were prospective (one also randomized) studies and seven were retrospective. Cognitive outcomes included attention, memory, executive function, language, visuospatial function, and mood-related variables. VIM and cZi/PSA DBS were generally well tolerated, although verbal fluency and language production were affected in some patients. Additionally, left-sided VIM DBS was associated with negative effects on verbal abstraction, word recall, and verbal memory performance in some patients. Conclusion Significant cognitive decline after VIM or cZi/PSA DBS in ET patients appears to be rare. Future prospective randomized controlled trials are needed to meticulously study the effect of the location, laterality, and stimulation parameters of the active contacts on cognitive outcomes while considering possible medication change post-DBS, timing, standard neuropsychological battery, practice effects, the timing of assessment, and effect size as potential confounders.
Collapse
Affiliation(s)
- Jamal Al Ali
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| | - Maureen Lacy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago Medicine, Chicago, IL, United States
| | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| | - Widad Abou Chaar
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| | - Hannah Hagy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago Medicine, Chicago, IL, United States
| | - Peter C. Warnke
- Department of Neurological Surgery, University of Chicago Medicine, Chicago, IL, United States
| | - Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| |
Collapse
|
6
|
Triguero-Cueva L, Marín-Romero B, Madrid-Navarro CJ, Pérez-Navarro MJ, Iáñez-Velasco B, Mínguez-Castellanos A, Katati MJ, Escamilla-Sevilla F. Neuropsychological assessment protocol in an ongoing randomized controlled trial on posterior subthalamic area vs. ventral intermediate nucleus deep brain stimulation for essential tremor. Front Neurol 2023; 14:1222592. [PMID: 38020655 PMCID: PMC10643533 DOI: 10.3389/fneur.2023.1222592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Patients with essential tremor (ET) may experience cognitive-affective impairment. Deep brain stimulation (DBS) of different targets, such as the ventral intermediate nucleus (VIM) of the thalamus or the posterior subthalamic area (PSA), has been shown to be beneficial for refractory ET. However, there is little evidence regarding the possible neuropsychological effects of PSA-DBS on patients with ET, and there are few studies comparing it with VIM-DBS in this population.In this study, we aim to present the evaluation protocol and neuropsychological battery as used in an ongoing trial of DBS for ET comparing the already mentioned targets. Methods As part of a randomized, double-blind, crossover clinical trial comparing the effectiveness and safety of PSA-DBS vs. VIM-DBS, 11 patients with refractory ET will undergo a multi-domain neuropsychological battery assessment. This will include a pre-/post-implantation assessment (3 months after the stimulation of each target and 6 months after an open stage of DBS on the most optimal target). Conclusion Evidence on the neuropsychological effects of DBS in patients with refractory ET is very scarce, particularly in lesser-explored targets such as PSA. This study could contribute significantly in this field, particularly on pre-procedure safety analysis for tailored patient/technique selection, and to complete the safety analysis of the procedure. Moreover, if proven useful, this proposed neuropsychological assessment protocol could be extensible to other surgical therapies for ET.
Collapse
Affiliation(s)
- Lucía Triguero-Cueva
- Department of Neurology Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Bartolomé Marín-Romero
- Department of Neuropsychology Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Carlos Javier Madrid-Navarro
- Department of Neurology Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | | | | | - Adolfo Mínguez-Castellanos
- Department of Neurology Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Majed Jouma Katati
- Department of Neurosurgery Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Francisco Escamilla-Sevilla
- Department of Neurology Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
7
|
Fan H, Bai Y, Yin Z, An Q, Xu Y, Gao Y, Meng F, Zhang J. Which one is the superior target? A comparison and pooled analysis between posterior subthalamic area and ventral intermediate nucleus deep brain stimulation for essential tremor. CNS Neurosci Ther 2022; 28:1380-1392. [PMID: 35687507 PMCID: PMC9344089 DOI: 10.1111/cns.13878] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 01/14/2023] Open
Abstract
Background/Aims The efficacy and safety of posterior subthalamic area (PSA) and ventral intermediate nucleus (VIM) deep brain stimulation (DBS) in the treatment of essential tremor (ET) have not been compared in large‐scale studies. We conducted a secondary analysis to identify the superior target of ET‐DBS treatment. Methods PubMed, Embase, Cochrane Library, and Google Scholar were searched for relevant studies before September 2021. The tremor‐suppression efficacy and rate of stimulation‐related complications (SRCR) after PSA‐DBS and VIM‐DBS treating ET were quantitatively compared. Secondary outcomes, including tremor subitem scores and quality of life results, were also analyzed. Subgroup analyses were further conducted to stratify by follow‐up (FU) periods and stimulation lateralities. This study was registered in Open Science Framework (DOI: 10.17605/OSF.IO/7VJQ8). Results A total of 23 studies including 122 PSA‐DBS patients and 326 VIM‐DBS patients were analyzed. The average follow‐up time was 12.81 and 14.66 months, respectively. For the percentage improvement of total tremor rating scale (TRS) scores, PSA‐DBS was significantly higher, when compared to VIM‐DBS in the sensitivity analysis (p = 0.030) and main analysis (p = 0.043). The SRCR after VIM‐DBS was higher than that of PSA‐DBS (p = 0.022), and bilateral PSA‐DBS was significantly superior to both bilateral and unilateral VIM‐DBS (p = 0.001). Conclusions This study provided level IIIa evidence that PSA‐DBS was more effective and safer for ET than VIM‐DBS in 12–24 months, although both PSA‐DBS and VIM‐DBS were effective in suppressing tremor in ET patients. Further prospective large‐scale randomized clinical trials are warranted in the future.
Collapse
Affiliation(s)
- Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Gao
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
8
|
Neudorfer C, Kroneberg D, Al-Fatly B, Goede L, Kübler D, Faust K, van Rienen U, Tietze A, Picht T, Herrington TM, Middlebrooks EH, Kühn A, Schneider GH, Horn A. Personalizing Deep Brain Stimulation Using Advanced Imaging Sequences. Ann Neurol 2022; 91:613-628. [PMID: 35165921 DOI: 10.1002/ana.26326] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE With a growing appreciation for interindividual anatomical variability and patient-specific brain connectivity, advanced imaging sequences offer the opportunity to directly visualize anatomical targets for deep brain stimulation (DBS). The lack of quantitative evidence demonstrating their clinical utility, however, has hindered their broad implementation in clinical practice. METHODS Using fast gray matter acquisition T1 inversion recovery (FGATIR) sequences, the present study identified a thalamic hypointensity that holds promise as a visual marker in DBS. To validate the clinical utility of the identified hypointensity, we retrospectively analyzed 65 patients (26 female, mean age = 69.1 ± 12.7 years) who underwent DBS in the treatment of essential tremor. We characterized its neuroanatomical substrates and evaluated the hypointensity's ability to predict clinical outcome using stimulation volume modeling and voxelwise mapping. Finally, we determined whether the hypointensity marker could predict symptom improvement on a patient-specific level. RESULTS Anatomical characterization suggested that the identified hypointensity constituted the terminal part of the dentatorubrothalamic tract. Overlap between DBS stimulation volumes and the hypointensity in standard space significantly correlated with tremor improvement (R2 = 0.16, p = 0.017) and distance to hotspots previously reported in the literature (R2 = 0.49, p = 7.9e-4). In contrast, the amount of variance explained by other anatomical atlas structures was reduced. When accounting for interindividual neuroanatomical variability, the predictive power of the hypointensity increased further (R2 = 0.37, p = 0.002). INTERPRETATION Our findings introduce and validate a novel imaging-based marker attainable from FGATIR sequences that has the potential to personalize and inform targeting and programming in DBS for essential tremor. ANN NEUROL 2022;91:613-628.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany.,MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR), MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Kroneberg
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Lukas Goede
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Dorothee Kübler
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Department Life, Light, and Matter, University of Rostock, Rostock, Germany.,Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL
| | - Andrea Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany.,MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR), MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Jones JD, Orozco T, Bowers D, Hu W, Jabarkheel Z, Chiu S, Ramirez-Zamora A, Foote K, Okun MS, Wagle Shukla A. Cognitive Outcomes for Essential Tremor Patients Selected for Thalamic Deep Brain Stimulation Surgery Through Interdisciplinary Evaluations. Front Hum Neurosci 2020; 14:578348. [PMID: 33362489 PMCID: PMC7759538 DOI: 10.3389/fnhum.2020.578348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/10/2020] [Indexed: 11/20/2022] Open
Abstract
Objective: Deep brain stimulation (DBS) targeted to the ventral intermediate (VIM) nucleus of the thalamus is effective for motor symptoms in essential tremor (ET), but there is limited data on cognitive outcomes. We examined cognitive outcomes in a large cohort of ET DBS patients (pre-DBS and 1+ year after DBS). Methods: In a retrospective analysis, we used repeated-measures ANOVA testing to examine whether the age of tremor onset, age at DBS surgery, hemisphere side implanted with lead, unilateral vs. bilateral implantations, and presence of surgical complications influenced the cognitive outcomes. Neuropsychological outcomes of interest were verbal memory, executive functioning, working memory, language functioning, visuospatial functioning, and general cognitive function. Results: We identified 50 ET DBS patients; 29 (58%) males; the mean age of tremor onset was 35.84 (±21.50) years with a median age of 38 years. The mean age at DBS was 68.18 (±10.07) years. There were 37 unilateral 30 left, seven right, and 13 bilateral brain implantations. In the subgroup analysis, there was a significant interaction between assessment (pre vs. post) and age of tremor onset (<38 vs. >38 years); F(1,30) = 4.47; p = 0.043 for working memory. The post hoc testing found improvements for younger onset ET. Similarly, there was a significant interaction between assessment (pre vs. post) and complications vs. no complications subgroups; F(1,45) = 4.34; p = 0.043 for verbal memory with worsening scores seen for ET patients with complications. The remaining tests were not significant. Conclusion: In this large cohort of ET patients with (>30% improvements), DBS was not accompanied by a significant decline in many cognitive domains. These outcomes were possibly related to the selection of patients with normal cognitive functioning before surgery, unilateral DBS implantations for the majority, and selection of patients with optimal response to DBS.
Collapse
Affiliation(s)
- Jacob D Jones
- Department of Psychology, California State University, San Bernardino, CA, United States
| | - Tatiana Orozco
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Dawn Bowers
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Wei Hu
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Zakia Jabarkheel
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Shannon Chiu
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kelly Foote
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|