1
|
Paolini F, Marrone S, Scalia G, Gerardi RM, Bonosi L, Benigno UE, Musso S, Scerrati A, Iacopino DG, Signorelli F, Maugeri R, Visocchi M. Diffusion Tensor Imaging as Neurologic Predictor in Patients Affected by Traumatic Brain Injury: Scoping Review. Brain Sci 2025; 15:70. [PMID: 39851437 PMCID: PMC11763886 DOI: 10.3390/brainsci15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Background: Diffusion tensor imaging (DTI), a variant of Diffusion Weighted Imaging (DWI), enables a neuroanatomical microscopic-like examination of the brain, which can detect brain damage using physical parameters. DTI's application to traumatic brain injury (TBI) has the potential to reveal radiological features that can assist in predicting the clinical outcomes of these patients. What is the ongoing role of DTI in detecting brain alterations and predicting neurological outcomes in patients with moderate to severe traumatic brain injury and/or diffuse axonal injury? Methods: A scoping review of the PubMed, Scopus, EMBASE, and Cochrane databases was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The aim was to identify all potentially relevant studies concerning the role of DTI in TBI. From an initial pool of 3527 publications, 26 articles were selected based on relevance. These studies included a total of 729 patients with moderate to severe TBI and/or diffuse axonal injury. DTI parameters were analyzed to determine their relationship with neurological outcomes post-TBI, with assessments of several brain functions and regions. Results: The studies included various DTI parameters, identifying significant relationships between DTI variations and neurological outcomes following TBI. Multiple brain functions and regions were evaluated, demonstrating the capability of DTI to detect brain alterations with higher accuracy, sensitivity, and specificity than MRI alone. Conclusions: DTI is a valuable tool for detecting brain alterations in TBI patients, offering enhanced accuracy, sensitivity, and specificity compared to MRI alone. Recent studies confirm its effectiveness in identifying neurological impairments and predicting outcomes in patients following brain trauma, underscoring its utility in clinical settings for managing TBI.
Collapse
Affiliation(s)
- Federica Paolini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Salvatore Marrone
- Unit of Neurosurgery, Sant’Elia Hospital, 93100 Caltanissetta, Italy;
| | - Gianluca Scalia
- Neurosurgery Unit, Department of Head and Neck Surgery, ARNAS Garibaldi, 95124 Catania, Italy;
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Alba Scerrati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
- Department of Neurosurgery, Sant’Anna University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Francesco Signorelli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Massimiliano Visocchi
- CVJ Operative Unit, CVJ Research Center Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
2
|
Podell JE, Morris NA. Traumatic Brain Injury and Traumatic Spinal Cord Injury. Continuum (Minneap Minn) 2024; 30:721-756. [PMID: 38830069 DOI: 10.1212/con.0000000000001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE This article reviews the mechanisms of primary traumatic injury to the brain and spinal cord, with an emphasis on grading severity, identifying surgical indications, anticipating complications, and managing secondary injury. LATEST DEVELOPMENTS Serum biomarkers have emerged for clinical decision making and prognosis after traumatic injury. Cortical spreading depolarization has been identified as a potentially modifiable mechanism of secondary injury after traumatic brain injury. Innovative methods to detect covert consciousness may inform prognosis and enrich future studies of coma recovery. The time-sensitive nature of spinal decompression is being elucidated. ESSENTIAL POINTS Proven management strategies for patients with severe neurotrauma in the intensive care unit include surgical decompression when appropriate, the optimization of perfusion, and the anticipation and treatment of complications. Despite validated models, predicting outcomes after traumatic brain injury remains challenging, requiring prognostic humility and a model of shared decision making with surrogate decision makers to establish care goals. Penetrating injuries, especially gunshot wounds, are often devastating and require public health and policy approaches that target prevention.
Collapse
|
3
|
Zheng F, Li W, Su S, Hui Q. Annexin A1 conveys neuroprotective function via inhibiting oxidative stress in diffuse axonal injury of rats. Neuroreport 2024; 35:466-475. [PMID: 38526918 DOI: 10.1097/wnr.0000000000002030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Diffuse axonal injury (DAI) is a critical pathological facet of traumatic brain injury (TBI). Oxidative stress plays a significant role in the progress of DAI. Annexin A1 (AnxA1) has been demonstrated to benefit from recovery of neurofunctional outcomes after TBI. However, whether AnxA1 exhibits neuronal protective function by modulating oxidative stress in DAI remains unknown. Expression of AnxA1 was evaluated via real-time PCR and western blotting in rat brainstem after DAI. The neurological effect of AnxA1 following DAI through quantification of modified neurologic severity score (mNSS) was compared between wild-type and AnxA1-knockout rats. Brain edema and neuronal apoptosis, as well as expression of oxidative factors and inflammatory cytokines, were analyzed between wild-type and AnxA1 deficiency rats after DAI. Furthermore, mNSS, oxidative and inflammatory cytokines were assayed after timely administration of recombinant AnxA1 for DAI rats. In the brainstem of DAI, the expression of AnxA1 remarkably increased. Ablation of AnxA1 increased the mNSS score and brain water content of rats after DAI. Neuron apoptosis in the brainstem after DAI was exaggerated by AnxA1 deficiency. In addition, AnxA1 deficiency significantly upregulated the level of oxidative and inflammatory factors in the brainstem of DAI rats. Moreover, mNSS decreased by AnxA1 treatment in rats following DAI. Expression of oxidative and inflammatory molecules in rat brainstem subjected to DAI inhibited by AnxA1 administration. AnxA1 exhibited neuronal protective function in the progression of DAI mainly dependent on suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Weixin Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Shaobo Su
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qiaoyan Hui
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Piçarra C, Winzeck S, Monteiro M, Mathieu F, Newcombe VF, Menon PDK, Ben Glocker P. Automatic localisation and per-region quantification of traumatic brain injury on head CT using atlas mapping. Eur J Radiol Open 2023; 10:100491. [PMID: 37287542 PMCID: PMC10241839 DOI: 10.1016/j.ejro.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Rationale and objectives To develop a method for automatic localisation of brain lesions on head CT, suitable for both population-level analysis and lesion management in a clinical setting. Materials and methods Lesions were located by mapping a bespoke CT brain atlas to the patient's head CT in which lesions had been previously segmented. The atlas mapping was achieved through robust intensity-based registration enabling the calculation of per-region lesion volumes. Quality control (QC) metrics were derived for automatic detection of failure cases. The CT brain template was built using 182 non-lesioned CT scans and an iterative template construction strategy. Individual brain regions in the CT template were defined via non-linear registration of an existing MRI-based brain atlas.Evaluation was performed on a multi-centre traumatic brain injury dataset (TBI) (n = 839 scans), including visual inspection by a trained expert. Two population-level analyses are presented as proof-of-concept: a spatial assessment of lesion prevalence, and an exploration of the distribution of lesion volume per brain region, stratified by clinical outcome. Results 95.7% of the lesion localisation results were rated by a trained expert as suitable for approximate anatomical correspondence between lesions and brain regions, and 72.5% for more quantitatively accurate estimates of regional lesion load. The classification performance of the automatic QC showed an AUC of 0.84 when compared to binarised visual inspection scores. The localisation method has been integrated into the publicly available Brain Lesion Analysis and Segmentation Tool for CT (BLAST-CT). Conclusion Automatic lesion localisation with reliable QC metrics is feasible and can be used for patient-level quantitative analysis of TBI, as well as for large-scale population analysis due to its computational efficiency (<2 min/scan on GPU).
Collapse
Affiliation(s)
- Carolina Piçarra
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
| | - Stefan Winzeck
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
| | - Miguel Monteiro
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
| | - Francois Mathieu
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Prof David K. Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Prof Ben Glocker
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
| |
Collapse
|
5
|
Castaño-Leon AM, Sánchez Carabias C, Hilario A, Ramos A, Navarro-Main B, Paredes I, Munarriz PM, Panero I, Eiriz Fernández C, García-Pérez D, Moreno-Gomez LM, Esteban-Sinovas O, Garcia Posadas G, Gomez PA, Lagares A. Serum assessment of traumatic axonal injury: the correlation of GFAP, t-Tau, UCH-L1, and NfL levels with diffusion tensor imaging metrics and its prognosis utility. J Neurosurg 2023; 138:454-464. [PMID: 35901687 DOI: 10.3171/2022.5.jns22638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Diagnosis of traumatic axonal injury (TAI) is challenging because of its underestimation by conventional MRI and the technical requirements associated with the processing of diffusion tensor imaging (DTI). Serum biomarkers seem to be able to identify patients with abnormal CT scanning findings, but their potential role to assess TAI has seldomly been explored. METHODS Patients with all severities of traumatic brain injury (TBI) were prospectively included in this study between 2016 and 2021. They underwent blood extraction within 24 hours after injury and imaging assessment, including DTI. Serum concentrations of glial fibrillary acidic protein, total microtubule-associated protein (t-Tau), ubiquitin C-terminal hydrolase L1 (UCH-L1), and neurofilament light chain (NfL) were measured using an ultrasensitive Simoa multiplex assay panel, a digital form of enzyme-linked immunosorbent assay. The Glasgow Outcome Scale-Extended score was determined at 6 months after TBI. The relationships between biomarker concentrations, volumetric analysis of corpus callosum (CC) lesions, and fractional anisotropy (FA) were analyzed by nonparametric tests. The prognostic utility of the biomarker was determined by calculating the C-statistic and an ordinal regression analysis. RESULTS A total of 87 patients were included. Concentrations of all biomarkers were significantly higher for patients compared with controls. Although the concentration of the biomarkers was affected by the presence of mass lesions, FA of the CC was an independent factor influencing levels of UCH-L1 and NfL, which positioned these two biomarkers as better surrogates of TAI. Biomarkers also performed well in determining patients who would have had unfavorable outcome. NfL and the FA of the CC are independent complementary factors related to outcome. CONCLUSIONS UCH-L1 and NfL seem to be the biomarkers more specific to detect TAI. The concentration of NfL combined with the FA of the CC might help predict long-term outcome.
Collapse
Affiliation(s)
- Ana M Castaño-Leon
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | | | - Amaya Hilario
- 3Department of Radiology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Ana Ramos
- 3Department of Radiology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Blanca Navarro-Main
- 4Department of Psychiatry, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid; and
| | - Igor Paredes
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Pablo M Munarriz
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Irene Panero
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Carla Eiriz Fernández
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Daniel García-Pérez
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Luis Miguel Moreno-Gomez
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Olga Esteban-Sinovas
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Guillermo Garcia Posadas
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Pedro A Gomez
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Alfonso Lagares
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid.,5Department of Surgery, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Leichtes Schädel-Hirn-Trauma im Kindes- und Jugendalter – Update Gehirnerschütterung. Monatsschr Kinderheilkd 2022. [DOI: 10.1007/s00112-022-01518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|