1
|
Moser I, Engelhardt M, Grittner U, Ferreira FMSR, Denker M, Reinsch J, Fischer L, Link T, Heppner FL, Capper D, Vajkoczy P, Picht T, Rosenstock T. Analysis of Neuronal Excitability Profiles for Motor-Eloquent Brain Tumor Entities Using nTMS in 800 Patients. Cancers (Basel) 2025; 17:935. [PMID: 40149270 PMCID: PMC11940777 DOI: 10.3390/cancers17060935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Non-invasive motor mapping with navigated transcranial magnetic stimulation (nTMS) is an established diagnostic tool to identify spatial relationships between functional and tumor areas and to characterize motor excitability. Recently, nTMS has been used to analyze the impact of different brain tumor entities on motor excitability. However, entity-specific excitability patterns are not sufficiently validated yet. METHODS We retrospectively analyzed nTMS motor mapping data of 800 motor-eloquent brain tumor patients in this observational study. The motor excitability profile consisted of four nTMS parameters (resting motor threshold (RMT), cortical motor area, amplitude and latency) measured on both hemispheres. The relationship between motor excitability parameters and tumor entity, glioma subtype and motor status were assessed using multiple regressions analyses. Regression models included patient- and tumor-specific factors. RESULTS Gliomas had more frequent pathologic RMT ratios (OR 1.76, 95%CI: 1.06-2.89, p = 0.030) compared to benign entities. In the subgroup of gliomas, pathologic RMT ratios were more associated with the isocitrate dehydrogenase (IDH)-wildtype status (OR 0.43, 95%CI: 0.23-0.79, p = 0.006) and less so with higher WHO grades (OR 1.61, 95%CI: 0.96-2.71, p = 0.074). This was true for both IDH-mutant astrocytomas (OR 0.43, 95%CI: 0.20-0.91, p = 0.027) and IDH-mutant oligodendrogliomas (OR 0.43, 95%CI: 0.20-0.93, p = 0.031). Motor area enlargement on the tumor hemisphere was more frequently observed in lower WHO-graded gliomas (OR 0.87, 95%CI: 0.78-0.97, p = 0.019). Interestingly, a larger cortical motor area was additionally found for oligodendrogliomas on the healthy hemisphere (OR 1.18, 95%CI: 1.01-1.39, p = 0.041). Motor deficits were related with higher RMT (OR 1.12, 95%CI: 1.05-1.21, p = 0.001), reduced amplitude (OR 0.78, 95%CI: 0.64-0.96, p = 0.019) and prolonged latency (OR 1.12, 95%CI: 1.02-1.24, p = 0.025) in the tumor hemisphere. CONCLUSIONS Neuroplastic phenomena such as adjustment of the motor excitability level and an enlargement of the nTMS-positive motor area were more frequently observed in benign tumors and in IDH-mutated gliomas. Consequently, patients experienced motor deficits less often, suggesting a differentiated susceptibility to resection-related paresis. Future studies will analyze which stimulation paradigms are most effective in stimulating and optimizing neuroplasticity processes to improve the functional outcomes (and thus the quality of life) for patients.
Collapse
Affiliation(s)
- Ismael Moser
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.M.); (M.E.); (F.M.S.R.F.); (M.D.); (J.R.); (L.F.); (P.V.); (T.P.)
| | - Melina Engelhardt
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.M.); (M.E.); (F.M.S.R.F.); (M.D.); (J.R.); (L.F.); (P.V.); (T.P.)
- Einstein Center for Neurosciences, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- International Graduate Program Medical Neurosciences, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Felipe Monte Santo Regino Ferreira
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.M.); (M.E.); (F.M.S.R.F.); (M.D.); (J.R.); (L.F.); (P.V.); (T.P.)
| | - Maren Denker
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.M.); (M.E.); (F.M.S.R.F.); (M.D.); (J.R.); (L.F.); (P.V.); (T.P.)
| | - Jennifer Reinsch
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.M.); (M.E.); (F.M.S.R.F.); (M.D.); (J.R.); (L.F.); (P.V.); (T.P.)
| | - Lisa Fischer
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.M.); (M.E.); (F.M.S.R.F.); (M.D.); (J.R.); (L.F.); (P.V.); (T.P.)
| | - Tilman Link
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.M.); (M.E.); (F.M.S.R.F.); (M.D.); (J.R.); (L.F.); (P.V.); (T.P.)
| | - Frank L. Heppner
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.L.H.); (D.C.)
- Cluster of Excellence, NeuroCure, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.L.H.); (D.C.)
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.M.); (M.E.); (F.M.S.R.F.); (M.D.); (J.R.); (L.F.); (P.V.); (T.P.)
| | - Thomas Picht
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.M.); (M.E.); (F.M.S.R.F.); (M.D.); (J.R.); (L.F.); (P.V.); (T.P.)
- Einstein Center for Neurosciences, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt Universität zu Berlin, 10178 Berlin, Germany
| | - Tizian Rosenstock
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.M.); (M.E.); (F.M.S.R.F.); (M.D.); (J.R.); (L.F.); (P.V.); (T.P.)
- Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
2
|
Baig Mirza A, Vastani A, Suvarna R, Rashed S, Al-Omari A, Mthunzi E, Fayez F, Rampersad N, Jung J, Baamonde AD, Mosquera JS, Elhag A, Marchi F, Gullan R, Ashkan K, Bhangoo R, Vergani F, Mirallave-Pescador A, Lavrador JP. Preoperative and intraoperative neuromonitoring and mapping techniques impact oncological and functional outcomes in supratentorial function-eloquent brain tumours: a systematic review and meta-analysis. EClinicalMedicine 2025; 80:103055. [PMID: 39867964 PMCID: PMC11764091 DOI: 10.1016/j.eclinm.2024.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Background Supratentorial function-eloquent brain tumour surgeries challenge the balance between maximal tumour resection and preservation of neurological function. This study aims to evaluate the efficacy of preoperative and intraoperative mapping techniques on resection outcomes and post-operative deficits. Methods This systematic review and meta-analysis examined literature up to March 2023, sourced from PubMed, Embase, and Medline. Criteria for inclusion were studies on patients undergoing surgery for supratentorial brain tumours, comparing preoperative mapping only (POM), intraoperative neuromonitoring and mapping (IONM), and combined techniques (POM&IONM), excluding non-randomized controlled trials. Data extraction focused on rates of gross total resection (GTR) and focal neurological deficits (FNDs). The main outcomes, assessed through a random-effects model and Cochran's Q-test for subgroup analysis. The study protocol is published on PROSPERO CRD42024512306. Findings 19 studies involving 992 patients were included. Systematic review with meta-analysis revealed a non-significantly higher average GTR rates for POM&IONM (49.13%) and POM (50.79%) compared to IONM alone (41.23%). Highest rates of GTR were achieved with tractography-guided resection in POM group (66.59% versus fMRI-20.00%, p = 0.0004), multimodal stimulation in IONM group (54.16% versus low frequency stimulation (LFS)-13.29%, p < 0.0001) and in POM&IONM group (65.88% versus LFS-37.77%, p = 0.0036). Within the same tumour histology-metastasis, high grade and low grade glioma-there are no differences in the GTR rates achieved in the different groups (p > 0.05). In language-eloquent tumours and in awake craniotomy techniques regardless of tumour functional eloquence, POM&IONM group had higher GTR when compared to IONM groups (language eloquent tumours-POM&IONM 43.31% versus IONM-15.09%, p = 0.022; awake craniotomy technique-POM&IONM-41.22% versus IONM-12.08%, p = 0.0006). Permanent FNDs were higher in the IONM group (IONM-73.0%; POM-29.6%; POM&IONM-33.7% of immediate postoperative deficits, p = 0.0010). Interpretation A combined POM&IONM approach is responsible for higher rates of GTR in patients with language eloquent tumours and in both awake and asleep craniotomy techniques regardless of the tumour functional eloquence. The tumour histology is not relevant for differences in GTR rates among different mapping and monitoring strategies. Permanent postoperative FNDs are more likely with standalone utilization of IONM. Funding Not applicable.
Collapse
Affiliation(s)
- Asfand Baig Mirza
- Department of Neurosurgery, Queen's Hospital Barking, Havering and Redbridge NHS, Trust, London, UK
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Amisha Vastani
- Department of Neurosurgery, St George's Hospital, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Rishabh Suvarna
- School of Medicine, Worsley Building, University of Leeds, UK
| | - Sami Rashed
- Department of Neurosurgery, Queen's Hospital Barking, Havering and Redbridge NHS, Trust, London, UK
| | - Aws Al-Omari
- Department of Neurosurgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Engelbert Mthunzi
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Feras Fayez
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Nicala Rampersad
- Department of Neurosurgery, Queen's Hospital Barking, Havering and Redbridge NHS, Trust, London, UK
| | - Josephine Jung
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Alba Díaz Baamonde
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
- Department of Clinical Neurophysiology, King's College Hospital Foundation Trust, London, UK
| | - José Siado Mosquera
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
- Department of Clinical Neurophysiology, King's College Hospital Foundation Trust, London, UK
| | - Ali Elhag
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Francesco Marchi
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
- Department of Clinical Neurophysiology, King's College Hospital Foundation Trust, London, UK
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Ana Mirallave-Pescador
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
- Department of Clinical Neurophysiology, King's College Hospital Foundation Trust, London, UK
| | - José Pedro Lavrador
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| |
Collapse
|
3
|
Leone A, Carbone F, Spetzger U, Vajkoczy P, Raffa G, Angileri F, Germanó A, Engelhardt M, Picht T, Colamaria A, Rosenstock T. Preoperative mapping techniques for brain tumor surgery: a systematic review. Front Oncol 2025; 14:1481430. [PMID: 39839770 PMCID: PMC11747149 DOI: 10.3389/fonc.2024.1481430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Accurate preoperative mapping is crucial for maximizing tumor removal while minimizing damage to critical brain functions during brain tumor surgery. Navigated transcranial magnetic stimulation (nTMS), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) are established methods for assessing motor and language function. Following PRISMA guidelines, this systematic review analyzes the reliability, clinical utility, and accessibility of these techniques. A total of 128 studies (48 nTMS, 56 fMRI, 24 MEG) were identified from various databases. The analysis finds nTMS to be a safe, standardized method with high accuracy compared to direct cortical stimulation for preoperative motor mapping. Combining nTMS with tractography allows for preoperative assessment of short-term and long-term motor deficits, which may not be possible with fMRI. fMRI data interpretation requires careful consideration of co-activated, non-essential areas (potentially leading to false positives) and situations where neural activity and blood flow are uncoupled (potentially leading to false negatives). These limitations restrict fMRI's role in preoperative planning for both motor and language functions. While MEG offers high accuracy in motor mapping, its high cost and technical complexity contribute to the limited number of available studies. Studies comparing preoperative language mapping techniques with direct cortical stimulation show significant variability across all methods, highlighting the need for larger, multicenter studies for validation. Repetitive nTMS speech mapping offers valuable negative predictive value, allowing clinicians to evaluate whether a patient should undergo awake or asleep surgery. Language function monitoring heavily relies on the specific expertise and experience available at each center, making it challenging to establish general recommendations.
Collapse
Affiliation(s)
- Augusto Leone
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Francesco Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
- Department of Neurosurgery, University of Foggia, Foggia, Italy
| | - Uwe Spetzger
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Giovanni Raffa
- Department of Neurosurgery, University of Messina, Messina, Italy
| | - Flavio Angileri
- Department of Neurosurgery, University of Messina, Messina, Italy
| | - Antonino Germanó
- Department of Neurosurgery, University of Messina, Messina, Italy
| | - Melina Engelhardt
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material,” Humboldt University, Berlin, Germany
| | | | - Tizian Rosenstock
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin Institute of Health (BIH) Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
4
|
Paiva WS, Fonoff ET, dos Santos Silva RP, Schiavao L, Brunoni AR, de Almeida CC, Júnior CC. Preoperative Cortical Mapping for Brain Tumor Surgery Using Navigated Transcranial Stimulation: Analysis of Accuracy. Brain Sci 2024; 14:867. [PMID: 39335363 PMCID: PMC11430880 DOI: 10.3390/brainsci14090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) represents a distinctive technique for non-invasive brain stimulation. Recent advancements in image processing have enabled the enhancement of TMS by integrating magnetic resonance imaging (MRI) modalities with TMS via a neuronavigation system. The aim of this study is to assess the efficacy of navigated TMS for cortical mapping in comparison to surgical mapping using direct electrical stimulation (DES). This study involved 30 neurosurgical procedures for tumors located in or adjacent to the precentral gyrus. The DES points were compared with TMS responses based on the original distances of vectorial modules. There was a notable similarity in the points obtained from the two mapping methods. The distances between the geometric centers of TMS and DCS were 4.85 ± 1.89 mm. A strong correlation was identified between these vectorial points (r = 0.901, p < 0.001). The motor threshold in TMS was highest in the motor cortex adjacent to the tumor compared to the normal cortex (p < 0.001). Patients with deficits exhibited excellent accuracy in both methods. In view of this, TMS demonstrated reliable and precise application in brain mapping, which is a promising method for preoperative functional mapping in motor cortex tumor surgery.
Collapse
Affiliation(s)
- Wellingson Silva Paiva
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - Erich Talamoni Fonoff
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | | | - Lucas Schiavao
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - André Russowsky Brunoni
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - César Cimonari de Almeida
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - Carlos Carlotti Júnior
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| |
Collapse
|
5
|
Beyh A, Howells H, Giampiccolo D, Cancemi D, De Santiago Requejo F, Citro S, Keeble H, Lavrador JP, Bhangoo R, Ashkan K, Dell'Acqua F, Catani M, Vergani F. Connectivity defines the distinctive anatomy and function of the hand-knob area. Brain Commun 2024; 6:fcae261. [PMID: 39239149 PMCID: PMC11375856 DOI: 10.1093/braincomms/fcae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/19/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024] Open
Abstract
Control of the hand muscles during fine digit movements requires a high level of sensorimotor integration, which relies on a complex network of cortical and subcortical hubs. The components of this network have been extensively studied in human and non-human primates, but discrepancies in the findings obtained from different mapping approaches are difficult to interpret. In this study, we defined the cortical and connectional components of the hand motor network in the same cohort of 20 healthy adults and 3 neurosurgical patients. We used multimodal structural magnetic resonance imaging (including T1-weighted imaging and diffusion tractography), as well as functional magnetic resonance imaging and navigated transcranial magnetic stimulation (nTMS). The motor map obtained from nTMS compared favourably with the one obtained from functional magnetic resonance imaging, both of which overlapped well within the 'hand-knob' region of the precentral gyrus and in an adjacent region of the postcentral gyrus. nTMS stimulation of the precentral and postcentral gyri led to motor-evoked potentials in the hand muscles in all participants, with more responses recorded from precentral stimulations. We also observed that precentral stimulations tended to produce motor-evoked potentials with shorter latencies and higher amplitudes than postcentral stimulations. Tractography showed that the region of maximum overlap between terminations of precentral-postcentral U-shaped association fibres and somatosensory projection tracts colocalizes with the functional motor maps. The relationships between the functional maps, and between them and the tract terminations, were replicated in the patient cohort. Three main conclusions can be drawn from our study. First, the hand-knob region is a reliable anatomical landmark for the functional localization of fine digit movements. Second, its distinctive shape is determined by the convergence of highly myelinated long projection fibres and short U-fibres. Third, the unique role of the hand-knob area is explained by its direct action on the spinal motoneurons and the access to high-order somatosensory information for the online control of fine movements. This network is more developed in the hand region compared to other body parts of the homunculus motor strip, and it may represent an important target for enhancing motor learning during early development.
Collapse
Affiliation(s)
- Ahmad Beyh
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Henrietta Howells
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neurosurgery, Institute of Neurosciences, Cleveland Clinic London, London SW1X 7HY, UK
| | - Daniele Cancemi
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | | | - Hannah Keeble
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Ranjeev Bhangoo
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| | - Keyoumars Ashkan
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Francesco Vergani
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| |
Collapse
|
6
|
Lavrador JP, Mirallave-Pescador A, Soumpasis C, Díaz Baamonde A, Aliaga-Arias J, Baig Mirza A, Patel S, David Siado Mosquera J, Gullan R, Ashkan K, Bhangoo R, Vergani F. Transcranial Magnetic Stimulation-Based Machine Learning Prediction of Tumor Grading in Motor-Eloquent Gliomas. Neurosurgery 2024; 95:347-356. [PMID: 38511960 DOI: 10.1227/neu.0000000000002902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/04/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Navigated transcranial magnetic stimulation (nTMS) is a well-established preoperative mapping tool for motor-eloquent glioma surgery. Machine learning (ML) and nTMS may improve clinical outcome prediction and histological correlation. METHODS This was a retrospective cohort study of patients who underwent surgery for motor-eloquent gliomas between 2018 and 2022. Ten healthy subjects were included. Preoperative nTMS-derived variables were collected: resting motor threshold (RMT), interhemispheric RMT ratio (iRMTr)-abnormal if above 10%-and cortical excitability score-number of abnormal iRMTrs. World Health Organization (WHO) grade and molecular profile were collected to characterize each tumor. ML models were fitted to the data after statistical feature selection to predict tumor grade. RESULTS A total of 177 patients were recruited: WHO grade 2-32 patients, WHO grade 3-65 patients, and WHO grade 4-80 patients. For the upper limb, abnormal iRMTr were identified in 22.7% of WHO grade 2, 62.5% of WHO grade 3, and 75.4% of WHO grade 4 patients. For the lower limb, iRMTr was abnormal in 23.1% of WHO grade 2, 67.6% of WHO grade 3%, and 63.6% of WHO grade 4 patients. Cortical excitability score ( P = .04) was statistically significantly related with WHO grading. Using these variables as predictors, the ML model had an accuracy of 0.57 to predict WHO grade 4 lesions. In subgroup analysis of high-grade gliomas vs low-grade gliomas, the accuracy for high-grade gliomas prediction increased to 0.83. The inclusion of molecular data into the model-IDH mutation and 1p19q codeletion status-increases the accuracy of the model in predicting tumor grading (0.95 and 0.74, respectively). CONCLUSION ML algorithms based on nTMS-derived interhemispheric excitability assessment provide accurate predictions of HGGs affecting the motor pathway. Their accuracy is further increased when molecular data are fitted onto the model paving the way for a joint preoperative approach with radiogenomics.
Collapse
Affiliation(s)
- José Pedro Lavrador
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Ana Mirallave-Pescador
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
- Department of Clinical Neurophysiology, King's College Hospital Foundation Trust, London , UK
| | - Christos Soumpasis
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Alba Díaz Baamonde
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
- Department of Clinical Neurophysiology, King's College Hospital Foundation Trust, London , UK
| | - Jahard Aliaga-Arias
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Asfand Baig Mirza
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Sabina Patel
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - José David Siado Mosquera
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
- Department of Clinical Neurophysiology, King's College Hospital Foundation Trust, London , UK
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| |
Collapse
|
7
|
Wang P, Zhao H, Hao Z, Ma X, Wang S, Zhang H, Wu Q, Gao Y. Structural changes in corticospinal tract profiling via multishell diffusion models and their relation to overall survival in glioblastoma. Eur J Radiol 2024; 175:111477. [PMID: 38669755 DOI: 10.1016/j.ejrad.2024.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/22/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE Advanced MR fiber tracking imaging reflects fiber bundle invasion by glioblastoma, particularly of the corticospinal tract (CST), which is more susceptible as the largest downstream fiber tracts. We aimed to investigate whether CST features can predict the overall survival of glioblastoma. METHODS In this prospective secondary analysis, 40 participants (mean age, 58 years; 16 male) pathologically diagnosed with glioblastoma were enrolled. Diffusion spectrum MRI was used for CST reconstruction. Fifty morphological and diffusion indicators (DTI, DKI, NODDI, MAP and Q-space) were used to characterize the CST. Optimal parameters capturing fiber bundle damage were obtained through various grouping methods. Eventually, the correlation with overall survival was determined by the hazard ratios (HRs) from various Cox proportional hazard model combinations. RESULTS Only intracellular volume fraction (ICVF) and non-Gaussianity (NG) values on the affected tumor level were significant in all four groups or stratified comparisons (all P < .05). During the median follow-up 698 days, only the ICVF on the affected tumor level was independently associated with overall survival, even after adjusting for all classic prognostic factors (HR [95 % CI]: 0.611 [0.403, 0.927], P = .021). Moreover, stratification by the ICVF on the affected tumor level successfully predicted risk (P < .01) and improved the C-index of the multivariate model (from 0.695 to 0.736). CONCLUSIONS This study demonstrates a relationship between NODDI-derived CST features, ICVF on the affected tumor level, and overall survival in glioblastoma. Independent of classical prognostic factors for glioblastoma, a lower ICVF on the affected tumor level might predict a lower overall survival.
Collapse
Affiliation(s)
- Peng Wang
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - He Zhao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhiyue Hao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xueying Ma
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, Shanghai, China
| | - Huapeng Zhang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, Shanghai, China
| | - Qiong Wu
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China.
| | - Yang Gao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
8
|
Eibl T, Schrey M, Liebert A, Ritter L, Lange R, Steiner HH, Schebesch KM. Significance of navigated transcranial magnetic stimulation and tractography to preserve motor function in patients undergoing surgery for motor eloquent gliomas. Heliyon 2024; 10:e28115. [PMID: 38533081 PMCID: PMC10963369 DOI: 10.1016/j.heliyon.2024.e28115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Resection of gliomas in or close to motor areas is at high risk for morbidity and development of surgery-related deficits. Navigated transcranial magnetic stimulation (nTMS) including nTMS-based tractography is suitable for presurgical planning and risk assessment. The aim of this study was to investigate the association of postoperative motor status and the spatial relation to motor eloquent brain tissue in order to increase the understanding of postoperative motor deficits. Patient data, nTMS examinations and imaging studies were retrospectively reviewed, corticospinal tracts (CST) were reconstructed with two different approaches of nTMS-based seeding. Postoperative imaging and nTMS-augmented preoperative imaging were merged to identify the relation between motor positive cortical and subcortical areas and the resection cavity. 38 tumor surgeries were performed in 36 glioma patients (28.9% female) aged 55.1 ± 13.8 years. Mean distance between the CST and the lesion was 6.9 ± 5.1 mm at 75% of the patient-individual fractional anisotropy threshold and median tumor volume reduction was 97.7 ± 11.6%. The positive predictive value for permanent deficits after resection of nTMS positive areas was 66.7% and the corresponding negative predictive value was 90.6%. Distances between the resection cavity and the CST were higher in patients with postoperative stable motor function. Extent of resection and distance between resection cavity and CST correlated well. The present study strongly supports preoperative nTMS as an important surgical tool for preserving motor function in glioma patients at risk.
Collapse
Affiliation(s)
- Thomas Eibl
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Michael Schrey
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Adrian Liebert
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Leonard Ritter
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Rüdiger Lange
- Department of Neurology, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Hans-Herbert Steiner
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| | - Karl-Michael Schebesch
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Str. 201, 90471, Nuremberg, Bavaria, Germany
| |
Collapse
|
9
|
Huang W, Zhang M, Wang W, Luo F, Li J, Zhang Y, Lin J, Zou X, Cai G. Neuronavigation-assisted microsurgical clipping of pericallosal aneurysms: A single-center retrospective study. Clin Neurol Neurosurg 2023; 233:107905. [PMID: 37515855 DOI: 10.1016/j.clineuro.2023.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Surgical clipping of pericallosal artery aneurysm is technically challenging since it is fragile and tends to rupture accidentally during the operation. This study was aimed to evaluate the efficacy and safety of MRI-neuronavigation-assisted microsurgery for pericallosal artery aneurysm clipping. Forty patients diagnosed with pericallosal artery aneurysms who underwent craniotomy clipping were enrolled. Among these patients, 18 cases accepted routine surgical approaches, while another 22 cases accepted MRI-neuronavigation-assisted microsurgery. Design of craniotomy, operation pathway, operation duration, intraoperative cerebral protection and superior drainage vein protection were analyzed retrospectively. All the 40 cases underwent aneurysm clipping by pre-coronal inter-hemispheric approach, and all aneurysms were clipped completely confirmed by postoperative CTA or DSA. During the operations, MRI-neuronavigation provided precise spatial configuration of pericallosal artery aneurysms, and allowed accurate and real-time identification for the adjacent arteries and brain structures, and no aneurysms ruptured accidentally during the operations. Functional cortex and draining veins were protected well. Compared with routine surgical approaches, the MRI-neuronavigation-assisted microsurgery showed less operation duration, few adverse events induced by accurate location for aneurysm and less invasion to draining veins. Therefore, MRI-neuronavigation-assisted microsurgery could precisely locate the pericallosal artery aneurysm, optimize surgical approaches, and help to cerebral protection. It is expected to reduce the surgical risk and improve the precision and security, can be regarded as an effective technology in the clipping of pericallosal artery aneurysms.
Collapse
Affiliation(s)
- Wei Huang
- Department of Neurosurgery, The 909th Hospital, School of Medicine, Xiamen University, China
| | - Mingsheng Zhang
- Department of Neurosurgery, The 909th Hospital, School of Medicine, Xiamen University, China
| | - Wenhao Wang
- Department of Neurosurgery, The 909th Hospital, School of Medicine, Xiamen University, China.
| | - Fei Luo
- Department of Neurosurgery, The 909th Hospital, School of Medicine, Xiamen University, China.
| | - Jun Li
- Department of Neurosurgery, The 909th Hospital, School of Medicine, Xiamen University, China
| | - Yuan Zhang
- Department of Neurosurgery, The 909th Hospital, School of Medicine, Xiamen University, China
| | - Junming Lin
- Department of Neurosurgery, The 909th Hospital, School of Medicine, Xiamen University, China
| | - Xiaojun Zou
- Department of Neurosurgery, The 909th Hospital, School of Medicine, Xiamen University, China
| | - Genping Cai
- Department of Neurosurgery, The 909th Hospital, School of Medicine, Xiamen University, China
| |
Collapse
|
10
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
11
|
Selective Stimulus Intensity during Hotspot Search Ensures Faster and More Accurate Preoperative Motor Mapping with nTMS. Brain Sci 2023; 13:brainsci13020285. [PMID: 36831828 PMCID: PMC9954713 DOI: 10.3390/brainsci13020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
INTRODUCTION Navigated transcranial magnetic stimulation (nTMS) has emerged as one of the most innovative techniques in neurosurgical practice. However, nTMS motor mapping involves rigorous steps, and the importance of an accurate execution method has not been emphasized enough. In particular, despite strict adherence to procedural protocols, we have observed high variability in map activation according to the choice of stimulation intensity (SI) right from the early stage of hotspot localization. We present a retrospective analysis of motor mappings performed between March 2020 and July 2022, where the SI was only chosen with rigorous care in the most recent ones, under the guide of an expert neurophysiologist. MATERIALS AND METHODS In order to test the ability to reduce inaccurate responses and time expenditure using selective SI, data were collected from 16 patients who underwent mapping with the random method (group A) and 15 patients who underwent mapping with the proposed method (group B). The parameters considered were resting motor threshold (%), number of stimuli, number of valid motor evoked potentials (MEPs), number of valid MEPs considered true positives (TPs), number of valid MEPs considered false positives (FPs), ratio of true-positive MEPs to total stimuli, ratio of true-positive MEPs to valid MEPs, minimum amplitude, maximum amplitude and mapping time for each patient. RESULTS The analysis showed statistically significant reductions in total stimulus demand, procedural time and number of false-positive MEPs. Significant increases were observed in the number of true-positive MEPs, the ratio of true-positive MEPs to total stimuli and the ratio of true-positive MEPs to valid MEPs. In the subgroups analyzed, there were similar trends, in particular, an increase in true positives and a decrease in false-positive responses. CONCLUSIONS The precise selection of SI during hotspot search in nTMS motor mapping could provide reliable cortical maps in short time and with low employment of resources. This method seems to ensure that a MEP really represents a functionally eloquent cortical point, making mapping more intuitive even in less experienced centers.
Collapse
|
12
|
Wang F, Dong J, Zhang J, Zhao H, Wang N, Jin J, Yan X, Gao X, Liu H, Hu S. Rapid progression of subcutaneous glioblastoma: A case report and literature review. Front Oncol 2023; 13:935944. [PMID: 36761958 PMCID: PMC9905810 DOI: 10.3389/fonc.2023.935944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Extra-neural spread of glioblastoma (GBM) is extremely rare. We report a case of postoperative intracranial GBM spreading to the subcutaneous tissue via the channel of craniotomy defect in a 73-year-old woman. Radiological images and histopathology indicate that the tumor microenvironment of the subcutaneous tumor is clearly different from the intracranial tumor. We also model the invasion of GBM cells through the dura-skull defect in mouse. The retrospective analysis of GBM with scalp metastases suggests that craniectomy is a direct cause of subcutaneous metastasis in patients with GBM. Imaging examinations of other sites for systemic screening is also recommended to look for metastases outside the brain when GBM invades the scalp or metastasizes to it.
Collapse
Affiliation(s)
- Fang Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiawei Dong
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiuwei Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Shaoshan Hu, ; Han Liu,
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,*Correspondence: Shaoshan Hu, ; Han Liu,
| |
Collapse
|
13
|
Assessing the feasibility of mapping the tibialis anterior muscle with navigated transcranial magnetic stimulation in neuro-oncologic patients. Sci Rep 2022; 12:18719. [PMID: 36333400 PMCID: PMC9636142 DOI: 10.1038/s41598-022-23444-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Mapping the lower extremity with navigated transcranial magnetic stimulation (nTMS) still remains challenging for the investigator. Clinical factors influencing leg mapping with nTMS have not been fully investigated yet. The aim of the study was to identify factors which influence the possibility of eliciting motor evoked potentials (MEPs) from the tibialis anterior muscle (TA). Patient records, imaging, nTMS examinations and tractography were retrospectively evaluated. 48 nTMS examinations were performed in 46 brain tumor patients. Reproducible MEPs were recorded in 20 patients (41.67%). Younger age (p = 0.044) and absence of perifocal edema (p = 0.035, Cramer's V = 0.34, OR = 0.22, 95% CI = 0.06-0.81) facilitated mapping the TA muscle. Leg motor deficit (p = 0.49, Cramer's V = 0.12, OR = 0.53, 95%CI = 0.12-2.36), tumor entity (p = 0.36, Cramer's V = 0.22), tumor location (p = 0.52, Cramer's V = 0.26) and stimulation intensity (p = 0.158) were no significant factors. The distance between the tumor and the pyramidal tract was higher (p = 0.005) in patients with successful mapping of the TA. The possibility to stimulate the leg motor area was associated with no postoperative aggravation of motor deficits in general (p = 0.005, Cramer's V = 0.45, OR = 0.63, 95%CI = 0.46-0.85) but could not serve as a specific predictor of postoperative lower extremity function. In conclusion, successful mapping of the TA muscle for neurosurgical planning is influenced by young patient age, absence of edema and greater distance to the CST, whereas tumor entity and stimulation intensity were non-significant.
Collapse
|
14
|
Muir M, Gadot R, Prinsloo S, Michener H, Traylor J, Athukuri P, Tummala S, Kumar VA, Prabhu SS. Comparative study of preoperative functional imaging combined with tractography for prediction of iatrogenic motor deficits. J Neurosurg 2022:1-8. [DOI: 10.3171/2022.10.jns221684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE
Robust preoperative imaging can improve the extent of resection in patients with brain tumors while minimizing postoperative neurological morbidity. Both structural and functional imaging techniques can provide helpful preoperative information. A recent study found that transcranial magnetic stimulation (TMS) tractography has significant predictive value for permanent deficits. The present study directly compares the predictive value of TMS tractography and task-based functional MRI (fMRI) tractography in the same cohort of glioma patients.
METHODS
Clinical outcome data were collected from charts of patients with motor eloquent glioma and preoperative fMRI and TMS studies. The primary outcome was a new or worsened motor deficit present at the 3-month postoperative follow-up, which was termed a "permanent deficit." Postoperative MR images were overlaid onto preoperative plans to determine which imaging features were resected. Multiple fractional anisotropic thresholds (FATs) were screened for both TMS and fMRI tractography. The predictive value of the various thresholds was modeled using receiver operating characteristic curve analysis.
RESULTS
Forty patients were included in this study. Six patients (15%) sustained permanent postoperative motor deficits. A significantly greater predictive value was found for TMS tractography than for fMRI tractography regardless of the FAT. Despite 35% of patients showing clinically relevant neuroplasticity captured by TMS, only 2.5% of patients showed a blood oxygen level–dependent signal displaced from the precentral gyrus. Comparing the best-performing FAT for both modalities, TMS seeded tractography showed superior predictive value across all metrics: sensitivity, specificity, positive predictive value, and negative predictive value.
CONCLUSIONS
The results from this study indicate that the prediction of permanent deficits with TMS tractography is superior to that with fMRI tractography, possibly because TMS tractography captures clinically relevant neuroplasticity. However, future large-scale prospective studies are needed to fully illuminate the proper role of each modality in comprehensive presurgical workups for patients with motor-eloquent tumors.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Sudhakar Tummala
- Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston; and
| | | | | |
Collapse
|
15
|
Weiss Lucas C, Faymonville AM, Loução R, Schroeter C, Nettekoven C, Oros-Peusquens AM, Langen KJ, Shah NJ, Stoffels G, Neuschmelting V, Blau T, Neuschmelting H, Hellmich M, Kocher M, Grefkes C, Goldbrunner R. Surgery of Motor Eloquent Glioblastoma Guided by TMS-Informed Tractography: Driving Resection Completeness Towards Prolonged Survival. Front Oncol 2022; 12:874631. [PMID: 35692752 PMCID: PMC9186060 DOI: 10.3389/fonc.2022.874631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background Surgical treatment of patients with glioblastoma affecting motor eloquent brain regions remains critically discussed given the risk–benefit dilemma of prolonging survival at the cost of motor-functional damage. Tractography informed by navigated transcranial magnetic stimulation (nTMS-informed tractography, TIT) provides a rather robust estimate of the individual location of the corticospinal tract (CST), a highly vulnerable structure with poor functional reorganisation potential. We hypothesised that by a more comprehensive, individualised surgical decision-making using TIT, tumours in close relationship to the CST can be resected with at least equal probability of gross total resection (GTR) than less eloquently located tumours without causing significantly more gross motor function harm. Moreover, we explored whether the completeness of TIT-aided resection translates to longer survival. Methods A total of 61 patients (median age 63 years, m = 34) with primary glioblastoma neighbouring or involving the CST were operated on between 2010 and 2015. TIT was performed to inform surgical planning in 35 of the patients (group T; vs. 26 control patients). To achieve largely unconfounded group comparisons for each co-primary outcome (i.e., gross-motor functional worsening, GTR, survival), (i) uni- and multivariate regression analyses were performed to identify features of optimal outcome prediction; (ii), optimal propensity score matching (PSM) was applied to balance those features pairwise across groups, followed by (iii) pairwise group comparison. Results Patients in group T featured a significantly higher lesion-CST overlap compared to controls (8.7 ± 10.7% vs. 3.8 ± 5.7%; p = 0.022). The frequency of gross motor worsening was higher in group T, albeit non-significant (n = 5/35 vs. n = 0/26; p = 0.108). PSM-based paired-sample comparison, controlling for the confounders of preoperative tumour volume and vicinity to the delicate vasculature of the insula, showed higher GTR rates in group T (77% vs. 69%; p = 0.025), particularly in patients with a priori intended GTR (87% vs. 78%; p = 0.003). This translates into a prolonged PFS in the same PSM subgroup (8.9 vs. 5.8 months; p = 0.03), with GTR representing the strongest predictor of PFS (p = 0.001) and OS (p = 0.0003) overall. Conclusion The benefit of TIT-aided GTR appears to overcome the drawbacks of potentially elevated motor functional risk in motor eloquent tumour localisation, leading to prolonged survival of patients with primary glioblastoma close to the CST.
Collapse
Affiliation(s)
- Carolin Weiss Lucas
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andrea Maria Faymonville
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Ricardo Loução
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - Catharina Schroeter
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Charlotte Nettekoven
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Karl Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - Volker Neuschmelting
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tobias Blau
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannah Neuschmelting
- Institute of Pathology and Neuropathology, University Hospital Essen, Essen, Germany
| | - Martin Hellmich
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany.,Institute for Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Rosenstock T, Pöser P, Wasilewski D, Bauknecht HC, Grittner U, Picht T, Misch M, Onken JS, Vajkoczy P. MRI-Based Risk Assessment for Incomplete Resection of Brain Metastases. Front Oncol 2022; 12:873175. [PMID: 35651793 PMCID: PMC9149256 DOI: 10.3389/fonc.2022.873175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Object Recent studies demonstrated that gross total resection of brain metastases cannot always be achieved. Subtotal resection (STR) can result in an early recurrence and might affect patient survival. We initiated a prospective observational study to establish a MRI-based risk assessment for incomplete resection of brain metastases. Methods All patients in whom ≥1 brain metastasis was resected were prospectively included in this study (DRKS ID: DRKS00021224; Nov 2020 - Nov 2021). An interdisciplinary board of neurosurgeons and neuroradiologists evaluated the pre- and postoperative MRI (≤48h after surgery) for residual tumor. Extensive neuroradiological analyses were performed to identify risk factors for an unintended STR which were integrated into a regression tree analysis to determine the patients' individual risk for a STR. Results We included 150 patients (74 female; mean age: 61 years), in whom 165 brain metastases were resected. A STR was detected in 32 cases (19.4%) (median residual tumor volume: 1.36ml, median EORrel: 93.6%), of which 6 (3.6%) were intended STR (median residual tumor volume: 3.27ml, median EORrel: 67.3%) - mainly due to motor-eloquent location - and 26 (15.8%) were unintended STR (uSTR) (median residual tumor volume: 0.64ml, median EORrel: 94.7%). The following risk factors for an uSTR could be identified: subcortical metastasis ≥5mm distant from cortex, diffuse contrast agent enhancement, proximity to the ventricles, contact to falx/tentorium and non-transcortical approaches. Regression tree analysis revealed that the individual risk for an uSTR was mainly associated to the distance from the cortex (distance ≥5mm vs. <5mm: OR 8.0; 95%CI: 2.7 - 24.4) and the contrast agent patterns (diffuse vs. non-diffuse in those with distance ≥5mm: OR: 4.2; 95%CI: 1.3 - 13.7). The preoperative tumor volume was not substantially associated with the extent of resection. Conclusions Subcortical metastases ≥5mm distant from cortex with diffuse contrast agent enhancement showed the highest incidence of uSTR. The proposed MRI-based assessment allows estimation of the individual risk for uSTR and can help indicating intraoperative imaging.
Collapse
Affiliation(s)
- Tizian Rosenstock
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Paul Pöser
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Wasilewski
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hans-Christian Bauknecht
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin, Germany
| | - Martin Misch
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julia Sophie Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
Naros G, Machetanz K, Leao MT, Wang S, Tatagiba M, Gharabaghi A. Impaired phase synchronization of motor-evoked potentials reflects the degree of motor dysfunction in the lesioned human brain. Hum Brain Mapp 2022; 43:2668-2682. [PMID: 35199903 PMCID: PMC9057086 DOI: 10.1002/hbm.25812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
The functional corticospinal integrity (CSI) can be indexed by motor-evoked potentials (MEP) following transcranial magnetic stimulation of the motor cortex. Glial brain tumors in motor-eloquent areas are frequently disturbing CSI resulting in different degrees of motor dysfunction. However, this is unreliably mirrored by MEP characteristics. In 59 consecutive patients with diffuse glial tumors and 21 healthy controls (CTRL), we investigated the conventional MEP features, that is, resting motor threshold (RMT), amplitudes and latencies. In addition, frequency-domain MEP features were analyzed to estimate the event-related spectral perturbation (ERSP), and the induced phase synchronization by intertrial coherence (ITC). The clinical motor status was captured including the Medical Research Council Scale (MRCS), the Grooved Pegboard Test (GPT), and the intake of antiepileptic drugs (AED). Motor function was classified according to MRCS and GPT as no motor deficit (NMD), fine motor deficits (FMD) and gross motor deficits (GMD). CSI was assessed by diffusion-tensor imaging (DTI). Motor competent subjects (CTRL and NMD) had similar ERSP and ITC values. The presence of a motor deficit (FMD and GMD) was associated with an impairment of high-frequency ITC (150-300 Hz). GMD and damage to the CSI demonstrated an additional reduction of high-frequency ERSP (150-300 Hz). GABAergic AED increased ERSP but not ITC. Notably, groups were indistinguishable based on conventional MEP features. Estimating MEP phase synchronization provides information about the corticospinal transmission after transcranial magnetic stimulation and reflects the degree of motor impairment that is not captured by conventional measures.
Collapse
Affiliation(s)
- Georgios Naros
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| | - Kathrin Machetanz
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| | - Maria Teresa Leao
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Sophie Wang
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Alireza Gharabaghi
- Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| |
Collapse
|