1
|
Saviuk M, Sleptsova E, Redkin T, Turubanova V. Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research. Cancers (Basel) 2023; 15:5539. [PMID: 38067243 PMCID: PMC10705208 DOI: 10.3390/cancers15235539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023] Open
Abstract
Approximately 30% of glioma patients are able to survive beyond one year postdiagnosis. And this short time is often overshadowed by glioma-associated epilepsy. This condition severely impairs the patient's quality of life and causes great suffering. The genetic, molecular and cellular mechanisms underlying tumour development and epileptogenesis remain incompletely understood, leading to numerous unanswered questions. The various types of gliomas, namely glioblastoma, astrocytoma and oligodendroglioma, demonstrate distinct seizure susceptibility and disease progression patterns. Patterns have been identified in the presence of IDH mutations and epilepsy, with tumour location in cortical regions, particularly the frontal lobe, showing a more frequent association with seizures. Altered expression of TP53, MGMT and VIM is frequently detected in tumour cells from individuals with epilepsy associated with glioma. However, understanding the pathogenesis of these modifications poses a challenge. Moreover, hypoxic effects induced by glioma and associated with the HIF-1a factor may have a significant impact on epileptogenesis, potentially resulting in epileptiform activity within neuronal networks. We additionally hypothesise about how the tumour may affect the functioning of neuronal ion channels and contribute to disruptions in the blood-brain barrier resulting in spontaneous depolarisations.
Collapse
Affiliation(s)
- Mariia Saviuk
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ekaterina Sleptsova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Tikhon Redkin
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Victoria Turubanova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| |
Collapse
|
2
|
Regli LKP, Huijs SMH, Pasmans RCOS, Leue C, Dijkstra JB, Eekers DBP, Hovinga KE, Anten MHME, Hoeben A, Broen MPG. Incidence of clinically relevant psychiatric symptoms during glioblastoma treatment: an exploratory study. J Neurooncol 2023; 163:185-194. [PMID: 37162667 PMCID: PMC10232638 DOI: 10.1007/s11060-023-04326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE In addition to neurological symptoms glioblastoma (GBM) patients can experience psychiatric complaints, which are often hard to recognize and difficult to treat. Research on psychiatric symptoms during glioblastoma treatment is limited, but can have significant impact on quality of life, treatment processes and even survival. The aim of this study is to explore the incidence of clinically relevant psychiatric symptoms, during glioblastoma treatment and active surveillance. METHODS Medical records of 302 GBM patients were reviewed from diagnostic surgery until discontinuation of treatment or active surveillance. Clinical relevance was defined as psychiatric symptoms that interfered with the oncological treatment and required referral to a psychiatrist. "Referred" versus "non-referred" GBM patients were compared using the Pearson Chi-Square test, Fisher's Exact Test or Mann Whitney-U test. RESULTS Psychiatric symptoms occurred in 11.5% of patients during glioblastoma treatment or active surveillance, most often mood or behavioral symptoms, followed by psychotic symptoms. Referral occurred mainly during concomitant chemoradiation or adjuvant chemotherapy (64.3%). In 28.6% of patients psychiatric symptoms were thought to be attributive to medication. Treatment was discontinued in 17.9% of patients and temporarily interrupted in 3.6%. Possible risk factors included male gender, history of psychiatric disorder, postoperative delirium, non-frontal tumor location, anti-epileptic drug use at baseline and corticosteroid initiation during treatment. CONCLUSION The found incidence of 11.5% and the high number of patients discontinuing treatment due to psychiatric symptoms justify more research in this, to date, understudied topic in scientific literature. Further prospective studies are needed to identify risk factors and unravel possible effects on survival.
Collapse
Affiliation(s)
- L K P Regli
- Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - S M H Huijs
- Department of Neurology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - R C O S Pasmans
- Department of Neurology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - C Leue
- Department Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J B Dijkstra
- Department of Medical Psychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - D B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - K E Hovinga
- Department of Neurosurgery, Maastricht UMC+, Maastricht, The Netherlands
| | - M H M E Anten
- Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - A Hoeben
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Medical Oncology, Maastricht UMC+, Maastricht, The Netherlands
| | - M P G Broen
- Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Crainic N, Furtner J, Pallud J, Bielle F, Lombardi G, Rudà R, Idbaih A. Rare Neuronal, Glial and Glioneuronal Tumours in Adults. Cancers (Basel) 2023; 15:cancers15041120. [PMID: 36831464 PMCID: PMC9954092 DOI: 10.3390/cancers15041120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Rare glial, neuronal and glioneuronal tumours in adults form a heterogeneous group of rare, primary central nervous system tumours. These tumours, with a glial and/or neuronal component, are challenging in terms of diagnosis and therapeutic management. The novel classification of primary brain tumours published by the WHO in 2021 has significantly improved the diagnostic criteria of these entities. Indeed, diagnostic criteria are nowadays multimodal, including histological, immunohistochemical and molecular (i.e., genetic and methylomic). These integrated parameters have allowed the specification of already known tumours but also the identification of novel tumours for a better diagnosis.
Collapse
Affiliation(s)
- Nicolas Crainic
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2, 75013 Paris, France
- Department of Neurology, University Hospital of Brest, 29200 Brest, France
- Correspondence: (N.C.); (A.I.)
| | - Julia Furtner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Research Center of Medical Image Analysis and Artificial Intelligence (MIAAI), Danube Private University, 3500 Krems, Austria
| | - Johan Pallud
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, 75014 Paris, France
- Institute of Psychiatry and Neuroscience of Paris, IMABRAIN, INSERM U1266, Université de Paris, 75014 Paris, France
| | - Franck Bielle
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, Service de Neuropathologie, 75013 Paris, France
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology-IRCCS, 35128 Padua, Italy
| | - Roberta Rudà
- Division of Neurology, Castelfranco Veneto and Treviso Hospitals, 31033 Treviso, Italy
- Department of Neuro-Oncology, University of Turin, 10126 Turin, Italy
| | - Ahmed Idbaih
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2, 75013 Paris, France
- Correspondence: (N.C.); (A.I.)
| |
Collapse
|