1
|
Brunner C, Denis NL, Gertz K, Grillet M, Montaldo G, Endres M, Urban A. Brain-wide continuous functional ultrasound imaging for real-time monitoring of hemodynamics during ischemic stroke. J Cereb Blood Flow Metab 2024; 44:6-18. [PMID: 37503862 PMCID: PMC10905631 DOI: 10.1177/0271678x231191600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Ischemic stroke occurs abruptly causing sudden neurologic deficits, and therefore, very little is known about hemodynamic perturbations in the brain immediately after stroke onset. Here, functional ultrasound imaging was used to monitor variations in relative cerebral blood volume (rCBV) compared to baseline. rCBV levels were analyzed brain-wide and continuously at high spatiotemporal resolution (100 μm, 2 Hz) until 70mins after stroke onset in rats. We compared two stroke models, with either a permanent occlusion of the middle cerebral artery (MCAo) or a tandem occlusion of both the common carotid and middle cerebral arteries (CCAo + MCAo). We observed a typical hemodynamic pattern, including a quick drop of the rCBV after MCAo, followed by spontaneous reperfusion of several brain regions located in the vicinity of the ischemic core. The severity and location of the ischemia were variable within groups. On average, the severity of the ischemia was in good agreement with the lesion volume (24 hrs after stroke) for MCAo group, while larger for the CCAo + MCAo model. For both groups, we observed that infarcts extended to initially non-ischemic regions located rostrally to the ischemic core. These regions strongly colocalize with the origin of transient hemodynamic events associated with spreading depolarizations.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nielsen Lagumersindez Denis
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Karen Gertz
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Micheline Grillet
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Matthias Endres
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Alan Urban
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|