1
|
Dong JF, Zhang F, Zhang J. Detecting traumatic brain injury-induced coagulopathy: What we are testing and what we are not. J Trauma Acute Care Surg 2023; 94:S50-S55. [PMID: 35838367 PMCID: PMC9805481 DOI: 10.1097/ta.0000000000003748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Coagulopathy after traumatic brain injury (TBI) is common and has been closely associated with poor clinical outcomes for the affected patients. Traumatic brain injury-induced coagulopathy (TBI-IC) is consumptive in nature and evolves rapidly from an injury-induced hypercoagulable state. Traumatic brain injury-induced coagulopathy defined by laboratory tests is significantly more frequent than clinical coagulopathy, which often manifests as secondary, recurrent, or delayed intracranial or intracerebral hemorrhage. This disparity between laboratory and clinical coagulopathies has hindered progress in understanding the pathogenesis of TBI-IC and developing more accurate and predictive tests for this severe TBI complication. In this review, we discuss laboratory tests used in clinical and research studies to define TBI-IC, with specific emphasis on what the tests detect and what they do not. We also offer perspective on developing more accurate and predictive tests for this severe TBI complication.
Collapse
Affiliation(s)
- Jing-fei Dong
- Bloodworks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Fangyi Zhang
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Jianning Zhang
- Tianjin Institute of Neurology, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Determination of Bleeding Time by Hounsfield Unit Values in Computed Tomography Scans of Patients Diagnosed with Intracranial Hemorrhage: Evaluation Results of Computed Tomography Scans of 666 Patients. Clin Neurol Neurosurg 2022; 217:107258. [DOI: 10.1016/j.clineuro.2022.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/20/2022]
|
3
|
Wang J, Xie X, Wu Y, Zhou Y, Li Q, Li Y, Xu X, Wang M, Murdiyarso L, Houck K, Hilton T, Chung D, Li M, Zhang JN, Dong J. Brain-Derived Extracellular Vesicles Induce Vasoconstriction and Reduce Cerebral Blood Flow in Mice. J Neurotrauma 2022; 39:879-890. [PMID: 35316073 DOI: 10.1089/neu.2021.0274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) impairs cerebrovascular autoregulation and reduces cerebral blood flow (CBF), leading to ischemic secondary injuries. We have shown that injured brains release brain-derived extracellular vesicles (BDEVs) into circulation, where they cause a systemic hypercoagulable state that rapidly turns into consumptive coagulopathy. BDEVs induce endothelial injury and permeability, leading to the hypothesis that they contribute to TBI-induced cerebrovascular dysregulation. In a study designed to test this hypothesis, we detected circulating BDEVs in C57BL/6J mice subjected to severe TBI, reaching peak levels of 3x104/µl at 3 hours post injury (71.2±21.5% of total annexin V-binding EVs). We further showed in an adaptive transfer model that 41.7±5.8% of non-injured mice died within 6 hours after being infused with 3x104/µl of BDEVs. BDEVs transmigrated through the vessel walls, induced rapid vasoconstriction by inducing calcium influx in vascular smooth muscle cells, and reduced CBF by 93.8±5.6% within 30 minutes after infusion. The CBF suppression was persistent in mice that eventually died but it recovered quickly in surviving mice. It was prevented by the calcium channel blocker nimodipine. When being separated, neither protein nor phospholipid components from the lethal number of BDEVs induced vasoconstriction, reduced CBF, and caused death. These results demonstrate a novel vasoconstrictive activity of BDEVs that depends on the structure of BDEVs and contributes to TBI-induced disseminated cerebral ischemia and sudden death.
Collapse
Affiliation(s)
- Jiwei Wang
- Tianjin Neurological Institute, 230967, Anshan road No.154, Tianjin, China, 300052;
| | - Xiaofeng Xie
- Lanzhou University, 12426, Lanzhou, Gansu, China;
| | - Yingang Wu
- University of Science and Technology of China, 12652, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine., Hefei, Anhui, China;
| | - Yuan Zhou
- Tianjin Neurological Institute, 230967, Tianjin Medical University General Hospital, Tianjin, Tianjin, China;
| | - Qifeng Li
- Tianjin Neurological Institute, 230967, Tianjin Medical University General Hospital, Tianjin, Tianjin, China;
| | - Ying Li
- Tianjin Neurological Institute, 230967, Tianjin, Tianjin, China;
| | - Xin Xu
- Tianjin Neurological Institute, 230967, Tianjin Medical University General Hospital, Tianjin, Tianjin, China;
| | - Min Wang
- Lanzhou University, 12426, Lanzhou, Gansu, China;
| | | | - Katie Houck
- Bloodworks Research institute, Seattle, United States;
| | | | - Dominic Chung
- Bloodworks Research institute, Seattle, United States;
| | - Min Li
- Lanzhou University, 12426, Lanzhou, Gansu, China;
| | - Jian-Ning Zhang
- Tianjin Neurological Institute, 230967, Tianjin Medical University General Hospital, Tianjin, Tianjin, China;
| | - Jingfei Dong
- Bloodworks Research Institute, Bloodworks Northwest, Seattle, Seattle, Washington, United States.,Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States;
| |
Collapse
|
4
|
Adatia K, Newcombe VFJ, Menon DK. Contusion Progression Following Traumatic Brain Injury: A Review of Clinical and Radiological Predictors, and Influence on Outcome. Neurocrit Care 2021; 34:312-324. [PMID: 32462411 PMCID: PMC7253145 DOI: 10.1007/s12028-020-00994-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Secondary injuries remain an important cause of the morbidity and mortality associated with traumatic brain injury (TBI). Progression of cerebral contusions occurs in up to 75% of patients with TBI, and this contributes to subsequent clinical deterioration and requirement for surgical intervention. Despite this, the role of early clinical and radiological factors in predicting contusion progression remains relatively poorly defined due to studies investigating progression of all types of hemorrhagic injuries as a combined cohort. In this review, we summarize data from recent studies on factors which predict contusion progression, and the effect of contusion progression on clinical outcomes.
Collapse
Affiliation(s)
- Krishma Adatia
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
| | | | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Bedry T, Tadele H. Pattern and Outcome of Pediatric Traumatic Brain Injury at Hawassa University Comprehensive Specialized Hospital, Southern Ethiopia: Observational Cross-Sectional Study. Emerg Med Int 2020; 2020:1965231. [PMID: 32399303 PMCID: PMC7204112 DOI: 10.1155/2020/1965231] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is the most common cause of death/disability in children. The Glasgow coma scale and other parameters are used for treatment/follow-up of TBI. Childhood TBI data are scarce from sub-Saharan Africa. The study aimed to determine the pattern and predictors of the TBI outcome in Southern Ethiopia. METHODS An observational cross-sectional study was conducted from September 2017 to September 2018 at Hawassa University Hospital. Structured questionnaires were used for data collection. Significant associations were declared at a P value of <0.05. RESULTS There were 4,258 emergency room (ER) visits during the study period, and TBI contributed to 317 (7.4%) cases. The mean age of study subjects was 7.66 ± 3.88 years. Boys, predominantly above 5 years of age, comprise 218 (68.8%) of the study subjects with a male to female ratio of 2.2 : 1. Pedestrian road traffic accidents (RTA), 120 (37.9%), and falls, 104 (32.8%), were the commonest causes of TBI. Mild, moderate, and severe TBI were documented in 231 (72.9%), 61 (19.2%), and 25 (7.9%) of cases, respectively. Most of the TBI cases presented within 24 hrs of injury, 258 (81.4%). Recovery with no neurologic deficit, 267 (84.2%); focal neurologic deficit, 30 (9.5%); depressed mentation, 10 (3.2%); and death, 10 (3.2%), were documented. Signs of increased intracranial pressure (ICP) at admission [AOR: 1.415 (95% CI: 1.4058-9.557)], severe TBI [AOR: 2.553 (95% CI: 1.965-4.524)], presence of hyperglycemia [AOR: 2.318 (95% CI: 1.873-7.874)], and presence of contusion, diffuse axonal injury (DAI), or intracranial bleeding on the head computed tomography (CT) scan [AOR: 2.45 (95% CI: 1.811-7.952)] predicted poor TBI outcome. CONCLUSION TBI contributed to 7.4% of pediatric ER visits. Pedestrian RTA and falls, early presentation (<24 hours of injury), and mild form of TBI among boys were the most common documented patterns. ICP, hyperglycemia, severe TBI, and presence of contusion, DAI, or intracranial bleeding on head CT predicted poor outcome. Strategies to ensure road safety and to prevent falls and animal-related injuries and TBI follow-up for ICP and glycemic controls are recommended.
Collapse
Affiliation(s)
- Tuji Bedry
- Department of Pediatrics and Child Health, College of Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Henok Tadele
- Department of Pediatrics and Child Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Mufti O, Mathew S, Harris A, Siesky B, Burgett KM, Verticchio Vercellin AC. Ocular changes in traumatic brain injury: A review. Eur J Ophthalmol 2019; 30:867-873. [PMID: 31378077 DOI: 10.1177/1120672119866974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury is represented by a penetrating or non-penetrating head injury, which causes disruption in the normal functioning of the brain. Traumatic brain injury has been an ardently debated topic of discussion due to its prevalence in media centric persons such as military personnel and athletes. Current assessments for traumatic brain injury have looked at vestibulo-ocular and vascular parameters to aid in diagnosis. Innovations in non-invasive ophthalmic imaging have allowed for the visualization of specific tissue structure/function relationships in a variety of ophthalmic and neurodegenerative diseases. As the eye and brain share significant embryological and physiological pathways, ocular imaging modalities may provide a novel and impactful tool in advancing assessment of traumatic brain injury. Herein, we examined the available literature and data on visual fields, mean retinal nerve fiber layer thickness, retinal ganglion cell layer thickness, and cerebral blood flow following traumatic brain injury. This review of published individual and population-based studies was performed in order to explore the feasibility and importance of considering ocular imaging biomarkers following traumatic brain injury.
Collapse
Affiliation(s)
- Osama Mufti
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sunu Mathew
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alon Harris
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brent Siesky
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kendall M Burgett
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
7
|
Agrawal A, Kumar VA, Moscote-Salazar L, Kiran Kumar VA. Pericontusional penumbra in patients with traumatic brain injury. APOLLO MEDICINE 2019. [DOI: 10.4103/am.am_23_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Bendinelli C, Cooper S, Evans T, Bivard A, Pacey D, Parson M, Balogh ZJ. Perfusion Abnormalities are Frequently Detected by Early CT Perfusion and Predict Unfavourable Outcome Following Severe Traumatic Brain Injury. World J Surg 2018; 41:2512-2520. [PMID: 28455815 DOI: 10.1007/s00268-017-4030-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND In patients with severe traumatic brain injury (TBI), early CT perfusion (CTP) provides additional information beyond the non-contrast CT (NCCT) and may alter clinical management. We hypothesized that this information may prognosticate functional outcome. METHODS Five-year prospective observational study was performed in a level-1 trauma centre on consecutive severe TBI patients. CTP (obtained in conjunction with first routine NCCT) was interpreted as: abnormal, area of altered perfusion more extensive than on NCCT, and the presence of ischaemia. Six months Glasgow Outcome Scale-Extended of four or less was considered an unfavourable outcome. Logistic regression analysis of CTP findings and core variables [preintubation Glasgow Coma Scale (GCS), Rotterdam score, base deficit, age] was conducted using Bayesian model averaging to identify the best predicting model for unfavourable outcome. RESULTS Fifty patients were investigated with CTP (one excluded for the absence of TBI) [male: 80%, median age: 35 (23-55), prehospital intubation: 7 (14.2%); median GCS: 5 (3-7); median injury severity score: 29 (20-36); median head and neck abbreviated injury scale: 4 (4-5); median days in ICU: 10 (5-15)]. Thirty (50.8%) patients had an unfavourable outcome. GCS was a moderate predictor of unfavourable outcome (AUC = 0.74), while CTP variables showed greater predictive ability (AUC for abnormal CTP = 0.92; AUC for area of altered perfusion more extensive than NCCT = 0.83; AUC for the presence of ischaemia = 0.81). CONCLUSION Following severe TBI, CTP performed at the time of the first follow-up NCCT, is a non-invasive and extremely valuable tool for early outcome prediction. The potential impact on management and its cost effectiveness deserves to be evaluated in large-scale studies. LEVEL OF EVIDENCE III Prospective study.
Collapse
Affiliation(s)
- Cino Bendinelli
- Department of Traumatology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Shannon Cooper
- Department of Traumatology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Tiffany Evans
- Clinical Research Design, Information Technology and Statistical Support, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Andrew Bivard
- Department of Neurology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Dianne Pacey
- Department of Rehabilitation, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Mark Parson
- Department of Neurology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Zsolt J Balogh
- Department of Traumatology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
9
|
Bragina OA, Lara DA, Nemoto EM, Shuttleworth CW, Semyachkina-Glushkovskaya OV, Bragin DE. Increases in Microvascular Perfusion and Tissue Oxygenation via Vasodilatation After Anodal Transcranial Direct Current Stimulation in the Healthy and Traumatized Mouse Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1072:27-31. [PMID: 30178319 DOI: 10.1007/978-3-319-91287-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Traumatic brain injury (TBI), causing neurological deficit in 70% of survivors, still lacks a clinically proven effective therapy. Transcranial direct current stimulation (tDCS) has emerged as a promising electroceutical therapeutic intervention possibly suitable for TBI; however, due to limited animal studies the mechanisms and optimal parameters are unknown. Using a mouse model of TBI we evaluated the acute effects of the anodal tDCS on cerebral blood flow (CBF) and tissue oxygenation, and assessed its efficacy in long-term neurologic recovery. TBI was induced by controlled cortical impact leading to cortical and hippocampal lesions with reduced CBF and developed hypoxia in peri-contusion area. Sham animals were subjected to craniotomy only. Repetitive anodal tDCS (0.1 mA/15 min) or sham stimulation was done over 4 weeks for four consecutive days with 3-day intervals, beginning 1 or 3 weeks after TBI. Laser speckle contrast imaging (LSCI) revealed that anodal tDCS causes an increase in regional cortical CBF in both traumatized and Sham animals. On microvascular level, using in-vivo two-photon microscopy (2PLSM), we have shown that anodal tDCS induces arteriolar dilatation leading to an increase in capillary flow velocity and tissue oxygenation in both traumatized and Sham animals. Repetitive anodal tDCS significantly improved motor and cognitive neurologic outcome. The group with stimulation starting 3 weeks after TBI showed better recovery compared with stimulation starting 1 week after TBI, suggesting that the late post-traumatic period is more optimal for anodal tDCS.
Collapse
Affiliation(s)
- O A Bragina
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - D A Lara
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - E M Nemoto
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - C W Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - D E Bragin
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
10
|
Chiluwal A, Narayan RK, Chaung W, Mehan N, Wang P, Bouton CE, Golanov EV, Li C. Neuroprotective Effects of Trigeminal Nerve Stimulation in Severe Traumatic Brain Injury. Sci Rep 2017; 7:6792. [PMID: 28754973 PMCID: PMC5533766 DOI: 10.1038/s41598-017-07219-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/23/2017] [Indexed: 12/25/2022] Open
Abstract
Following traumatic brain injury (TBI), ischemia and hypoxia play a major role in further worsening of the damage, a process referred to as 'secondary injury'. Protecting neurons from causative factors of secondary injury has been the guiding principle of modern TBI management. Stimulation of trigeminal nerve induces pressor response and improves cerebral blood flow (CBF) by activating the rostral ventrolateral medulla. Moreover, it causes cerebrovasodilation through the trigemino-cerebrovascular system and trigemino-parasympathetic reflex. These effects are capable of increasing cerebral perfusion, making trigeminal nerve stimulation (TNS) a promising strategy for TBI management. Here, we investigated the use of electrical TNS for improving CBF and brain oxygen tension (PbrO2), with the goal of decreasing secondary injury. Severe TBI was produced using controlled cortical impact (CCI) in a rat model, and TNS treatment was delivered for the first hour after CCI. In comparison to TBI group, TBI animals with TNS treatment demonstrated significantly increased systemic blood pressure, CBF and PbrO2 at the hyperacute phase of TBI. Furthermore, rats in TNS-treatment group showed significantly reduced brain edema, blood-brain barrier disruption, lesion volume, and brain cortical levels of TNF-α and IL-6. These data provide strong early evidence that TNS could be an effective neuroprotective strategy.
Collapse
Affiliation(s)
- Amrit Chiluwal
- Northwell Neuromonitoring Laboratory, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Raj K Narayan
- Northwell Neuromonitoring Laboratory, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Hempstead, NY, USA
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Neal Mehan
- Northwell Neuromonitoring Laboratory, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Chad E Bouton
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Eugene V Golanov
- Department of Neurosurgery, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Chunyan Li
- Northwell Neuromonitoring Laboratory, The Feinstein Institute for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Hempstead, NY, USA.
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
11
|
Bragin DE, Kameneva MV, Bragina OA, Thomson S, Statom GL, Lara DA, Yang Y, Nemoto EM. Rheological effects of drag-reducing polymers improve cerebral blood flow and oxygenation after traumatic brain injury in rats. J Cereb Blood Flow Metab 2017; 37:762-775. [PMID: 28155574 PMCID: PMC5363490 DOI: 10.1177/0271678x16684153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebral ischemia has been clearly demonstrated after traumatic brain injury (TBI); however, neuroprotective therapies have not focused on improvement of the cerebral microcirculation. Blood soluble drag-reducing polymers (DRP), prepared from high molecular weight polyethylene oxide, target impaired microvascular perfusion by altering the rheological properties of blood and, until our recent reports, has not been applied to the brain. We hypothesized that DRP improve cerebral microcirculation and oxygenation after TBI. DRP were studied in healthy and traumatized rat brains and compared to saline controls. Using in-vivo two-photon laser scanning microscopy over the parietal cortex, we showed that after TBI, nanomolar concentrations of intravascular DRP significantly enhanced microvascular perfusion and tissue oxygenation in peri-contusional areas, preserved blood-brain barrier integrity and protected neurons. The mechanisms of DRP effects were attributable to reduction of the near-vessel wall cell-free layer which increased near-wall blood flow velocity, microcirculatory volume flow, and number of erythrocytes entering capillaries, thereby reducing capillary stasis and tissue hypoxia as reflected by a reduction in NADH. Our results indicate that early reduction in CBF after TBI is mainly due to ischemia; however, metabolic depression of contused tissue could be also involved.
Collapse
Affiliation(s)
- Denis E Bragin
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Marina V Kameneva
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,4 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olga A Bragina
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Susan Thomson
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Gloria L Statom
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Devon A Lara
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Yirong Yang
- 5 College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Edwin M Nemoto
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
12
|
Honda M, Ichibayashi R, Yokomuro H, Yoshihara K, Masuda H, Haga D, Seiki Y, Kudoh C, Kishi T. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study. Neurol Med Chir (Tokyo) 2016; 56:501-9. [PMID: 27356957 PMCID: PMC4987450 DOI: 10.2176/nmc.oa.2015-0341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1–3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3–4, GCS5–6, and GCS7–8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients.
Collapse
Affiliation(s)
- Mitsuru Honda
- Department of Critical Care Center, Toho University Medical Center Omori Hospital
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hopp S, Albert-Weissenberger C, Mencl S, Bieber M, Schuhmann MK, Stetter C, Nieswandt B, Schmidt PM, Monoranu CM, Alafuzoff I, Marklund N, Nolte MW, Sirén AL, Kleinschnitz C. Targeting coagulation factor XII as a novel therapeutic option in brain trauma. Ann Neurol 2016; 79:970-82. [PMID: 27043916 PMCID: PMC5074329 DOI: 10.1002/ana.24655] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Traumatic brain injury is a major global public health problem for which specific therapeutic interventions are lacking. There is, therefore, a pressing need to identify innovative pathomechanism-based effective therapies for this condition. Thrombus formation in the cerebral microcirculation has been proposed to contribute to secondary brain damage by causing pericontusional ischemia, but previous studies have failed to harness this finding for therapeutic use. The aim of this study was to obtain preclinical evidence supporting the hypothesis that targeting factor XII prevents thrombus formation and has a beneficial effect on outcome after traumatic brain injury. METHODS We investigated the impact of genetic deficiency of factor XII and acute inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused infestin-4 (rHA-Infestin-4) on trauma-induced microvascular thrombus formation and the subsequent outcome in 2 mouse models of traumatic brain injury. RESULTS Our study showed that both genetic deficiency of factor XII and an inhibition of activated factor XII in mice minimize trauma-induced microvascular thrombus formation and improve outcome, as reflected by better motor function, reduced brain lesion volume, and diminished neurodegeneration. Administration of human factor XII in factor XII-deficient mice fully restored injury-induced microvascular thrombus formation and brain damage. INTERPRETATION The robust protective effect of rHA-Infestin-4 points to a novel treatment option that can decrease ischemic injury after traumatic brain injury without increasing bleeding tendencies. Ann Neurol 2016;79:970-982.
Collapse
Affiliation(s)
- Sarah Hopp
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.,Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christiane Albert-Weissenberger
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.,Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Stine Mencl
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Bieber
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (DZHI), University Hospital of Würzburg, Würzburg, Germany
| | | | - Christian Stetter
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Center, German Research Society Research Center for Experimental Biomedicine, Julius Maximilian University, Würzburg, Germany
| | - Peter M Schmidt
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, Comprehensive Cancer Center Mainfranken, Julius Maximilian University, Würzburg, Germany
| | - Irina Alafuzoff
- Department of Immunology, Uppsala University, Uppsala, Sweden.,Department of Pathology, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | | |
Collapse
|
14
|
Vedantam A, Yamal JM, Rubin ML, Robertson CS, Gopinath SP. Progressive hemorrhagic injury after severe traumatic brain injury: effect of hemoglobin transfusion thresholds. J Neurosurg 2016; 125:1229-1234. [PMID: 26943843 DOI: 10.3171/2015.11.jns151515] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT There is limited literature available to guide transfusion practices for patients with severe traumatic brain injury (TBI). Recent studies have shown that maintaining a higher hemoglobin threshold after severe TBI offers no clinical benefit. The present study aimed to determine if a higher transfusion threshold was independently associated with an increased risk of progressive hemorrhagic injury (PHI), thereby contributing to higher rates of morbidity and mortality. METHODS The authors performed a secondary analysis of data obtained from a recently performed randomized clinical trial studying the effects of erythropoietin and blood transfusions on neurological recovery after severe TBI. Assigned hemoglobin thresholds (10 g/dl vs 7 g/dl) were maintained with packed red blood cell transfusions during the acute phase after injury. PHI was defined as the presence of new or enlarging intracranial hematomas on CT as long as 10 days after injury. A severe PHI was defined as an event that required an escalation of medical management or surgical intervention. Clinical and imaging parameters and transfusion thresholds were used in a multivariate Cox regression analysis to identify independent risk factors for PHI. RESULTS Among 200 patients enrolled in the trial, PHI was detected in 61 patients (30.5%). The majority of patients with PHI had a new, delayed contusion (n = 29) or an increase in contusion size (n = 15). The mean time interval between injury and identification of PHI was 17.2 ± 15.8 hours. The adjusted risk of severe PHI was 2.3 times higher for patients with a transfusion threshold of 10 g/dl (95% confidence interval 1.1-4.7; p = 0.02). Diffuse brain injury was associated with a lower risk of PHI events, whereas higher initial intracranial pressure increased the risk of PHI (p < 0.001). PHI was associated with a longer median length of stay in the intensive care unit (18.3 vs 14.4 days, respectively; p = 0.04) and poorer Glasgow Outcome Scale scores (42.9% vs 25.5%, respectively; p = 0.02) at 6 months. CONCLUSIONS A higher transfusion threshold of 10 g/dl after severe TBI increased the risk of severe PHI events. These results indicate the potential adverse effect of using a higher hemoglobin transfusion threshold after severe TBI.
Collapse
Affiliation(s)
| | - Jose-Miguel Yamal
- Department of Biostatistics, University of Texas School of Public Health, Houston, Texas
| | - Maria Laura Rubin
- Department of Biostatistics, University of Texas School of Public Health, Houston, Texas
| | | | | |
Collapse
|
15
|
Schwarzmaier SM, de Chaumont C, Balbi M, Terpolilli NA, Kleinschnitz C, Gruber A, Plesnila N. The Formation of Microthrombi in Parenchymal Microvessels after Traumatic Brain Injury Is Independent of Coagulation Factor XI. J Neurotrauma 2016; 33:1634-44. [PMID: 26886854 DOI: 10.1089/neu.2015.4173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Microthrombus formation and bleeding worsen the outcome after traumatic brain injury (TBI). The aim of the current study was to characterize these processes in the brain parenchyma after experimental TBI and to determine the involvement of coagulation factor XI (FXI). C57BL/6 mice (n = 101) and FXI-deficient mice (n = 15) were subjected to controlled cortical impact (CCI). Wild-type mice received an inhibitory antibody against FXI (14E11) or control immunoglobulin G 24 h before or 30 or 120 min after CCI. Cerebral microcirculation was visualized in vivo by 2-photon microscopy 2-3 h post-trauma and histopathological outcome was assessed after 24 h. TBI induced hemorrhage and microthrombus formation in the brain parenchyma (p < 0.001). Inhibition of FXI activation or FXI deficiency did not reduce cerebral thrombogenesis, lesion volume, or hemispheric swelling. However, it also did not increase intracranial hemorrhage. Formation of microthrombosis in the brain parenchyma after TBI is independent of the intrinsic coagulation cascade since it was not reduced by inhibition of FXI. However, since targeting FXI has well-established antithrombotic effects in humans and experimental animals, inhibition of FXI could represent a reasonable strategy for the prevention of deep venous thrombosis in immobilized patients with TBI.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland .,2 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Munich, Germany .,3 Department of Anesthesiology, University of Munich Medical Center , Munich, Germany
| | - Ciaran de Chaumont
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland
| | - Matilde Balbi
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland .,2 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Munich, Germany
| | - Nicole A Terpolilli
- 2 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Munich, Germany
| | | | - Andras Gruber
- 5 Departments of Biomedical Engineering and Medicine, Knight Cardiovascular Institute, Oregon Health and Science University , School of Medicine, Portland, Oregon
| | - Nikolaus Plesnila
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland .,2 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Munich, Germany .,6 SyNergy, Munich Cluster for Systems Neurology , Munich, Germany
| |
Collapse
|
16
|
Bird SM, Sohrabi HR, Sutton TA, Weinborn M, Rainey-Smith SR, Brown B, Patterson L, Taddei K, Gupta V, Carruthers M, Lenzo N, Knuckey N, Bucks RS, Verdile G, Martins RN. Cerebral amyloid-β accumulation and deposition following traumatic brain injury--A narrative review and meta-analysis of animal studies. Neurosci Biobehav Rev 2016; 64:215-28. [PMID: 26899257 DOI: 10.1016/j.neubiorev.2016.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
Abstract
Traumatic brain injury (TBI) increases the risk of neurodegenerative disorders many years post-injury. However, molecular mechanisms underlying the relationship between TBI and neurodegenerative diseases, such as Alzheimer's disease (AD), remain to be elucidated. Nevertheless, previous studies have demonstrated a link between TBI and increased amyloid-β (Aβ), a protein involved in AD pathogenesis. Here, we review animal studies that measured Aβ levels following TBI. In addition, from a pool of initially identified 1209 published papers, we examined data from 19 eligible animal model studies using a meta-analytic approach. We found an acute increase in cerebral Aβ levels ranging from 24h to one month following TBI (overall log OR=2.97 ± 0.40, p<0.001). These findings may contribute to further understanding the relationship between TBI and future dementia risk. The methodological inconsistencies of the studies discussed in this review suggest the need for improved and more standardised data collection and study design, in order to properly elucidate the role of TBI in the expression and accumulation of Aβ.
Collapse
Affiliation(s)
- Sabine M Bird
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Hamid R Sohrabi
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Thomas A Sutton
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Michael Weinborn
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia; School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Belinda Brown
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Leigh Patterson
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Veer Gupta
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Malcolm Carruthers
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Centre for Men's Health, 96 Harley Street, London, W1G 7HY, United Kingdom
| | - Nat Lenzo
- Oceanic Medical Imaging, Hollywood Medical Centre, 85 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Neville Knuckey
- Centre for Neuromuscular and Neurological Disorders (CNND), University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Romola S Bucks
- School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Giuseppe Verdile
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Ralph N Martins
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia.
| |
Collapse
|
17
|
Lin CM, Tseng YC, Hsu HL, Chen CJ, Chen DYT, Yan FX, Chiu WT. Arterial Spin Labeling Perfusion Study in the Patients with Subacute Mild Traumatic Brain Injury. PLoS One 2016; 11:e0149109. [PMID: 26871696 PMCID: PMC4752493 DOI: 10.1371/journal.pone.0149109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Background This study uses a MRI technique, three-dimension pulse continuous arterial spin labeling (3D-PCASL), to measure the patient’s cerebral blood flow (CBF) at the subacute stage of mild traumatic brain injury (MTBI) in order to analyze the relationship between cerebral blood flow and neurocognitive deficits. Objective To provide the relationship between cortical CBF and neuropsychological dysfunction for the subacute MTBI patients. Methods After MTBI, perfusion MR imaging technique (3D-PCASL) measures the CBF of MTBI patients (n = 23) within 1 month and that of normal controls (n = 22) to determine the quantity and location of perfusion defect. The correlation between CBF abnormalities and cognitive deficits was elucidated by combining the results of the neuropsychological tests of the patients. Result We observed a substantial reduction in CBF in the bilateral frontal and left occipital cortex as compared with the normal persons. In addition, there were correlation between post concussive symptoms (including dizziness and simulator sickness) and CBF in the hypoperfused areas. The more severe symptom was correlated with higher CBF in bilateral frontal and left occipital lobes. Conclusion First, this study determined that despite no significant abnormality detected on conventional CT and MRI studies, hypoperfusion was observed in MTBI group using 3D-PCASL technique in subacute stage, which suggested that this approach may increase sensitivity to MTBI. Second, the correlation between CBF and the severity of post concussive symptoms suggested that changes in cerebral hemodynamics may play a role in pathophysiology underlies the symptoms.
Collapse
Affiliation(s)
- Che-Ming Lin
- Department of Diagnostic Radiology and Brain and Consciousness Research Center, Taipei Medical University Shuang-Ho Hospital, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Ying-Chi Tseng
- Department of Diagnostic Radiology and Brain and Consciousness Research Center, Taipei Medical University Shuang-Ho Hospital, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Hui-Ling Hsu
- Department of Diagnostic Radiology and Brain and Consciousness Research Center, Taipei Medical University Shuang-Ho Hospital, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
- * E-mail:
| | - Chi-Jen Chen
- Department of Diagnostic Radiology and Brain and Consciousness Research Center, Taipei Medical University Shuang-Ho Hospital, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
- Chia-Yi Hospital, Ministry of Health and Welfare, Chiayi City, Taiwan
| | - David Yen-Ting Chen
- Department of Diagnostic Radiology and Brain and Consciousness Research Center, Taipei Medical University Shuang-Ho Hospital, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Feng-Xian Yan
- Department of Diagnostic Radiology and Brain and Consciousness Research Center, Taipei Medical University Shuang-Ho Hospital, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Ta Chiu
- Department of Diagnostic Radiology and Brain and Consciousness Research Center, Taipei Medical University Shuang-Ho Hospital, New Taipei City, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
18
|
Bodanapally UK, Sours C, Zhuo J, Shanmuganathan K. Imaging of Traumatic Brain Injury. Radiol Clin North Am 2015; 53:695-715, viii. [PMID: 26046506 DOI: 10.1016/j.rcl.2015.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Imaging plays an important role in the management of patients with traumatic brain injury (TBI). Computed tomography (CT) is the first-line imaging technique allowing rapid detection of primary structural brain lesions that require surgical intervention. CT also detects various deleterious secondary insults allowing early medical and surgical management. Serial imaging is critical to identifying secondary injuries. MR imaging is indicated in patients with acute TBI when CT fails to explain neurologic findings. However, MR imaging is superior in patients with subacute and chronic TBI and also predicts neurocognitive outcome.
Collapse
Affiliation(s)
- Uttam K Bodanapally
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Chandler Sours
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Kathirkamanathan Shanmuganathan
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
19
|
Pérez-Bárcena J, Romay E, Llompart-Pou JA, Ibáñez J, Brell M, Llinás P, González E, Merenda A, Ince C, Bullock R. Direct observation during surgery shows preservation of cerebral microcirculation in patients with traumatic brain injury. J Neurol Sci 2015; 353:38-43. [DOI: 10.1016/j.jns.2015.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/22/2015] [Accepted: 03/27/2015] [Indexed: 11/25/2022]
|
20
|
Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J Cereb Blood Flow Metab 2014; 34:1585-98. [PMID: 25052556 PMCID: PMC4269727 DOI: 10.1038/jcbfm.2014.131] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 12/26/2022]
Abstract
Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of 'classic' ischemia. We discuss diagnostic and therapeutic consequences of these predictions.
Collapse
|
21
|
Abstract
Traumatic brain injury (TBI) affects all age groups in a population and is an injury generating scientific interest not only as an acute event, but also as a complex brain disease with several underlying neurobehavioral and neuropathological characteristics. We review early and long-term alterations after juvenile and adult TBI with a focus on changes in the neurovascular unit (NVU), including neuronal interactions with glia and blood vessels at the blood-brain barrier (BBB). Post-traumatic changes in cerebral blood-flow, BBB structures and function, as well as mechanistic pathways associated with brain aging and neurodegeneration are presented from clinical and experimental reports. Based on the literature, increased attention on BBB changes should be integrated in studies characterizing TBI outcome and may provide a meaningful therapeutic target to resolve detrimental post-traumatic dysfunction.
Collapse
Affiliation(s)
- V Pop
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92354 USA
| | | |
Collapse
|
22
|
Badaut J, Bix GJ. Vascular neural network phenotypic transformation after traumatic injury: potential role in long-term sequelae. Transl Stroke Res 2013; 5:394-406. [PMID: 24323723 DOI: 10.1007/s12975-013-0304-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/11/2023]
Abstract
The classical neurovascular unit (NVU), composed primarily of endothelium, astrocytes, and neurons, could be expanded to include smooth muscle and perivascular nerves present in both the up- and downstream feeding blood vessels (arteries and veins). The extended NVU, which can be defined as the vascular neural network (VNN), may represent a new physiological unit to consider for therapeutic development in stroke, traumatic brain injury, and other brain disorders (Zhang et al., Nat Rev Neurol 8(12):711-716, 2012). This review is focused on traumatic brain injury and resultant post-traumatic changes in cerebral blood flow, smooth muscle cells, matrix, blood-brain barrier structures and function, and the association of these changes with cognitive outcomes as described in clinical and experimental reports. We suggest that studies characterizing TBI outcomes should increase their focus on changes to the VNN, as this may yield meaningful therapeutic targets to resolve posttraumatic dysfunction.
Collapse
Affiliation(s)
- J Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Coleman Pavilion, Room A1120, 11175 Campus Street, Loma Linda, CA, 92354, USA,
| | | |
Collapse
|
23
|
Riascos D, Buriticá E, Jiménez E, Castro O, Guzmán F, Palacios M, Garcia-Cairasco N, Geula C, Escobar M, Pimienta H. Neurodegenerative Diversity in human cortical contusion: Histological analysis of tissue derived from decompressive craniectomy. Brain Res 2013; 1537:86-99. [DOI: 10.1016/j.brainres.2013.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/16/2013] [Indexed: 11/30/2022]
|
24
|
Wu HM, Huang SC, Vespa P, Hovda DA, Bergsneider M. Redefining the pericontusional penumbra following traumatic brain injury: evidence of deteriorating metabolic derangements based on positron emission tomography. J Neurotrauma 2013; 30:352-60. [PMID: 23461651 DOI: 10.1089/neu.2012.2610] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract The pathophysiological changes in the pericontusional region after traumatic brain injury (TBI) have classically been considered to be ischemic. Using [F-18]fluorodeoxyglucose (FDG) and triple-oxygen PET studies, we examined the pericontusional "penumbra" to assess for increased oxygen extraction fraction (OEF), anaerobic metabolism, and tissue viability. Acute (≤4 days) CT, MRI, and PET studies were performed in eight patients with TBI who had contusions. Four regions-of-interest (ROI) containing the contusion core, pericontusional hypodense gray matter (GM), pericontusional normal-appearing GM, and remote normal-appearing GM, were defined using a semi-automatic method. The correlations of cerebral blood flow (CBF) with OEF, cerebral metabolic rate of oxygen (CMRO2), and cerebral metabolic rate of glucose (CMRglc) were examined. The oxygen-glucose ratio (OGR) in each brain region was evaluated for anaerobic metabolism. The results show that pericontusional tissue had progressively diminishing OEF, CBF, CMRO2, or CMRglc approaching the contusion core. In general, there was a preserved ratio of CBF to CMRO2 in pericontusional hypodense GM. The OGR of the pericontusional hypodense GM was low (<4.0) and was inversely correlated (r=-0.68) with time after injury. A large proportion (%area: 22-76%) of pericontusional hypodense GM tissue had CMRO2 values less than 35 μmol/100 g/min, with this percentage increased with time after injury.
Collapse
Affiliation(s)
- Hsiao-Ming Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-7039, USA
| | | | | | | | | |
Collapse
|
25
|
Persson Å, Osman A, Bolouri H, Mallard C, Kuhn HG. Radixin expression in microglia after cortical stroke lesion. Glia 2013; 61:790-9. [PMID: 23440885 DOI: 10.1002/glia.22473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 01/02/2023]
Abstract
Stroke induces extensive tissue remodeling, resulting in the activation of several cell types in the brain as well as recruitment of blood-borne leucocytes. Radixin is part of a cytoskeleton linker protein family with the ability to connect transmembrane proteins to the actin cytoskeleton, promoting cell functions involving a dynamic cytoskeleton such as morphological changes, cell division and migration which are common events of different cell types after stroke. In the healthy adult brain radixin is expressed in Olig2(+) cells throughout the brain and in neural progenitor cells in the subventricular zone. In the current study, we detected a 2.5 fold increase in the number of radixin positive cells in the peri-infarct cortex two weeks after the induction of cortical stroke by photothrombosis. Similarly, the number of Olig2(+) cells increased in the peri-infarct area after stroke; however, the number of radixin(+)/Olig2(+) cells was unchanged. Neural progenitor cells maintained radixin expression on their route to the infarct. More surprising however, was the expression of radixin in activated microglia in the peri-infarct cortex. Seventy percent of Iba1(+) cells expressed radixin after stroke, a population which was not present in the control brain. Furthermore, activation of radixin was predominantly detected in the peri-infarct region of oligodendrocyte progenitors and microglia. The specific location of radixin(+) cells in the peri-infarct region and in microglia suggests a role for radixin in microglial activation after stroke.
Collapse
Affiliation(s)
- Åsa Persson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
26
|
Borgens RB, Liu-Snyder P. Understanding secondary injury. QUARTERLY REVIEW OF BIOLOGY 2012; 87:89-127. [PMID: 22696939 DOI: 10.1086/665457] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Secondary injury is a term applied to the destructive and self-propagating biological changes in cells and tissues that lead to their dysfunction or death over hours to weeks after the initial insult (the "primary injury"). In most contexts, the initial injury is usually mechanical. The more destructive phase of secondary injury is, however, more responsible for cell death and functional deficits. This subject is described and reviewed differently in the literature. To biomedical researchers, systemic and tissue-level changes such as hemorrhage, edema, and ischemia usually define this subject. To cell and molecular biologists, "secondary injury" refers to a series of predominately molecular events and an increasingly restricted set of aberrant biochemical pathways and products. These biochemical and ionic changes are seen to lead to death of the initially compromised cells and "healthy" cells nearby through necrosis or apoptosis. This latter process is called "bystander damage." These viewpoints have largely dominated the recent literature, especially in studies of the central nervous system (CNS), often without attempts to place the molecular events in the context of progressive systemic and tissue-level changes. Here we provide a more comprehensive and inclusive discussion of this topic.
Collapse
Affiliation(s)
- Richard Ben Borgens
- Center for Paralysis Research, School of Veterinary Medicine, Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
27
|
Voigt C, Donat CK, Hartig W, Förschler A, Skardelly M, Stichtenoth D, Arendt T, Meixensberger J, Schuhmann MU. Effect of leukotriene inhibitors on evolution of experimental brain contusions. Neuropathol Appl Neurobiol 2012; 38:354-66. [DOI: 10.1111/j.1365-2990.2011.01211.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Abstract
Computed tomography (CT) and magnetic resonance (MR) play important roles in the evaluation of traumatic brain injury. Modern CT scanners allow for rapid and accurate diagnosis of intracranial hemorrhage and mass effect and allow the efficient implementation of emergent CT angiography. Newer sequences, such as gradient recalled echo, susceptibility-weighted imaging, and diffusion-weighted imaging, can provide greater sensitivity for specific types of diffuse posttraumatic brain injury. MR spectroscopy can provide additional chemical information, and diffusion tensor imaging can provide information about white matter injury. Patient treatment can be optimized using the diagnostic and prognostic information derived from current imaging techniques.
Collapse
Affiliation(s)
- Wayne S Kubal
- Department of Radiology, University of Arizona Health Sciences Center, Tucson, USA.
| |
Collapse
|
29
|
17Beta-estradiol differentially protects cortical pericontusional zone from programmed cell death after traumatic cerebral contusion at distinct stages via non-genomic and genomic pathways. Mol Cell Neurosci 2011; 48:185-94. [PMID: 21803156 DOI: 10.1016/j.mcn.2011.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/23/2011] [Accepted: 07/14/2011] [Indexed: 11/20/2022] Open
Abstract
Pericontusional zone (PCZ) of traumatic cerebral contusion is a target of pharmacological intervention. Our previous study indicated that 17beta-estradiol has a protective role in PCZ after traumatic cerebral contusion via the upregulation of estrogen receptor (ER) alpha mRNA induction and protein expression as well as inhibition of caspase-3 activation, suggesting that genomic signaling pathway is implicated in the protective effect of 17beta-estrodiol. Recent findings demonstrated that 17beta-estradiol also acts on the extranuclear/membrane ER to activate non-genomic signaling pathway to regulate cellular functions and exert the protective effect in the brain. It is still unclear how and whether genomic and non-genomic pathways of 17beta-estradiol are involved in the neuroprotection in PCZ. Our current study demonstrates that 17beta-estradiol activates ERK1/2 and Akt at the early stage and induces ERalpha and survivin mRNA at the late stage to modulate its protection via the suppression of caspase-3 activation in PCZ. These findings suggest that 17beta-estrodiol differentially plays its protective roles via genomic and non-genomic signaling pathways in PCZ after traumatic cerebral contusion.
Collapse
|
30
|
Brain abscess complicating hemorrhagic contusion in a case of closed head injury: Case report. INDIAN JOURNAL OF NEUROTRAUMA 2011. [DOI: 10.1016/s0973-0508(11)80026-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Haacke EM, Duhaime AC, Gean AD, Riedy G, Wintermark M, Mukherjee P, Brody DL, DeGraba T, Duncan TD, Elovic E, Hurley R, Latour L, Smirniotopoulos JG, Smith DH. Common data elements in radiologic imaging of traumatic brain injury. J Magn Reson Imaging 2011; 32:516-43. [PMID: 20815050 DOI: 10.1002/jmri.22259] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Traumatic brain injury (TBI) has a poorly understood pathology. Patients suffer from a variety of physical and cognitive effects that worsen as the type of trauma worsens. Some noninvasive insights into the pathophysiology of TBI are possible using magnetic resonance imaging (MRI), computed tomography (CT), and many other forms of imaging as well. A recent workshop was convened to evaluate the common data elements (CDEs) that cut across the imaging field and given the charge to review the contributions of the various imaging modalities to TBI and to prepare an overview of the various clinical manifestations of TBI and their interpretation. Technical details regarding state-of-the-art protocols for both MRI and CT are also presented with the hope of guiding current and future research efforts as to what is possible in the field. Stress was also placed on the potential to create a database of CDEs as a means to best record information from a given patient from the reading of the images.
Collapse
Affiliation(s)
- E Mark Haacke
- Department of Radiology and Biomedical Engineering, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li LZ, Bao YJ, Zhao M. 17beta-estradiol attenuates programmed cell death in cortical pericontusional zone following traumatic brain injury via upregulation of ERalpha and inhibition of caspase-3 activation. Neurochem Int 2010; 58:126-33. [PMID: 21093516 DOI: 10.1016/j.neuint.2010.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/04/2010] [Accepted: 11/09/2010] [Indexed: 01/01/2023]
Abstract
Pericontusional zone (PCZ) of traumatic cerebral contusion is a target of pharmacological intervention. It is well studied that 17beta-estradiol has a protective role in ischemic brain injury, but its role in brain protection of traumatic brain damage deserves further investigation, especially in pericontusional zone. Here we show that 17beta-estradiol enhances the protein expression and mRNA induction of estrogen alpha receptor (ERalpha) and prevents from programmed cell death in cortical pericontusional zone. ERalpha specific antagonist blocks this protective effect of 17beta-estradiol. Caspase-3 activation occurs in cortical pericontusional zone of the oil-treated injured rat brain and its activation is inhibited by 17beta-estradiol treatment. Additionally, ERalpha specific antagonist reverses this inhibition. Pan-caspase inhibitor also protect cortical pericontusional zone from programmed cell death. Our present study indicates 17beta-estradiol protects from programmed cell death in cortical pericontusional zone via enhancement of ERalpha and decrease of caspase-3 activation.
Collapse
Affiliation(s)
- Li-Zhuo Li
- Emergency Department, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China.
| | | | | |
Collapse
|
33
|
Ge Y, Patel MB, Chen Q, Grossman EJ, Zhang K, Miles L, Babb JS, Reaume J, Grossman RI. Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Inj 2010; 23:666-74. [PMID: 19557570 DOI: 10.1080/02699050903014899] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To assess cerebral blood flow (CBF) changes in patients with mild traumatic brain injury (MTBI) using an arterial spin labelling (ASL) perfusion MRI and to investigate the severity of neuropsychological functional impairment with respect to haemodynamic changes. MATERIALS AND METHODS Twenty-one patients with MTBI and 20 healthy controls were studied at 3T MR. The median time since the onset of brain injury in patients was 24.6 months. Both patients and controls underwent a traditional consensus battery of neurocognitive tests. ASL was performed using true fast imaging with steady state precession and a flow-sensitive alternating inversion recovery preparation. Regional CBF were measured in both deep and cortical gray matter as well as white matter at the level of basal ganglia. RESULTS The mean regional CBF was significantly lower in patients with MTBI (45.9 +/- 9.8 ml/100 g min(-1)) as compared to normal controls (57.1 +/- 8.1 ml/100 g min(-1); p = 0.002) in both sides of thalamus. The decrease of thalamic CBF was significantly correlated with several neurocognitive measures including processing and response speed, memory/learning, verbal fluency and executive function in patients. CONCLUSIONS Haemodynamic impairment can occur and persist in patients with MTBI, the extent of which is more severe in thalamic regions and correlate with neurocognitive dysfunction during the extended course of disease.
Collapse
Affiliation(s)
- Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma 2010; 27:121-30. [PMID: 19803784 DOI: 10.1089/neu.2009.1114] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with an almost immediate reduction in cerebral blood flow (CBF). Because cerebral perfusion pressure is often normal under these circumstances it was hypothesized that the reduction of post-traumatic CBF has to occur at the level of the microcirculation. The aim of the current study was to investigate whether cerebral microvessels are involved in the development of blood flow disturbances following experimental TBI. C57/BL6 mice (n = 12) were intubated and ventilated under control of end-tidal Pco(2) ((ET)P(CO2)). After preparation of a cranial window and baseline recordings, the animals were subjected to experimental TBI by controlled cortical impact (CCI; 6 m/sec, 0.5 mm). Vessel lumina and intravascular cells were visualized by in vivo fluorescence microscopy (IVM) using the fluorescent dyes FITC-dextran and rhodamine 6G, respectively. Vessel diameter, cell-endothelial interactions, and thrombus formation were quantified within the traumatic penumbra by IVM up to 2 h after CCI. Arteriolar diameters increased after CCI by 26.2 +/- 2.5% (mean +/- SEM, p < 0.01 versus baseline), and remained at this level until the end of the observation period. Rolling of leukocytes on the cerebrovascular endothelium was observed both in arterioles and venules, while leukocyte-platelet aggregates were found only in venules. Microthrombi occluded up to 70% of venules and 33% of arterioles. The current data suggest that the immediate post-traumatic decrease in peri-contusional blood flow is not caused by arteriolar vasoconstriction, but by platelet activation and the subsequent formation of thrombi in the cerebral microcirculation.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- Institute for Surgical Research in the Walter Brendel Center for Experimental Medicine, Department of Neurosurgery, University of Munich Medical Center-Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
We defined lesion and structurally normal regions using magnetic resonance imaging at follow-up in patients recovering from head injury. Early metabolic characteristics in these regions of interest (ROIs) were compared with physiology in healthy volunteers. Fourteen patients with severe head injury had positron emission tomography within 72 h, and magnetic resonance imaging at 3 to 18 months after injury. Cerebral blood flow (CBF), oxygen utilization (CMRO(2)), and oxygen extraction fraction (OEF) were all lower in lesion ROIs, compared with nonlesion and control ROIs (P<0.001); however, there was substantial overlap in physiology. Control ROIs showed close coupling among CBF, blood volume (CBV), and CMRO(2), whereas relationships within lesion and nonlesion ROIs were abnormal. The relationship between CBF and CMRO(2) generally remained coupled but the slope was reduced; that for CBF and OEF was variable; whereas that between CBF and CBV was highly variable. There was considerable heterogeneity between and within patients. Although irreversibly damaged tissue is characterized by marked derangements in physiology, a more detailed analysis shows acute changes in physiology and physiologic relationships within regions of the brain that appear structurally normal at follow-up. Such pathophysiological derangements may result in selective neuronal loss and impact on functional outcome.
Collapse
|
36
|
Huang APH, Tu YK, Tsai YH, Chen YS, Hong WC, Yang CC, Kuo LT, Su IC, Huang SH, Huang SJ. Decompressive craniectomy as the primary surgical intervention for hemorrhagic contusion. J Neurotrauma 2009; 25:1347-54. [PMID: 19061378 DOI: 10.1089/neu.2008.0625] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The standard surgical treatment of hemorrhagic cerebral contusion is craniotomy with evacuation of the focal lesion. We assessed the safety and feasibility of performing decompressive craniectomy and duraplasty as the primary surgical intervention in this group of patients. Fifty-four consecutive patients with Glasgow Coma Scale (GCS) scores of less than or equal to 8, a frontal or temporal hemorrhagic contusion greater than 20 cm(3) in volume, and a midline shift of at least 5 mm or cisternal compression on computer tomography (CT) scan were studied. Sixteen (29.7%) underwent traditional craniotomy with hematoma evacuation, and 38 (70.4%) underwent craniectomy as the primary surgical treatment. Mortality, reoperation rate, Glasgow Outcome Scale-Extended (GOSE) scores, and length of stay in both the acute care and rehabilitation phase were compared between these two groups. Mortality (13.2% vs. 25.0%) and reoperation rate (7.9% vs. 37.5%) were lower in the craniectomy group, whereas the length of stay in both the acute care setting and the rehabilitation phase were similar between these two groups. The craniectomy group also had better GOSE score (5.55 vs. 3.56) at 6 months. Decompressive craniectomy is safe and effective as the primary surgical intervention for treatment of hemorrhagic contusion. This study also suggests that patient with hemorrhagic contusion can possibly have better outcome after craniectomy than other subgroup of patients with severe traumatic brain injury.
Collapse
Affiliation(s)
- Abel Po-Hao Huang
- Department of Neurosurgery, Department of Surgery, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stevens RD, Pustavoitau A, van Zijl P. The Role of Imaging in Acute Brain Injury. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-92278-2_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Engel DC, Mies G, Terpolilli NA, Trabold R, Loch A, De Zeeuw CI, Weber JT, Maas AI, Plesnila N. Changes of Cerebral Blood Flow during the Secondary Expansion of a Cortical Contusion Assessed by14C-Iodoantipyrine Autoradiography in Mice Using a Non-Invasive Protocol. J Neurotrauma 2008; 25:739-53. [DOI: 10.1089/neu.2007.0480] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Doortje C. Engel
- Department of Neurosurgery, University of Munich Medical Center, Munich, Germany
- Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Günter Mies
- Max-Planck-Institute for Neurological Research, Cologne, Germany
| | - Nicole A. Terpolilli
- Department of Neurosurgery, University of Munich Medical Center, Munich, Germany
- Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| | - Raimund Trabold
- Department of Neurosurgery, University of Munich Medical Center, Munich, Germany
| | - Alexander Loch
- Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John T. Weber
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andrew I.R. Maas
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nikolaus Plesnila
- Department of Neurosurgery, University of Munich Medical Center, Munich, Germany
- Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| |
Collapse
|
39
|
Lundblad C, Grände PO, Bentzer P. Increased cortical cell loss and prolonged hemodynamic depression after traumatic brain injury in mice lacking the IP receptor for prostacyclin. J Cereb Blood Flow Metab 2008; 28:367-76. [PMID: 17713464 DOI: 10.1038/sj.jcbfm.9600533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prostacyclin is the major arachidonic acid metabolite of the vascular endothelium and is produced mainly via the cyclooxygenase-2 pathway. By acting on the prostacyclin (IP) receptor on platelets and vascular smooth muscle cells, prostacyclin exerts vasodilatory and antiaggregative/antiadhesive effects. Previous studies have shown that prostacyclin production increases after brain trauma, but the importance of prostacyclin for posttraumatic hemodynamic alterations and neuron survival has not been investigated. This study evaluated if endogenous prostacyclin plays a role in the pathophysiologic process in the brain after brain trauma. This was performed by comparing prostacyclin (IP) receptor-deficient (IP(-/-)) mice and mice with functional IP receptor (IP(+/+)) after a controlled cortical injury regarding contusion volume, cerebral blood flow ([(14)C]iodoantipyrine autoradiography), number of perfused capillaries (fluorescein isothiocyanate-dextran fluorescence technique), the transfer constant (K(i)) for [(51)Cr]EDTA, and brain water content (wet vs dry weight) in the injured and contralateral cortex. Contusion volume was increased in IP(-/-) mice compared with IP(+/+) mice. Three hours after trauma, cortical blood flow was decreased in the injured cortex of both groups and the reduction in blood flow in the cortex of the IP(-/-) mice persisted from 3 to 24 h, whereas blood flow approached normal values in the IP(+/+) mice after 24 h. No differences could be detected between the two genotypes regarding other hemodynamic parameters. We conclude that the prostacyclin IP receptor is beneficial for neuron survival after brain trauma in mice, an effect that may be mediated by improved cortical perfusion.
Collapse
Affiliation(s)
- Cornelia Lundblad
- Department of Anesthesiology and Intensive Care, University of Lund and Lund University Hospital, Lund, Sweden
| | | | | |
Collapse
|
40
|
Depreitere B, Aviv R, Symons S, Schwartz M, Coudyzer W, Wilms G, Marchal G. Study of perfusion in and around cerebral contusions by means of computed tomography. ACTA NEUROCHIRURGICA SUPPLEMENTS 2008; 102:259-62. [DOI: 10.1007/978-3-211-85578-2_49] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Longhi L, Pagan F, Valeriani V, Magnoni S, Zanier ER, Conte V, Branca V, Stocchetti N. Monitoring brain tissue oxygen tension in brain-injured patients reveals hypoxic episodes in normal-appearing and in peri-focal tissue. Intensive Care Med 2007; 33:2136-42. [PMID: 17846748 DOI: 10.1007/s00134-007-0845-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 07/31/2007] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We compared brain tissue oxygen tension (PtiO2) measured in peri-focal and in normal-appearing brain parenchyma on computerized tomography (CT) in patients following traumatic brain injury (TBI). DESIGN Prospective observational study. SETTING Neurointensive care unit. PATIENTS AND PARTICIPANTS Thirty-two consecutive TBI patients were subjected to PtiO2 monitoring. INTERVENTIONS Peri-focal tissue was identified by the presence of a hypodense area of the contusion and/or within 1 cm from the core of the contusion. The position of the tip of the PtiO2 probe was assessed at follow-up CT scan. MEASUREMENTS AND RESULTS Mean PtiO2 in the peri-contusional tissue was 19.7+/-2.1 mmHg and was lower than PtiO2 in normal-appearing tissue (25.5+/-1.5 mmHg, p < 0.05), despite a greater cerebral perfusion pressure (CPP) (73.7+/-2.3 mmHg vs. 67.4+/-1.4 mmHg, p < 0.05). We observed both in peri-focal tissue and in normal-appearing tissue episodes of brain hypoxia (PtiO2 < 20 mmHg for at least 10 min), whose median duration was longer in peri-focal tissue than in normal-appearing tissue (51% vs. 34% of monitoring time, p < 0.01). In peri-focal tissue, we observed a progressive PtiO2 increase from pathologic to normal values (p < 0.01). CONCLUSIONS Multiple episodes of brain hypoxia occurred over the first 5 days following severe TBI. PtiO2 was lower in peri-contusional tissue than in normal-appearing tissue. In peri-contusional tissue, a progressive increase of PtiO2 from pathologic to normal values was observed over time, suggestive of an improvement at microcirculatory level.
Collapse
Affiliation(s)
- Luca Longhi
- University of Milano, Fondazione IRCCS, Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena,Neurosurgical Intensive Care Unit, Department of Anesthesia and Critical Care Medicine, Via Sforza n 35, 20100 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Soustiel JF, Mahamid E, Goldsher D, Zaaroor M. Perfusion-CT for early assessment of traumatic cerebral contusions. Neuroradiology 2007; 50:189-96. [PMID: 18040673 DOI: 10.1007/s00234-007-0337-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
INTRODUCTION To investigate the value of perfusion-CT (PCT) for assessment of traumatic cerebral contusions (TCC) and to compare the abilities of early noncontrast CT and PCT modalities to evaluate tissue viability. METHODS PCT studies performed in 30 patients suffering from TCC during the acute phase of their illness were retrospectively reviewed. Cerebral blood flow (CBF), volume (CBV) and mean transit time (MTT) were measured in three different areas: the hemorrhagic core of the TCC, the surrounding hypodense area and the perilesional normal-appearing parenchyma. TCC area was measured on CBF-, CBV- and MTT-derived maps and compared with the areas measured using the same slice obtained with CT scans performed on admission, at the time of PCT (follow-up CT) and at 1 week. RESULTS TCC were characterized by low CBF and CBV values (9.2+/-6.6 ml/100 g per min and 0.9+/-0.7 ml/100 g, respectively) and a significant prolongation of MTT (11.9+/-10.7 s) in the hemorrhagic core whereas PCT parameters were more variable in the hypodense area. The TCC whole area showed a noticeable growth of the lesions during the first week of admission. In comparison with early noncontrast CT, CBV and CBF maps proved to be more congruent with the findings of noncontrast CT scans at 1 week. CONCLUSION PCT confirmed the results of xenon-CT studies and was shown to allow better evaluation of tissue viability than noncontrast CT. These findings suggest that PCT could be implemented in the future for the early assessment of patients with traumatic brain injury.
Collapse
Affiliation(s)
- Jean F Soustiel
- Department of Neurosurgery, Rambam Medical Center, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | | | | | | |
Collapse
|
43
|
Stiefel MF, Zaghloul KA, Bloom S, Gracias VH, LeRoux PD. Improved cerebral oxygenation after high-dose inhaled aerosolized prostacyclin therapy for acute lung injury: a case report. THE JOURNAL OF TRAUMA 2007; 63:1155-1158. [PMID: 17993965 DOI: 10.1097/ta.0b013e31815965e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Michael F Stiefel
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
44
|
Rafols JA, Kreipke CW, Petrov T. Alterations in cerebral cortex microvessels and the microcirculation in a rat model of traumatic brain injury: a correlative EM and laser Doppler flowmetry study. Neurol Res 2007; 29:339-47. [PMID: 17626728 DOI: 10.1179/016164107x204648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES We sought to establish the temporal association of fluctuations in cortical cerebral blood flow (CBF) with ultrastructural alterations of microvessels in rat sensorimotor cortex (smCx) following administration of a rodent acceleration impact model of traumatic brain injury (TBI). METHODS Laser Doppler flowmetry (LDF) and electron microscopy (EM) were used in parallel experiments that lasted for up to 48 hours after induction of TBI. RESULTS Compared to sham-operated control, there was a 37% reduction of cortical CBF between 12 and 24 hours, this reduction remaining unchanged for up to 48 hours post-TBI. Ultrastructural alterations in the lumen and wall of smCx microvessels, including endothelial cell distortion and luminal collapse, were seen at hour 1 and continued up to 48 hours after trauma. Compared to control, there was a 40% decrease in the average microvascular luminal area 4 hours and a trend to recover (21%) by 48 hours after trauma. Smooth muscle (SM) in the wall of reacting microvessels showed evidence of increase contractility that coincided temporally with the decreased perfusion of cortical CBF. DISCUSSION Based on these observations, it is proposed that TBI causes alterations in the vascular tone of reacting microvessels which leads to prolonged vasoreactivity and restriction of the lumen in many but not all microvessels.
Collapse
Affiliation(s)
- José A Rafols
- Department of Anatomy and Cell Biology, Scott Hall, Room No. 9312, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
45
|
Neema PK, Pathak S, Varma PK, Manikandan S, Rathod RC, Tempe DK, Tung A. Case 2--2007: Systemic air embolization after termination of cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2007; 21:288-97. [PMID: 17418752 DOI: 10.1053/j.jvca.2006.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Indexed: 11/11/2022]
Affiliation(s)
- Praveen Kumar Neema
- Department of Anesthesiology, Sree Chitra Tirunal Institute for Medical Science and Technology, Kerala, India.
| | | | | | | | | | | | | |
Collapse
|
46
|
Chieregato A, Tanfani A, Compagnone C, Turrini C, Sarpieri F, Ravaldini M, Targa L, Fainardi E. Global cerebral blood flow and CPP after severe head injury: a xenon-CT study. Intensive Care Med 2007; 33:856-862. [PMID: 17384928 DOI: 10.1007/s00134-007-0604-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate the association between global cerebral blood flow and different cerebral perfusion pressure ranges in severe head injury. DESIGN A retrospective study SETTING Neurosurgical and trauma patients in an intensive care unit in a regional hospital. PATIENTS AND PARTICIPANTS Out of a series of 237 consecutive patients with severe head injuries (GCS<or=8), 162 were submitted to ICP monitoring and 89 of them underwent 180 xenon-CT studies and cerebral perfusion pressure (CPP) measurement. The xenon-CT studies did not include any unsalvageable patients nor any mistakenly diagnosed as severe on entry. INTERVENTIONS None. MEASUREMENTS AND RESULTS Most (95.6%) of xenon-CT studies were obtained with CPP values within the 50-90 mmHg range. Perfusion data were grouped according to CPP values: (1) below 50 mmHg, (2) 50-60 mmHg, (3) 60-70 mmHg, (4) above 70 mmHg. Global cerebral blood flow did not differ among the groups (p=0.49). No differences in physiological variables were found among the CPP groups, except for intracranial pressure, higher in the group with CPP below 50 mmHg, and mean arterial pressure, higher in the CPP above 70 mmHg group (p<0.0001). No differences were found for cerebral metabolic rate of oxygen and lactate. CONCLUSIONS There was little correlation between CPP values and global cerebral blood flow levels in our selected patients, probably because pressure autoregulation was preserved. Global metabolism measurements were constant within the groups, suggesting that in patients with controlled physiological variables an interplay between cerebral blood flow and metabolism might be more relevant than the relationship between CPP and cerebral blood flow.
Collapse
Affiliation(s)
- Arturo Chieregato
- U. O. Anestesia e Rianimazione, Ospedale M. Bufalini, viale Ghirotti 286, 47023, Cesena, Italy.
| | - Alessandra Tanfani
- U. O. Anestesia e Rianimazione, Ospedale M. Bufalini, viale Ghirotti 286, 47023, Cesena, Italy
| | - Christian Compagnone
- U. O. Anestesia e Rianimazione, Ospedale M. Bufalini, viale Ghirotti 286, 47023, Cesena, Italy
| | - Claudia Turrini
- U. O. Anestesia e Rianimazione, Ospedale M. Bufalini, viale Ghirotti 286, 47023, Cesena, Italy
| | - Federica Sarpieri
- U. O. Anestesia e Rianimazione, Ospedale M. Bufalini, viale Ghirotti 286, 47023, Cesena, Italy
| | - Maurizio Ravaldini
- U. O. Anestesia e Rianimazione, Ospedale M. Bufalini, viale Ghirotti 286, 47023, Cesena, Italy
| | - Luigi Targa
- U. O. Anestesia e Rianimazione, Ospedale M. Bufalini, viale Ghirotti 286, 47023, Cesena, Italy
| | | |
Collapse
|
47
|
Chieregato A, Tanfani A, Compagnone C, Pascarella R, Targa L, Fainardi E. Cerebral blood flow in traumatic contusions is predominantly reduced after an induced acute elevation of cerebral perfusion pressure. Neurosurgery 2007; 60:115-2; discussion 123. [PMID: 17228259 DOI: 10.1227/01.neu.0000249194.76527.28] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To evaluate the response to an acute elevation of cerebral perfusion pressure (CPP) of the regional cerebral blood flow (rCBF) measured in the edematous area of traumatic contusions. METHODS rCBF was measured in the intracontusional low-density area, in the pericontusional healthy-appearing brain tissue surrounding the contusion, in a healthy-appearing area in the contralateral hemisphere, in 16 head-injured patients with 16 traumatic contusions larger than 2 cm at baseline, and after 20 minutes of norepinephrine-induced 20-mmHg elevation of CPP levels. RESULTS After an induced acute elevation of CPP from baseline values of 65.8 ml/100 g/min (standard deviation, 8.6) to final values of 88.7 ml/100 g/min (standard deviation, 8.9; P < or = 0.0001), we found that rCBF mean levels decreased in the intracontusional low-density area (P = 0.0278), and change in rCBF was inversely associated to the baseline values. After grouping contusions according to the rCBF response to induced acute CPP elevation, rCBF mean values recorded at baseline were significantly lower in lesions with "rCBF improvement" than in those with "rCBF reduction" in the intracontusional low-density area (P = 0.0435). CONCLUSION Our findings suggest that CPP elevation induced by norepinephrine is effective in improving contusional rCBF only in selected cases, which are represented by a subset of contusions with critical perfusion, which can be identified by rCBF measurements. Conversely, in contusions with rCBF higher than critical low values, the CPP elevation could probably induce a temporary breakdown of the blood brain barrier, and the norepinephrine leads to a vasoconstriction with a worsening of regional perfusion.
Collapse
Affiliation(s)
- Arturo Chieregato
- Neurosurgical and Trauma Intensive Care Unit, Maurizio Bufalini Hospital, Cesena, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Nakabayashi M, Suzaki S, Tomita H. Neural injury and recovery near cortical contusions: a clinical magnetic resonance spectroscopy study. J Neurosurg 2007; 106:370-7. [PMID: 17367057 DOI: 10.3171/jns.2007.106.3.370] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Proton magnetic resonance (MR) spectroscopy can detect neural metabolic alterations noninvasively after traumatic brain injury (TBI) even in areas that appear normal. Unlike metabolic depression in diffuse TBI, focal metabolic alterations near cortical contusions in humans have not been previously investigated in a longitudinal study. The object of this study was to identify these alterations and examine their course.
Methods
At 1 week and 1 month after mild to moderate TBI involving cortical contusion, 30 patients underwent 1H MR spectroscopy examination that focused bilaterally on normal-appearing frontal and temporal white matter. Levels of N-acetylaspartate (NAA), choline (Cho) compounds, and creatine (Cr) were measured to obtain two metabolite ratios, NAA/Cr and Cho/Cr. The ratios were compared with those of 11 healthy individuals.
At 1 week after TBI, the NAA/Cr ratio was significantly lower near cortical contusions than it was in white matter remote from the injury or in controls, while the Cho/Cr ratios did not differ significantly. At 1 month, the decreased NAA/Cr ratios near contusions had increased significantly from 1 week, as had the Cho/Cr ratio.
Conclusions
Metabolic depression reflecting neural injury was apparent in subjacent normal-appearing white matter at 1 week after cortical contusion; this had normalized substantially at 1 month.
Collapse
Affiliation(s)
- Motoaki Nakabayashi
- Department of Emergency Medicine, Musashino Red Cross Hospital, Tokyo, Japan.
| | | | | |
Collapse
|
49
|
Wada R, Aviv RI, Fox AJ, Sahlas DJ, Gladstone DJ, Tomlinson G, Symons SP. CT angiography "spot sign" predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 2007; 38:1257-62. [PMID: 17322083 DOI: 10.1161/01.str.0000259633.59404.f3] [Citation(s) in RCA: 477] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Morbidity and mortality in spontaneous intracerebral hemorrhage (ICH) are correlated with hematoma progression. We hypothesized that the presence of tiny, enhancing foci ("spot sign") within acute hematomas is associated with hematoma expansion. METHODS We prospectively studied 39 consecutive patients with spontaneous ICH by computed tomography angiography within 3 hours of symptom onset. Scans were reviewed by 3 readers. Patients were dichotomized according to the presence or absence of the spot sign. Clinical and radiological outcomes were compared between groups. The predictive value of this sign was assessed in a multivariate analysis. RESULTS Thirteen patients (33%) demonstrated 31 enhancing foci. Baseline clinical variables were similar in both groups. Hematoma expansion occurred in 11 patients (28%) on follow-up. Seventy-seven percent of patients with and 4% without hematoma expansion demonstrated the spot sign (P<0.0001). Sensitivity, specificity, positive predictive value, negative predictive value, and likelihood ratio for expansion were 91%, 89%, 77%, 96%, and 8.5, respectively. Interobserver agreement was high (kappa=0.92 to 0.94). In patients with the spot sign, mean volume change was greater (P=0.008), extravasation more common (P=0.0005), and median hospital stay longer (P=0.04), and fewer patients achieved a good outcome (modified Rankin Scale score <2), although the latter was not significant (P=0.16). No differences in hydrocephalus (P=1.00), surgical intervention (P=1.00), or death (P=0.60) were noted between groups. In multiple regression, the spot sign independently predicted hematoma expansion (P=0.0003). CONCLUSIONS The computed tomography angiography spot sign is associated with the presence and extent of hematoma progression. Fewer patients achieve a good clinical outcome and hospital stay was longer. Further studies are warranted to validate the ability of this sign to predict clinical outcomes.
Collapse
Affiliation(s)
- Ryan Wada
- Division of Neuroradiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Stiefel MF, Udoetuk JD, Spiotta AM, Gracias VH, Goldberg A, Maloney-Wilensky E, Bloom S, Le Roux PD. Conventional neurocritical care and cerebral oxygenation after traumatic brain injury. J Neurosurg 2006; 105:568-75. [PMID: 17044560 DOI: 10.3171/jns.2006.105.4.568] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Object
Control of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is the foundation of traumatic brain injury (TBI) management. In this study, the authors examined whether conventional ICP- and CPP-guided neurocritical care ensures adequate brain tissue O2 in the first 6 hours after resuscitation.
Methods
Resuscitated patients with severe TBI (Glasgow Coma Scale score ≤ 8 and Injury Severity Scale score ≥ 16) who were admitted to a Level I trauma center and who underwent brain tissue O2 monitoring within 6 hours of injury were evaluated as part of a prospective observational database. Therapy was directed to maintain an ICP of 25 mm Hg or less and a CPP of 60 mm Hg or higher.
Data from a group of 25 patients that included 19 men and six women (mean age 39 ± 20 years) were examined. After resuscitation, ICP was 25 mm Hg or less in 84% and CPP was 60 mm Hg or greater in 88% of the patients. Brain O2 probes were allowed to stabilize; the initial brain tissue O2 level was 25 mm Hg or less in 68% of the patients, 20 mm Hg or less in 56%, and 10 mm Hg or less in 36%. Nearly one third (29%) of patients with ICP readings of 25 mm Hg or less and 27% with CPP levels of 60 mm Hg or greater had severe cerebral hypoxia (brain tissue O2 ≤10 mm Hg). Nineteen patients had both optimal ICP (≤25 mm Hg) and CPP (> 60 mm Hg); brain tissue O2 was 20 mm Hg or less in 47% and 10 mm Hg or less in 21% of these patients. The mortality rate was higher in patients with reduced brain tissue O2.
Conclusions
Brain resuscitation based on current neurocritical care standards (that is, control of ICP and CPP) does not prevent cerebral hypoxia in some patients. This finding may help explain why secondary neuronal injury occurs in some patients with adequate CPP and suggests that the definition of adequate brain resuscitation after TBI may need to be reconsidered.
Collapse
Affiliation(s)
- Michael F Stiefel
- Department of Neurosurgery and Division of Trauma Surgery and Surgical Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|