1
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. HISTOLOGICAL COMPARISON OF REPEATED MILD WEIGHT DROP AND LATERAL FLUID PERCUSSION INJURY MODELS OF TRAUMATIC BRAIN INJURY IN FEMALE AND MALE RATS. Shock 2024; 62:398-409. [PMID: 38813916 DOI: 10.1097/shk.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT In preclinical traumatic brain injury (TBI) research, the animal model should be selected based on the research question and outcome measures of interest. Direct side-by-side comparisons of different injury models are essential for informing such decisions. Here, we used immunohistochemistry to compare the outcomes from two common models of TBI, lateral fluid percussion (LFP) and repeated mild weight drop (rmWD) in adult female and male Wistar rats. Specifically, we measured the effects of LFP and rmWD on markers of cerebrovascular and tight junction disruption, neuroinflammation, mature neurons, and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA 2/3 area of the hippocampus. Animals were randomized into the LFP or rmWD group. On day 1, the LFP group received a craniotomy, and on day 4, injury (or sham procedure; randomly assigned). The rmWD animals underwent either injury or isoflurane only (randomly assigned) on each of those 4 days. Seven days after injury, brains were harvested for analysis. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy only, whereas rmWD animals showed the least residual changes compared with isoflurane-only controls, supporting consideration of rmWD as a mild injury. LFP led to longer-lasting disruptions, perhaps more representative of moderate TBI. We also report that craniotomy and LFP produced greater disruptions in females relative to males. These findings will assist the field in the selection of animal models based on target severity of postinjury outcomes and support the inclusion of both sexes and appropriate control groups.
Collapse
Affiliation(s)
| | - Shealan C Cruise
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | |
Collapse
|
2
|
Yang Y, Ye Y, Deng Y, Gao L. Uridine and its role in metabolic diseases, tumors, and neurodegenerative diseases. Front Physiol 2024; 15:1360891. [PMID: 38487261 PMCID: PMC10937367 DOI: 10.3389/fphys.2024.1360891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Uridine is a pyrimidine nucleoside found in plasma and cerebrospinal fluid with a concentration higher than the other nucleosides. As a simple metabolite, uridine plays a pivotal role in various biological processes. In addition to nucleic acid synthesis, uridine is critical to glycogen synthesis through the formation of uridine diphosphate glucose in which promotes the production of UDP-GlcNAc in the hexosamine biosynthetic pathway and supplies UDP-GlcNAc for O-GlcNAcylation. This process can regulate protein modification and affect its function. Moreover, Uridine has an effect on body temperature and circadian rhythms, which can regulate the metabolic rate and the expression of metabolic genes. Abnormal levels of blood uridine have been found in people with diabetes and obesity, suggesting a link of uridine dysregulation and metabolic disorders. At present, the role of uridine in glucose metabolism and lipid metabolism is controversial, and the mechanism is not clear, but it shows the trend of long-term damage and short-term benefit. Therefore, maintaining uridine homeostasis is essential for maintaining basic functions and normal metabolism. This article summarizes the latest findings about the metabolic effects of uridine and the potential of uridine metabolism as therapeutic target in treatment of metabolic disorders.
Collapse
Affiliation(s)
- Yueyuan Yang
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yahong Ye
- Department of Internal Medicine, QuanZhou Women’s and Children’s Hospital, QuanZhou, China
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, City of Hope, Duarte, CA, United States
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. Histological comparison of repeated mild weight drop and lateral fluid percussion injury models of traumatic brain injury (TBI) in female and male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578177. [PMID: 38352449 PMCID: PMC10862833 DOI: 10.1101/2024.01.31.578177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity has led to the development of several preclinical models, each modeling a distinct subset of outcomes. Selection of an injury model should be guided by the research question and the specific outcome measures of interest. Consequently, there is a need for conducting direct comparisons of different TBI models. Here, we used immunohistochemistry to directly compare the outcomes from two common models, lateral fluid percussion (LFP) and repeat mild weight drop (rmWD), on neuropathology in adult female and male Wistar rats. Specifically, we used immunohistochemistry to measure the effects of LFP and rmWD on cerebrovascular and tight junction disruption, inflammatory markers, mature neurons and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA2/3 area of the hippocampus. Animals were randomized into either LFP or rmWD groups. The LFP group received a craniotomy prior to LFP (or corresponding sham procedure) three days later, while rmWD animals underwent either weight drop or sham (isoflurane only) on each of those four days. After a recovery period of 7 days, animals were euthanized, and brains were harvested for analysis of RECA-1, claudin-5, GFAP, Iba-1, CD-68, NeuN, and wisteria floribunda lectin. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy-only, while rmWD animals showed the least residual changes compared to isoflurane-only controls. These findings support consideration of rmWD as a mild, transient injury. LFP leads to longer-lasting disruptions that are more closely associated with a moderate TBI. We further show that both craniotomy and LFP produced greater disruptions in females relative to males at 7 days post-injury. These findings support the inclusion of a time-matched experimentally-naïve or anesthesia-only control group in preclinical TBI research to enhance the validity of data interpretation and conclusions.
Collapse
|
4
|
Javaid S, Farooq T, Rehman Z, Afzal A, Ashraf W, Rasool MF, Alqahtani F, Alsanea S, Alasmari F, Alanazi MM, Alharbi M, Imran I. Dynamics of Choline-Containing Phospholipids in Traumatic Brain Injury and Associated Comorbidities. Int J Mol Sci 2021; 22:ijms222111313. [PMID: 34768742 PMCID: PMC8583393 DOI: 10.3390/ijms222111313] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/01/2023] Open
Abstract
The incidences of traumatic brain injuries (TBIs) are increasing globally because of expanding population and increased dependencies on motorized vehicles and machines. This has resulted in increased socio-economic burden on the healthcare system, as TBIs are often associated with mental and physical morbidities with lifelong dependencies, and have severely limited therapeutic options. There is an emerging need to identify the molecular mechanisms orchestrating these injuries to life-long neurodegenerative disease and a therapeutic strategy to counter them. This review highlights the dynamics and role of choline-containing phospholipids during TBIs and how they can be used to evaluate the severity of injuries and later targeted to mitigate neuro-degradation, based on clinical and preclinical studies. Choline-based phospholipids are involved in maintaining the structural integrity of the neuronal/glial cell membranes and are simultaneously the essential component of various biochemical pathways, such as cholinergic neuronal transmission in the brain. Choline or its metabolite levels increase during acute and chronic phases of TBI because of excitotoxicity, ischemia and oxidative stress; this can serve as useful biomarker to predict the severity and prognosis of TBIs. Moreover, the effect of choline-replenishing agents as a post-TBI management strategy has been reviewed in clinical and preclinical studies. Overall, this review determines the theranostic potential of choline phospholipids and provides new insights in the management of TBI.
Collapse
Affiliation(s)
- Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Talha Farooq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Ammara Afzal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
- Correspondence: ; Tel.: +966-114697749
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| |
Collapse
|
5
|
Role of Citicoline in the Management of Traumatic Brain Injury. Pharmaceuticals (Basel) 2021; 14:ph14050410. [PMID: 33926011 PMCID: PMC8146347 DOI: 10.3390/ph14050410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 01/07/2023] Open
Abstract
Head injury is among the most devastating types of injury, specifically called Traumatic Brain Injury (TBI). There is a need to diminish the morbidity related with TBI and to improve the outcome of patients suffering TBI. Among the improvements in the treatment of TBI, neuroprotection is one of the upcoming improvements. Citicoline has been used in the management of brain ischemia related disorders, such as TBI. Citicoline has biochemical, pharmacological, and pharmacokinetic characteristics that make it a potentially useful neuroprotective drug for the management of TBI. A short review of these characteristics is included in this paper. Moreover, a narrative review of almost all the published or communicated studies performed with this drug in the management of patients with head injury is included. Based on the results obtained in these clinical studies, it is possible to conclude that citicoline is able to accelerate the recovery of consciousness and to improve the outcome of this kind of patient, with an excellent safety profile. Thus, citicoline could have a potential role in the management of TBI.
Collapse
|
6
|
Jia Q, Zhang Y, Liu S, Li Z, Zhou F, Shao L, Feng C, Fan G. Analysis of search strategies for evaluating low-dose heavy metal mixture induced cognitive deficits in rats: An early sensitive toxicological approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110900. [PMID: 32593095 DOI: 10.1016/j.ecoenv.2020.110900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals such as lead (Pb), cadmium (Cd), and mercury (Hg) are representative neurotoxicological contaminants that can evoke cognitive dysfunctions. Low levels of these contaminants can be detected simultaneously in the human blood. In our previous study, behavioral performances were markedly impaired by exposure to these heavy metal mixtures (MM) at low levels. However, the aspects of cognitive functions involved are not well understood. Here, we further analyzed search strategies using a new algorithm named Morris water maze-unbiased strategy classification (MUST-C). Rat pups were co-exposed to low doses of Pb, Cd, and Hg during the embryonic and lactation stage. MM exposure at low doses, similar to those found in the general population, impaired search strategies even though their latency and path length were not affected in the Morris water maze task. MM-exposed rats preferred to use more directionless repetition strategies and less target orientation strategies than did vehicle-exposed animals in a dose-dependent manner. In addition, thionine staining and electron microscopy further revealed that MM exposure induced dose-dependent search strategy related place cell injures in the hippocampal CA1 and CA3 regions. These results demonstrate that the use of suboptimal search strategies underlies the early cognitive deficits in rats exposed to low doses of MM. The current study determined that search strategy analysis might be a novel sensitive assessment method for evaluating in the neurobehavioral toxicity.
Collapse
Affiliation(s)
- Qiyue Jia
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Yuanyuan Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Sisi Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Zongguang Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
7
|
Mohamadpour M, Whitney K, Bergold PJ. The Importance of Therapeutic Time Window in the Treatment of Traumatic Brain Injury. Front Neurosci 2019; 13:07. [PMID: 30728762 PMCID: PMC6351484 DOI: 10.3389/fnins.2019.00007] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability. Despite its importance in public health, there are presently no drugs to treat TBI. Many reasons underlie why drugs have failed clinical trials, one reason is that most drugs to treat TBI lose much of their efficacy before patients are first treated. This review discusses the importance of therapeutic time window; the time interval between TBI onset and the initiation of treatment. Therapeutic time window is complex, as brain injury is both acute and chronic, resulting in multiple drug targets that appear and disappear with differing kinetics. The speed and increasing complexity of TBI pathophysiology is a major reason why drugs lose efficacy as time to first dose increases. Recent Phase III clinical trials treated moderate to severe TBI patients within 4–8 h after injury, yet they turned away many potential patients who could not be treated within these time windows. Additionally, most head trauma is mild TBI. Unlike moderate to severe TBI, patients with mild TBI often delay treatment until their symptoms do not abate. Thus, drugs to treat moderate to severe TBI likely will need to retain high efficacy for up to 12 h after injury; drugs for mild TBI, however, will likely need even longer windows. Early pathological events following TBI progress with similar kinetics in humans and animal TBI models suggesting that preclinical testing of time windows assists the design of clinical trials. We reviewed preclinical studies of drugs first dosed later than 4 h after injury. This review showed that therapeutic time window can differ depending upon the animal TBI model and the outcome measure. We identify the few drugs (methamphetamine, melanocortin, minocycline plus N-acetylcysteine, and cycloserine) that demonstrated good therapeutic windows with multiple outcome measures. On the basis of their therapeutic window, these drugs appear to be excellent candidates for clinical trials. In addition to further testing of these drugs, we recommend that the assessment of therapeutic time window with multiple outcome measures becomes a standard component of preclinical drug testing.
Collapse
Affiliation(s)
- Maliheh Mohamadpour
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Kristen Whitney
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Peter J Bergold
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
8
|
Misquitta K, Dadar M, Tarazi A, Hussain MW, Alatwi MK, Ebraheem A, Multani N, Khodadadi M, Goswami R, Wennberg R, Tator C, Green R, Colella B, Davis KD, Mikulis D, Grinberg M, Sato C, Rogaeva E, Louis Collins D, Tartaglia MC. The relationship between brain atrophy and cognitive-behavioural symptoms in retired Canadian football players with multiple concussions. Neuroimage Clin 2018; 19:551-558. [PMID: 29984163 PMCID: PMC6029563 DOI: 10.1016/j.nicl.2018.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/08/2018] [Accepted: 05/12/2018] [Indexed: 10/31/2022]
Abstract
Multiple concussions, particularly in contact sports, have been associated with cognitive deficits, psychiatric impairment and neurodegenerative diseases like chronic traumatic encephalopathy. We used volumetric and deformation-based morphometric analyses to test the hypothesis that repeated concussions may be associated with smaller regional brain volumes, poorer cognitive performance and behavioural symptoms among former professional football players compared to healthy controls. This study included fifty-three retired Canadian Football League players, 25 age- and education-matched healthy controls, and controls from the Cambridge Centre for Aging and Neuroscience database for validation. Volumetric analyses revealed greater hippocampal atrophy than expected for age in former athletes with multiple concussions than controls and smaller left hippocampal volume was associated with poorer verbal memory performance in the former athletes. Deformation-based morphometry confirmed smaller bilateral hippocampal volume that was associated with poorer verbal memory performance in athletes. Repeated concussions may lead to greater regional atrophy than expected for age.
Collapse
Affiliation(s)
- Karen Misquitta
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Mahsa Dadar
- McConnell Brain Imaging Centre, Montreal Neurological Institute, 3801 Rue Universite, Montreal, QC H3A 2B4, Canada
| | - Apameh Tarazi
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Mohammed W Hussain
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Mohammed K Alatwi
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Ahmed Ebraheem
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Namita Multani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON M5T 0S8, Canada; Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Mozhgan Khodadadi
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Ruma Goswami
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Richard Wennberg
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Charles Tator
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Robin Green
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Toronto Rehabilitation Institute, University Health Network, 550 University Ave., Toronto, ON M5G 2A2, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Brenda Colella
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Toronto Rehabilitation Institute, University Health Network, 550 University Ave., Toronto, ON M5G 2A2, Canada
| | - Karen Deborah Davis
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - David Mikulis
- Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, 3801 Rue Universite, Montreal, QC H3A 2B4, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON M5T 0S8, Canada; Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON M5T 2S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
9
|
Effects of Female Sex Steroids Administration on Pathophysiologic Mechanisms in Traumatic Brain Injury. Transl Stroke Res 2017; 9:393-416. [PMID: 29151229 DOI: 10.1007/s12975-017-0588-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Secondary brain damage following initial brain damage in traumatic brain injury (TBI) is a major cause of adverse outcomes. There are many gaps in TBI research and a lack of therapy to limit debilitating outcomes in TBI or enhance the neurogenesis, despite pre-clinical and clinical research performed in TBI. Females show harmful outcomes against brain damage including TBI less than males, independent of different TBI occurrence. A significant reduction in secondary brain damage and improvement in neurologic outcome post-TBI has been reported following the use of progesterone and estrogen in many experimental studies. Although useful features of sex steroids including progesterone have been identified in TBI clinical trials I and II, clinical trials III have been unsuccessful. This review article focuses on evidence of secondary injury mechanisms and neuroprotective effects of estrogen and progesterone in TBI. Understanding these mechanisms may enable researchers to achieve greater success in TBI clinical studies. It seems that the design of clinical studies should be revised due to translation loss of animal studies to clinical studies. The heterogeneous and complex nature of TBI, the endogenous levels of sex hormones at the time of taking these hormones, the therapeutic window of the drug, the dosage of the drug, the selection of appropriate targets in evaluation, the determination of responsive population, gender and age based on animal studies should be considered in the design of TBI human studies in future.
Collapse
|
10
|
A meta-analysis of the effect of different neuroprotective drugs in management of patients with traumatic brain injury. Neurosurg Rev 2016; 41:427-438. [PMID: 27539610 DOI: 10.1007/s10143-016-0775-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
Abstract
Traumatic brain injury is a major problem worldwide. Our objective is to synthesize available evidence in the literature concerning the effectiveness of neuroprotective drugs (cerebrolysin, citicoline, and piracetam) on Glasgow outcome score (GOS), cognitive performance, and survival in traumatic brain injury patients. Comprehensive search of electronic databases, search engines, and conferences proceedings; hand search journals; searching reference lists of relevant articles, theses, and local publications; and contact of authors for incomplete data were performed. Studies included patients in all age groups regardless of severity of trauma. There was no publication date restriction. Two reviewers independently extracted data from each study. Fixed effect or random effects model selection depends on results of statistical tests for heterogeneity. The literature search yielded 13 studies. Patients treated with cerebrolysin (n = 112) had favorable GOS three times more than controls (OR 3.019; 95 % CI 1.76 to 5.16; p = 0.003*). The odds of cognition improvement in the treatment group was 3.4 times more than controls (OR 3.4; 95 % CI 1.82 to 5.21; p < 0.001*). Survival of cerebrolysin-treated patients did not differ from controls (103 patients; OR = 2.81; 95 % CI 0.905 to 8.76). Citicoline did not improve GOS (1355 patients; OR 0.96; 95 % CI 0.830 to 1.129; p = 0.676), cognitive performance (4 studies; 1291 patients; OR 1.35; 95 % CI 0.58 to 3.16; p = 0.478), and survival (1037 patients; OR = 1.38; 95 % CI 0.855 to 2.239). One study showed a positive effect of piracetam on cognition. Further research with high validity is needed to reach a solid conclusion about the use of neuroprotective drugs in cases of brain injury.
Collapse
|
11
|
Kline AE, Leary JB, Radabaugh HL, Cheng JP, Bondi CO. Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: Is more better? Prog Neurobiol 2016; 142:45-67. [PMID: 27166858 DOI: 10.1016/j.pneurobio.2016.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care crisis that affects two million individuals in the United Sates alone and over ten million worldwide each year. While numerous monotherapies have been evaluated and shown to be beneficial at the bench, similar results have not translated to the clinic. One reason for the lack of successful translation may be due to the fact that TBI is a heterogeneous disease that affects multiple mechanisms, thus requiring a therapeutic approach that can act on complementary, rather than single, targets. Hence, the use of combination therapies (i.e., polytherapy) has emerged as a viable approach. Stringent criteria, such as verification of each individual treatment plus the combination, a focus on behavioral outcome, and post-injury vs. pre-injury treatments, were employed to determine which studies were appropriate for review. The selection process resulted in 37 papers that fit the specifications. The review, which is the first to comprehensively assess the effects of combination therapies on behavioral outcomes after TBI, encompasses five broad categories (inflammation, oxidative stress, neurotransmitter dysregulation, neurotrophins, and stem cells, with and without rehabilitative therapies). Overall, the findings suggest that combination therapies can be more beneficial than monotherapies as indicated by 46% of the studies exhibiting an additive or synergistic positive effect versus on 19% reporting a negative interaction. These encouraging findings serve as an impetus for continued combination studies after TBI and ultimately for the development of successful clinically relevant therapies.
Collapse
Affiliation(s)
- Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Jacob B Leary
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
12
|
Shin SS, Dixon CE. Alterations in Cholinergic Pathways and Therapeutic Strategies Targeting Cholinergic System after Traumatic Brain Injury. J Neurotrauma 2015; 32:1429-40. [PMID: 25646580 DOI: 10.1089/neu.2014.3445] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in varying degrees of disability in a significant number of persons annually. The mechanisms of cognitive dysfunction after TBI have been explored in both animal models and human clinical studies for decades. Dopaminergic, serotonergic, and noradrenergic dysfunction has been described in many previous reports. In addition, cholinergic dysfunction has also been a familiar topic among TBI researchers for many years. Although pharmacological agents that modulate cholinergic neurotransmission have been used with varying degrees of success in previous studies, improving their function and maximizing cognitive recovery is an ongoing process. In this article, we review the previous findings on the biological mechanism of cholinergic dysfunction after TBI. In addition, we describe studies that use both older agents and newly developed agents as candidates for targeting cholinergic neurotransmission in future studies.
Collapse
Affiliation(s)
- Samuel S Shin
- 1 Brain Trauma Research Center, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - C Edward Dixon
- 1 Brain Trauma Research Center, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Veterans Affairs Pittsburgh Healthcare System , Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Jacotte-Simancas A, Costa-Miserachs D, Coll-Andreu M, Torras-Garcia M, Borlongan CV, Portell-Cortés I. Effects of voluntary physical exercise, citicoline, and combined treatment on object recognition memory, neurogenesis, and neuroprotection after traumatic brain injury in rats. J Neurotrauma 2015; 32:739-51. [PMID: 25144903 DOI: 10.1089/neu.2014.3502] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The biochemical and cellular events that lead to secondary neural damage after traumatic brain injury (TBI) contribute to long-term disabilities, including memory deficits. There is a need to search for single and/or combined treatments aimed at reducing these TBI-related disfunctions. The effects of citicoline and of voluntary physical exercise in a running wheel (3 weeks), alone or in combination, on TBI-related short-term (3 h) and long-term (24 h) object recognition memory (ORM) deficits and on neurogenesis and neuroprotection were examined using a rodent model of TBI (controlled cortical impact injury). Citicoline improved memory deficits at the two times tested, while physical exercise only in the long-term test. Physical exercise had a clear neuroprotective effect as indicated by reduced interhemispheric differences in hippocampal formation and lateral ventricle volumes and in density of mature neurons in the hilus of the dentate gyrus and the perirhinal cortex. Physical exercise also increased cell proliferation and neurogenesis in the granular cell layer of the dentate gyrus. Some degree of neuroprotection of citicoline was suggested by reduced interhemispheric differences in the volume of the hippocampal formation. Contrary to what was expected, the effects of citicoline and physical exercise did not sum up. Further, a negative interference between both treatments was found in several behavioral and histological variables. The promising profiles of both treatments as therapeutic tools in TBI when applied singly underscore the need to perform further works looking for other combined treatment regimens that increase the benefit of each treatment alone.
Collapse
Affiliation(s)
- Alejandra Jacotte-Simancas
- 1 Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Citicoline protects brain against closed head injury in rats through suppressing oxidative stress and calpain over-activation. Neurochem Res 2014; 39:1206-18. [PMID: 24691765 DOI: 10.1007/s11064-014-1299-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/23/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Citicoline, a natural compound that functions as an intermediate in the biosynthesis of cell membrane phospholipids, is essential for membrane integrity and repair. It has been reported to protect brain against trauma. This study was designed to investigate the protective effects of citicoline on closed head injury (CHI) in rats. Citicoline (250 mg/kg i.v. 30 min and 4 h after CHI) lessened body weight loss, and improved neurological functions significantly at 7 days after CHI. It markedly lowered brain edema and blood-brain barrier permeability, enhanced the activities of superoxide dismutase and the levels of glutathione, reduced the levels of malondialdehyde and lactic acid. Moreover, citicoline suppressed the activities of calpain, and enhanced the levels of calpastatin, myelin basic protein and αII-spectrin in traumatic tissue 24 h after CHI. Also, it attenuated the axonal and myelin sheath damage in corpus callosum and the neuronal cell death in hippocampal CA1 and CA3 subfields 7 days after CHI. These data demonstrate the protection of citicoline against white matter and grey matter damage due to CHI through suppressing oxidative stress and calpain over-activation, providing additional support to the application of citicoline for the treatment of traumatic brain injury.
Collapse
|
15
|
Glover LE, Tajiri N, Lau T, Kaneko Y, van Loveren H, Borlongan CV. Immediate, but not delayed, microsurgical skull reconstruction exacerbates brain damage in experimental traumatic brain injury model. PLoS One 2012; 7:e33646. [PMID: 22438975 PMCID: PMC3306278 DOI: 10.1371/journal.pone.0033646] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI.
Collapse
Affiliation(s)
| | | | | | | | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| |
Collapse
|
16
|
Zhang Y, Chopp M, Mahmood A, Meng Y, Qu C, Xiong Y. Impact of inhibition of erythropoietin treatment-mediated neurogenesis in the dentate gyrus of the hippocampus on restoration of spatial learning after traumatic brain injury. Exp Neurol 2012; 235:336-44. [PMID: 22414310 DOI: 10.1016/j.expneurol.2012.02.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/06/2012] [Accepted: 02/25/2012] [Indexed: 01/16/2023]
Abstract
Our previous study demonstrates that delayed (initiated 24h post injury) erythropoietin (EPO) therapy for traumatic brain injury (TBI) significantly improves spatial learning. In this study, we investigated the impact of inhibition of EPO treatment-mediated neurogenesis on spatial learning after experimental TBI. Young male Wistar rats (318+/-7 g) were subjected to unilateral controlled cortical impact injury. TBI rats received delayed EPO treatment (5000 U/kg in saline) administered intraperitoneally once daily at 1, 2, and 3 days post injury and intracerebroventricular (icv) infusion of either a mitotic inhibitor cytosine-b-D-arabinofuranoside or vehicle (saline) for 14 days. Another 2 groups of TBI rats were treated intraperitoneally with saline and infused icv with either a mitotic inhibitor Ara-C or saline for 14 days. Animals receiving sham operation were infused icv with either Ara-C infusion or saline. Bromodeoxyuridine (BrdU) was administered to label dividing cells. Spatial learning was assessed using a modified Morris water maze test. Animals were sacrificed at 35 days after injury and brain sections stained for immunohistochemical analyses. As compared to the saline treatment, immunohistochemical analysis revealed that delayed EPO treatment significantly increased the number of BrdU-positive cells and new neurons co-stained with BrdU and NeuN (mature neuron marker) in the dentate gyrus in TBI rats. EPO treatment improved spatial learning after TBI. Ara-C infusion significantly abolished neurogenesis and spatial learning recovery after TBI and EPO treatment. Both EPO and Ara-C reduced the number of astrocytes and microglia/macrophages in the dentate gyrus after TBI. Our findings are highly suggestive for an important role of EPO-amplified dentate gyrus neurogenesis as one of the mechanisms underlying EPO therapeutic treatments after TBI, strongly indicating that strategies promoting endogenous neurogenesis may hold an important therapeutic potential for treatment of TBI.
Collapse
Affiliation(s)
- Yanlu Zhang
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
17
|
Arenth PM, Russell KC, Ricker JH, Zafonte RD. CDP-choline as a biological supplement during neurorecovery: a focused review. PM R 2011; 3:S123-31. [PMID: 21703569 DOI: 10.1016/j.pmrj.2011.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 03/15/2011] [Indexed: 11/29/2022]
Abstract
Cytidine 5'-diphosphocholine (CDP-choline or citicoline) is a highly bioavailable compound with potential benefits for aiding neural repair and increasing acetylcholine levels in the central and peripheral nervous system. As a result, many researchers have investigated the use of CDP-choline for various types of neurological insult or conditions, including stroke, traumatic brain injury, and Alzheimer disease. Despite the fact that the safety of the compound has been verified across multiple international studies, evidence for efficacy remains less clear. This may be attributable, at least in part, to several issues, including a lack of randomized clinical trials, a lack of availability of the compound in the United States, and statistical power issues in reported trials. In addition, the fact that CDP-choline has multiple potential points of therapeutic impact makes it an exciting treatment option in theory but also complicates the analysis of efficacy in the sense that multiple mechanisms and time points must be evaluated. Although some clinical conditions do not appear to benefit from CDP-choline treatment, the majority of findings to date have suggested at least minor benefits of treatment. In this review we will examine the evidence in the published literature pertaining to use of CDP-choline in rehabilitation populations and briefly consider the work yet to be done.
Collapse
Affiliation(s)
- Patricia M Arenth
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
18
|
Wheaton P, Mathias JL, Vink R. Impact of pharmacological treatments on outcome in adult rodents after traumatic brain injury: a meta-analysis. J Psychopharmacol 2011; 25:1581-99. [PMID: 21300634 DOI: 10.1177/0269881110388331] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pharmacological treatments have been widely investigated in pre-clinical animal trials to evaluate their usefulness in reducing cognitive, behavioural and motor problems after traumatic brain injury (TBI). However, the relative efficacy of these agents has yet to be evaluated, making it difficult to assess the strength of evidence for their use in a clinical population. A meta-analytic review of research (1980-2009) was therefore conducted to examine the impact of pharmacological treatments administered to adult male rodents after experimental TBI on cognitive, behavioural, and motor outcome. The PubMed and PsycInfo databases were searched using 35 terms. Weighted Cohen's d effect sizes, percent overlap, Fail-Safe N statistics and confidence intervals were calculated for each treatment. In total, 91 treatments were evaluated in 223 pre-clinical trials, comprising 5988 rodents. Treatments that were investigated by multiple studies and showed large and significant treatment effects were of greatest interest. Of the 16 treatments that were efficacious, six improved cognition, 10 improved motor function and no treatment improved behaviour (depression/anxiety, aggression, zoosocial behaviour). Treatment benefits were found across a range of TBI models. Drug dosage and treatment interval impacted on treatment effects.
Collapse
Affiliation(s)
- P Wheaton
- School of Psychology, University of Adelaide, Adelaide, Australia
| | | | | |
Collapse
|
19
|
Kabadi SV, Maher TJ. Posttreatment with uridine and melatonin following traumatic brain injury reduces edema in various brain regions in rats. Ann N Y Acad Sci 2010; 1199:105-13. [PMID: 20633115 DOI: 10.1111/j.1749-6632.2009.05352.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) is a major health problem and a significant cause of death, disability, and neurobehavioral deficits. We investigated the effect of posttreatment with uridine and melatonin, separate and in combination, on edema in various brain regions following TBI via lateral fluid percussion. Uridine (16 and 32 mg/kg, i.p.) and melatonin (200 mg/kg, i.p.), individually reduced edema in impacted striatum versus TBI. Combination treatment of uridine (32) and melatonin (200) decreased edema in impacted as well as non-impacted hippocampus (75.7 +/- 0.5% and 75.4 +/- 0.3%) and striatum (69.7 +/- 1.2% and 72.6 +/- 0.5%) respectively, as compared to the group that received vehicle following TBI. Combination of uridine (16) and melatonin (200) attenuated edema levels in impacted hippocampus (76.6 +/- 0.4%) and striatum (71.7 +/- 0.5% and 74 +/- 0.3%, respectively). Combination of uridine and melatonin may be a possible treatment strategy for the damage caused by TBI and its neuroprotective potential needs to be evaluated further.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
20
|
Zafonte R, Friedewald WT, Lee SM, Levin B, Diaz-Arrastia R, Ansel B, Eisenberg H, Timmons SD, Temkin N, Novack T, Ricker J, Merchant R, Jallo J. The citicoline brain injury treatment (COBRIT) trial: design and methods. J Neurotrauma 2009; 26:2207-16. [PMID: 19803786 PMCID: PMC2824223 DOI: 10.1089/neu.2009.1015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability. In the United States alone approximately 1.4 million sustain a TBI each year, of which 50,000 people die, and over 200,000 are hospitalized. Despite numerous prior clinical trials no standard pharmacotherapy for the treatment of TBI has been established. Citicoline, a naturally occurring endogenous compound, offers the potential of neuroprotection, neurorecovery, and neurofacilitation to enhance recovery after TBI. Citicoline has a favorable side-effect profile in humans and several meta-analyses suggest a benefit of citicoline treatment in stroke and dementia. COBRIT is a randomized, double-blind, placebo-controlled, multi-center trial of the effects of 90 days of citicoline on functional outcome in patients with complicated mild, moderate, and severe TBI. In all, 1292 patients will be recruited over an estimated 32 months from eight clinical sites with random assignment to citicoline (1000 mg twice a day) or placebo (twice a day), administered enterally or orally. Functional outcomes are assessed at 30, 90, and 180 days after the day of randomization. The primary outcome consists of a set of measures that will be analyzed as a composite measure using a global test procedure at 90 days. The measures comprise the following core battery: the California Verbal Learning Test II; the Controlled Oral Word Association Test; Digit Span; Extended Glasgow Outcome Scale; the Processing Speed Index; Stroop Test part 1 and Stroop Test part 2; and Trail Making Test parts A and B. Secondary outcomes include survival, toxicity, and rate of recovery.
Collapse
Affiliation(s)
- Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - William T. Friedewald
- Department of Epidemiology, Columbia University, Mailman School of Public Health, New York, New York
| | - Shing M. Lee
- Department of Biostatistics, Columbia University, Mailman School of Public Health, New York, New York
| | - Bruce Levin
- Department of Biostatistics, Columbia University, Mailman School of Public Health, New York, New York
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Beth Ansel
- TBI and Stroke Rehabilitation Research Program, National Center for Medical Rehabilitation Research, National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Howard Eisenberg
- Department of Neurosurgery, University of Maryland Hospital South, Baltimore, Maryland
| | - Shelly D. Timmons
- Department of Neurosurgery and Neurotrauma Division, Semmes-Murphey Clinic, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Nancy Temkin
- Department of Neurological Surgery and Biostatistics, University of Washington, Seattle, Washington
| | - Thomas Novack
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joseph Ricker
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Randall Merchant
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Jack Jallo
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Neuroprotection in traumatic brain injury. Drug Discov Today 2008; 13:1082-9. [PMID: 18848641 DOI: 10.1016/j.drudis.2008.09.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/09/2008] [Accepted: 09/11/2008] [Indexed: 12/21/2022]
Abstract
The management of traumatic brain injury (TBI) is challenging and there is a need for neuroprotective therapies. A better understanding of the pathomechanism of TBI, particularly of the evolution of secondary damage, is providing targets for new approaches and selected ones in clinical development are described. Clinical trials that have been discontinued in the past for lack of efficacy or other reasons are also listed. One of the problems has been the translation of promising animal experimental results into clinically successful therapies. The complexity of sequelae of TBI requires a multifaceted approach. In addition to the investigation of drugs for neuroprotective effect in TBI, new technologies based on cell/gene therapies, biomarkers and nanobiotechnology are being employed for the integration of neuroprotection with neuroregeneration and are promising.
Collapse
|
22
|
Yi JH, Park SW, Brooks N, Lang BT, Vemuganti R. PPARgamma agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms. Brain Res 2008; 1244:164-72. [PMID: 18948087 DOI: 10.1016/j.brainres.2008.09.074] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/19/2008] [Accepted: 09/19/2008] [Indexed: 11/16/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-gamma is a ligand-activated transcription factor of nuclear hormone receptor superfamily. Thiazolidinedione rosiglitazone is a potent agonist of PPARgamma which was shown to induce neuroprotection in animal models of focal ischemia and spinal cord injury. We currently evaluated the therapeutic potential of rosiglitazone (6 mg/kg at 5 min, 6 h and 24 h; i.p.) following controlled cortical impact (CCI)-induced traumatic brain injury (TBI) in adult mice. CCI injury increased the cortical PPARgamma mRNA levels which were further elevated by rosiglitazone treatment. In addition, rosiglitazone treatment significantly decreased the cortical lesion volume measured at 7 days compared to vehicle treatment (by 56+/-7%; p<0.05; n=6/group). Following TBI, the spared cortex of the rosiglitazone group showed significantly less numbers of GSI-B4(+) activated microglia/macrophages and ICAM1(+) capillaries, and curtailed induction of pro-inflammatory genes IL6, MCP1 and ICAM1 compared to vehicle group. Rosiglitazone-treated mice also showed significantly less number of TUNEL(+) apoptotic neurons and curtailed induction of caspase-3 and Bax, compared to vehicle control. In addition, rosiglitazone significantly enhanced the post-TBI expression of the neuroprotective chaperones HSP27, HSP70 and HSP32/HO1, and the anti-oxidant enzymes catalase, Cu/Zn-SOD and Mn-SOD, compared to vehicle. Treatment with GW9662 (a specific PPARgamma antagonist) prevented all the above PPARgamma-mediated actions. Thus, PPARgamma activation confers neuroprotection after TBI by anti-inflammatory, anti-apoptotic and anti-oxidative mechanisms.
Collapse
Affiliation(s)
- Jae-Hyuk Yi
- Department of Neurological Surgery, University of Wisconsin, K4/8 Mail code CSC 8660, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | | | | | |
Collapse
|
23
|
Generation of procoagulant microparticles in cerebrospinal fluid and peripheral blood after traumatic brain injury. ACTA ACUST UNITED AC 2008; 64:698-704. [PMID: 18332810 DOI: 10.1097/ta.0b013e31816493ad] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) can induce cell damage. Procoagulant microparticles (MPs) are reliable markers of cell stimulation. The aim of this study was to investigate the generation of procoagulant MPs in the cerebrospinal fluid (CSF) and plasma of patients with severe TBI. MATERIAL CSF and plasma MPs of 16 patients with severe TBI were quantified by functional prothrombinase assay (i) on the day of the trauma, (ii) during a 10-day follow-up and compared with control samples. The cellular origin of MP was determined after capture with specific antibodies. RESULTS The CSF and plasma of patients with severe TBI revealed a significantly increased generation of MP compared with control samples on the day of the trauma (CSF: 4.5 +/- 1.8 vs. 0.83 +/- 0.28 nanomolar PhtdSer equivalent; p = 0.01 and plasma 4.1 +/- 3.7 vs. 2.3 +/- 0.19 nanomolar PhtdSer equivalent; p = 0.02). Procoagulant MPs were mainly of platelet and endothelial origin in CSF. MPs decreased significantly in the CSF 10 days after TBI. In CSF, a sustained generation of procoagulant MP was evidenced in two patients presenting a poor clinical outcome. In the blood flow, elevated amounts of procoagulant MPs were detected in three patients presenting disseminated intravascular coagulopathy during the follow-up. CONCLUSION Procoagulant MP testifying to platelet and endothelial activation are produced in the CSF and in the plasma after severe TBI. A sustained generation of procoagulant MP in the CSF could contribute to a poor clinical outcome.
Collapse
|
24
|
Kothari S, Flanagan SR, Kwasnica C, Brown AW, Elovic EP. Congenital and Acquired Brain Injury. 5. Emerging Concepts in Prognostication, Evaluation, and Treatment. Arch Phys Med Rehabil 2008; 89:S27-31. [DOI: 10.1016/j.apmr.2007.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
25
|
Farooqui AA, Ong WY, Horrocks LA. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 2006; 58:591-620. [PMID: 16968951 DOI: 10.1124/pr.58.3.7] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phospholipase A(2) family includes secretory phospholipase A(2), cytosolic phospholipase A(2), plasmalogen-selective phospholipase A(2), and calcium-independent phospholipase A(2). It is generally thought that the release of arachidonic acid by cytosolic phospholipase A(2) is the rate-limiting step in the generation of eicosanoids and platelet activating factor. These lipid mediators play critical roles in the initiation and modulation of inflammation and oxidative stress. Neurological disorders, such as ischemia, spinal cord injury, Alzheimer's disease, multiple sclerosis, prion diseases, and epilepsy are characterized by inflammatory reactions, oxidative stress, altered phospholipid metabolism, accumulation of lipid peroxides, and increased phospholipase A(2) activity. Increased activities of phospholipases A(2) and generation of lipid mediators may be involved in oxidative stress and neuroinflammation associated with the above neurological disorders. Several phospholipase A(2) inhibitors have been recently discovered and used for the treatment of ischemia and other neurological diseases in cell culture and animal models. At this time very little is known about in vivo neurochemical effects, mechanism of action, or toxicity of phospholipase A(2) inhibitors in human or animal models of neurological disorders. In kainic acid-mediated neurotoxicity, the activities of phospholipase A(2) isoforms and their immunoreactivities are markedly increased and phospholipase A(2) inhibitors, quinacrine and chloroquine, arachidonyl trifluoromethyl ketone, bromoenol lactone, cytidine 5-diphosphoamines, and vitamin E, not only inhibit phospholipase A(2) activity and immunoreactivity but also prevent neurodegeneration, suggesting that phospholipase A(2) is involved in the neurodegenerative process. This also suggests that phospholipase A(2) inhibitors can be used as neuroprotectants and anti-inflammatory agents against neurodegenerative processes in neurodegenerative diseases.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Avenue, Columbus, OH 43210-1218, USA
| | | | | |
Collapse
|
26
|
Schuettauf F, Rejdak R, Thaler S, Bolz S, Lehaci C, Mankowska A, Zarnowski T, Junemann A, Zagorski Z, Zrenner E, Grieb P. Citicoline and lithium rescue retinal ganglion cells following partial optic nerve crush in the rat. Exp Eye Res 2006; 83:1128-34. [PMID: 16876158 DOI: 10.1016/j.exer.2006.05.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 05/26/2006] [Accepted: 05/31/2006] [Indexed: 01/23/2023]
Abstract
Citicoline and lithium (Li(-)) have been shown to support retinal ganglion cell (RGC) survival and axon regeneration in vitro. Optic nerve crush (ONC) is a model of both brain axonal injury and certain aspects of the glaucomatous degeneration of RGC. We have used this model to quantify protection offered to RGC by these drugs and to determine whether their effects are mediated by enhanced expression of the antiapoptotic protein Bcl-2. Adult rats (6-12 per group) were subjected to ONC accompanied by a contralateral sham operation. Animals were treated intraperitoneally with either vehicle, citicoline sodium (1g/kg daily for up to 7 days and 300 mg/kg daily afterwards), lithium chloride (30 mg/kg daily), or both drugs combined. Fluorogold was injected bilaterally into superior colliculi 1, 5 or 19 days after ONC. Labeled cells were counted under a fluorescence microscope 2 days after tracer injection. In a separate set of experiments the effects of treatments on expression of Bcl-2 in retinas were evaluated by immunohistochemistry. In vehicle-treated animals there was a progressive decrease of RGC density after crush. This decrease was attenuated in citicoline-treated animals 1 week and 3 weeks after the crush. In the lithium-treated group protection was even more pronounced. In animals treated with both drugs RGC protection was similar to that achieved by lithium alone. Bcl-2 immunoreactivity was seen predominantly in retinal ganglion cells. Its increase was recorded in the lithium and citicoline group as well as in animals treated with the combination of both drugs. Both citicoline and lithium protect RGC and their axons in vivo against delayed degeneration triggered by the ONC. Retinoprotective action of both drugs may involve an increase in Bcl-2 expression.
Collapse
Affiliation(s)
- Frank Schuettauf
- Department of Pathophysiology of Vision and Neuro-Ophthalmology, University Eye Hospital, Röntgenweg 11, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pitkänen A, Longhi L, Marklund N, Morales DM, McIntosh TK. Neurodegeneration and neuroprotective strategies after traumatic brain injury. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ddmec.2005.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Hall ED, Sullivan PG, Gibson TR, Pavel KM, Thompson BM, Scheff SW. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: more than a focal brain injury. J Neurotrauma 2005; 22:252-65. [PMID: 15716631 DOI: 10.1089/neu.2005.22.252] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study examined the neuropathology of the lateral controlled cortical impact (CCI) traumatic brain injury (TBI) model in mice utilizing the de Olmos silver staining method that selectively identifies degenerating neurons and their processes. The time course of ipsilateral and contralateral neurodegeneration was assessed at 6, 24, 48, 72, and 168 h after a severe (1.0 mm, 3.5 M/sec) injury in young adult CF-1 mice. At 6 hrs, neurodegeneration was apparent in all layers of the ipsilateral cortex at the epicenter of the injury. A low level of degeneration was also detected within the outer molecular layer of the underlying hippocampal dentate gyrus and to the mossy fiber projections in the CA3 pyramidal subregions. A time-dependent increase in cortical and hippocampal neurodegeneration was observed between 6 and 72 hrs post-injury. At 24 h, neurodegeneration was apparent in the CA1 and CA3 pyramidal and dentate gyral granule neurons and in the dorsolateral portions of the thalamus. Image analysis disclosed that the overall volume of ipsilateral silver staining was maximal at 48 h. In the case of the hippocampus, staining was generalized at 48 and 72 h, indicative of damage to all of the major afferent pathways: perforant path, mossy fibers and Schaffer collaterals as well as the efferent CA1 pyramidal axons. The hippocampal neurodegeneration was preceded by a significant increase in the levels of calpain-mediated breakdown products of the cytoskeletal protein alpha-spectrin that began at 6 h, and persisted out to 72 h post-injury. Damage to the corpus callosal fibers was observed as early as 24 h. An anterior to posterior examination of neurodegeneration showed that the cortical damage included the visual cortex. At 168 h (7 days), neurodegeneration in the ipsilateral cortex and hippocampus had largely abated except for ongoing staining in the cortical areas surrounding the contusion lesion and in hippocampal mossy fiber projections. Callosal and thalamic neurodegeneration was also very intense. This more complete neuropathological examination of the CCI model shows that the associated damage is much more widespread than previously appreciated. The extent of ipsilateral and contralateral neurodegeneration provides a more complete anatomical correlate for the cognitive and motor dysfunction seen in this paradigm and suggests that visual disturbances are also likely to be involved in the post-CCI neurological deficits.
Collapse
Affiliation(s)
- Edward D Hall
- Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0305, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Brain phosphatidylcholine (PC) levels are regulated by a balance between synthesis and hydrolysis. Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1alpha/beta) activate phospholipase A(2) (PLA(2)) and PC-phospholipase C (PC-PLC) to hydrolyze PC. PC hydrolysis by PLA(2) releases free fatty acids including arachidonic acid, and lyso-PC, an inhibitor of CTP-phosphocholine cytidylyltransferase (CCT). Arachidonic acid metabolism by cyclooxygenases/lipoxygenases is a significant source of reactive oxygen species. CDP-choline might increase the PC levels by attenuating PLA(2) stimulation and loss of CCT activity. TNF-alpha also stimulates proteolysis of CCT. TNF-alpha and IL-1beta are induced in brain ischemia and may disrupt PC homeostasis by increasing its hydrolysis (increase PLA(2) and PC-PLC activities) and inhibiting its synthesis (decrease CCT activity). The beneficial effects of CDP-choline may result by counteracting TNF-alpha and/or IL-1 mediated events, integrating cytokine biology and lipid metabolism. Re-evaluation of CDP-choline phase III stroke clinical trial data is encouraging and future trails are warranted. CDP-choline is non-xenobiotic, safe, well tolerated, and can be considered as one of the agents in multi-drug treatment of stroke.
Collapse
|
30
|
Crespo D, Megias M, Fernandez-Viadero C, Verduga R. Chronic treatment with a precursor of cellular phosphatidylcholine ameliorates morphological and behavioral effects of aging in the mouse [correction of rat] hippocampus. Ann N Y Acad Sci 2004; 1019:41-3. [PMID: 15246991 DOI: 10.1196/annals.1297.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Normal aging is commonly associated with a decline in memory, mainly for that related with newly acquired information. The hippocampal formation (HF) is a brain region that has been implicated in this dysfunction. Within the HF there are several cellular types, such as pyramidal cells, granule neurons of the dentate gyrus, and astrocytes. CDP-choline is a well-known intermediate in the biosynthesis of phosphatidylcholine, a phospholipid essential for neuronal membrane preservation and function; thus, this compound would attenuate the process of neuronal aging. To test this, three groups of male mice were used in this study. An adult 12-month-old group (ACG), a 24-month-old (OCG), and an old experimental group (OEG) were administered orally a solution of CDP-choline (150 mg/kg per day) from 12 up to 24 months. Experimental observations suggest that CDP-choline has a positive effect on memory (reference errors were attenuated), and hippocampal morphology resembled that of younger animals.
Collapse
Affiliation(s)
- D Crespo
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Cantabria, 39011-Santander, Spain.
| | | | | | | |
Collapse
|
31
|
Adibhatla RM, Hatcher JF, Dempsey RJ. Cytidine-5'-diphosphocholine affects CTP-phosphocholine cytidylyltransferase and lyso-phosphatidylcholine after transient brain ischemia. J Neurosci Res 2004; 76:390-6. [PMID: 15079868 DOI: 10.1002/jnr.20078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cytidine-5'-diphosphocholine (CDP-choline, also referred as citicoline), the key intermediate in phosphatidylcholine (PtdCho) synthesis, provided significant benefit in experimental central nervous system (CNS) injury including cerebral ischemia. CDP-choline is synthesized by CTP:phosphocholine cytidylyltransferase (CCT), the key rate-limiting enzyme in PtdCho synthesis. Phospholipase A(2) (PLA(2)) hydrolyzes PtdCho to produce free fatty acids and lyso-PtdCho, an inhibitor of CCT. We investigated the status of CCT and lyso-PtdCho after 10-min transient brain ischemia in gerbils with reperfusion up to 2 days. Ischemia with no reperfusion resulted in loss of CCT activity in cytosol (408 +/- 8 pmol/min/mg protein compared to sham 695 +/- 45; P < 0.01) and membrane (383 +/- 61 compared to sham 532 +/- 54; P < 0.05). CCT activity remained low over 24-hr reperfusion, and returned to sham levels at Day 2 in membrane but remained low in cytosol. CDP-choline significantly increased CCT activity in cytosol at 1 hr reperfusion (saline, 339 +/- 35 compared to CDP-choline, 430 +/- 70; P < 0.05) and in membrane at 6 hr (saline, 381 +/- 32 compared to CDP-choline, 489 +/- 50; P < 0.01) and 24 hr (saline, 417 +/- 24 compared to CDP-choline, 594 +/- 45; P < 0.01), but had no effect on CCT activity at Day 2. Lyso-PtdCho increased at 1-hr reperfusion (219 +/- 5 nmol/g tissue compared to sham, 92 +/- 8; P < 0.01), and remained elevated over 2 days. CDP-choline attenuated lyso-PtdCho levels at 1-hr reperfusion (162 +/- 21, P < 0.01 compared to saline). These data indicate that PtdCho synthesis is impaired after brain ischemia, and CDP-choline may increase PtdCho levels by attenuating the loss of CCT activity and lyso-PtdCho formation.
Collapse
|