1
|
Athiel Y, Jouannic JM, Lépine M, Maillet C, de Saint Denis T, Larghero J, Guilbaud L. Role of Amniotic Fluid Toxicity in the Pathophysiology of Myelomeningocele: A Narrative Literature Review. Prenat Diagn 2024; 44:1530-1535. [PMID: 39370541 DOI: 10.1002/pd.6681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Myelomeningocele is a birth defect whose clinical manifestations are due both to incomplete neural tube closure and the progressive destruction of exposed neuroepithelium during pregnancy. Two hypotheses have been formulated to explain the spinal cord damage in utero: mechanical trauma and chemical factors. The objective of this review was to summarize the current insights about the potential role of amniotic fluid in spinal cord damage in myelomeningocele. Numerous histological and clinical data on animals and humans strongly suggest a progressive degeneration of neural tissue including loss of neural cells, astrogliosis, inflammation, and loss of normal architecture. However, few data have been published about the direct toxicity of amniotic fluid in this neural degeneration, including the potentially toxic effect of meconium. Finally, the chemical and cellular modifications of amniotic fluid composition in myelomeningocele could reflect both the process (toxic effect of meconium) and the consequences of neuroepithelium destruction (release of neural cells). Fetal surgery not only stops the leakage of the cerebrospinal fluid but also reduces the toxic effect of amniotic fluid by restoring the intrauterine environment. Identification of amniotic fluid neurotoxic factors could lead to the development of therapeutic agents designed to protect spinal tissue and improve fetal myelomeningocele outcomes.
Collapse
Affiliation(s)
- Yoann Athiel
- Department of Fetal Medicine, Armand Trousseau Hospital, AP-HP, DMU ORIGYNE, National Reference Center for Rare Disease: Spin@, Sorbonne University, Paris, France
- Stem Cell Biotechnologies Unit, INSERM 976, CIC-BT, AP-HP, Saint-Louis Hospital, Université Paris Cité, Paris, France
| | - Jean-Marie Jouannic
- Department of Fetal Medicine, Armand Trousseau Hospital, AP-HP, DMU ORIGYNE, National Reference Center for Rare Disease: Spin@, Sorbonne University, Paris, France
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France
| | - Matthieu Lépine
- Stem Cell Biotechnologies Unit, INSERM 976, CIC-BT, AP-HP, Saint-Louis Hospital, Université Paris Cité, Paris, France
| | - Corentin Maillet
- Department of Fetal Medicine, Armand Trousseau Hospital, AP-HP, DMU ORIGYNE, National Reference Center for Rare Disease: Spin@, Sorbonne University, Paris, France
- Stem Cell Biotechnologies Unit, INSERM 976, CIC-BT, AP-HP, Saint-Louis Hospital, Université Paris Cité, Paris, France
| | - Timothée de Saint Denis
- Department of Pediatric Orthopedic and Reconstructive Surgery, Armand Trousseau Hospital, AP-HP, Sorbonne University, Paris, France
| | - Jérôme Larghero
- Stem Cell Biotechnologies Unit, INSERM 976, CIC-BT, AP-HP, Saint-Louis Hospital, Université Paris Cité, Paris, France
| | - Lucie Guilbaud
- Department of Fetal Medicine, Armand Trousseau Hospital, AP-HP, DMU ORIGYNE, National Reference Center for Rare Disease: Spin@, Sorbonne University, Paris, France
- Stem Cell Biotechnologies Unit, INSERM 976, CIC-BT, AP-HP, Saint-Louis Hospital, Université Paris Cité, Paris, France
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France
| |
Collapse
|
2
|
Hawes J, Gonzalez-Manteiga A, Murphy KP, Sanchez-Petidier M, Moreno-Manzano V, Pathak B, Lampe K, Lin CY, Peiro JL, Oria M. Noggin-Loaded PLA/PCL Patch Inhibits BMP-Initiated Reactive Astrogliosis. Int J Mol Sci 2024; 25:11626. [PMID: 39519177 PMCID: PMC11545872 DOI: 10.3390/ijms252111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Myelomeningocele (MMC) is a congenital birth defect of the spine and spinal cord, commonly treated clinically through prenatal or postnatal surgery by repairing the unclosed spinal canal. Having previously developed a PLA/PCL polymer smart patch for this condition, we aim to further expand the potential therapeutic options by providing additional cellular and biochemical support in addition to its mechanical properties. Bone morphogenetic proteins (BMPs) are a large class of secreted factors that serve as modulators of development in multiple organ systems, including the CNS. We hypothesize that our smart patch mitigates the astrogenesis induced, at least partly, by increased BMP activity during MMC. To test this hypothesis, neural stem or precursor cells were isolated from rat fetuses and cultured in the presence of Noggin, an endogenous antagonist of BMP action, with recombinant BMPs. We found that the developed PLA/PCL patch not only serves as a biocompatible material for developing neural stem cells but was also able to act as a carrier for BMP-Notch pathway inhibitor Noggin, effectively minimizing the effect of BMP2 or BMP4 on NPCs cultured with the Noggin-loaded patch.
Collapse
Affiliation(s)
- James Hawes
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Ana Gonzalez-Manteiga
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA;
| | - Kendall P. Murphy
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Marina Sanchez-Petidier
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute, 46512 Valencia, Spain; (M.S.-P.); (V.M.-M.)
- Neuronal Circuits and Behaviour Group, Hospital Nacional de Parapléjicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute, 46512 Valencia, Spain; (M.S.-P.); (V.M.-M.)
| | - Bedika Pathak
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Chia-Ying Lin
- Convergent Bioscience and Technology Institute, Department of Biomedical Engineering and Informatics, Indiana University, Indianapolis, IN 46202, USA;
| | - Jose L. Peiro
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Marc Oria
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA;
- University of Cincinnati Cancer Center (UCCC), Cincinnati, OH 45219, USA
- University of Cincinnati Brain Tumor Center (BTC), Cincinnati, OH 45219, USA
| |
Collapse
|
3
|
Kunpalin Y, Vergote S, Joyeux L, Telli O, David AL, Belfort M, De Coppi P, Deprest J. Local host response of commercially available dural patches for fetal repair of spina bifida aperta in rabbit model. Prenat Diagn 2023; 43:370-381. [PMID: 36650109 DOI: 10.1002/pd.6315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Fetal surgery for spina bifida aperta (SBA) by open hysterotomy typically repairs anatomical native tissue in layers. Increasingly, fetoscopic repair is performed using a dural patch followed by skin closure. We studied the host response to selected commercially available patches currently being used in a fetal rabbit model for spina bifida repair. METHODS SBA was surgically induced at 23-24 days of gestation (term = 31 days). Fetal rabbits were assigned to unrepaired (SBA group), or immediate repair with Duragen™ or Durepair™. Non-operated littermates served as normal controls. At term, spinal cords underwent immunohistochemical staining including Nissl and glial fibrillary acidic protein. We hypothesized that spinal cord coverage with a dural patch and skin closure would preserve motor neuron density within the non-inferiority limit of 201.65 cells/mm2 and reduce inflammation compared to unrepaired SBA fetuses. RESULTS Motor neuron density assessed by Nissl staining was conserved both by Duragen (n = 6, 89.5; 95% CI -158.3 to -20.6) and Durepair (n = 6, 37.0; 95% CI -132.6 to -58.5), whereas density of GFAP-positive cells to quantify inflammation was lower than in unrepaired SBA-fetuses (SBA 2366.0 ± 669.7 cells/mm2 vs. Duragen 1274.0 ± 157.2 cells/mm2 ; p = 0.0002, Durepair 1069.0 ± 270.7 cells/mm2 ; p < 0.0001). CONCLUSIONS Covering the rabbit spinal cord with either Duragen or Durepair followed by skin closure preserves motor neuron density and reduces the inflammatory response.
Collapse
Affiliation(s)
- Yada Kunpalin
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Simen Vergote
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Luc Joyeux
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Onur Telli
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
| | - Anna L David
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Michael Belfort
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Paolo De Coppi
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
4
|
Oria M, Pathak B, Li Z, Bakri K, Gouwens K, Varela MF, Lampe K, Murphy KP, Lin CY, Peiro JL. Premature Neural Progenitor Cell Differentiation Into Astrocytes in Retinoic Acid-Induced Spina Bifida Rat Model. Front Mol Neurosci 2022; 15:888351. [PMID: 35782393 PMCID: PMC9249056 DOI: 10.3389/fnmol.2022.888351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023] Open
Abstract
During embryonic spinal cord development, neural progenitor cells (NPCs) generate three major cell lines: neurons, oligodendrocytes, and astrocytes at precise times and locations within the spinal cord. Recent studies demonstrate early astrogenesis in animal models of spina bifida, which may play a role in neuronal dysfunction associated with this condition. However, to date, the pathophysiological mechanisms related to this early astrocytic response in spina bifida are poorly understood. This study aimed to characterize the development of early astrogliosis over time from Pax6+, Olig2+, or Nkx2.2+ NPCs using a retinoic acid-induced spina bifida rat model. At three gestational ages (E15, E17, and E20), spinal cords from fetuses with retinoic acid-induced spina bifida, their healthy sibling controls, or fetuses treated with the vehicle control were analyzed. Results indicated that premature astrogliosis and astrocytic activation were associated with an altered presence of Pax6+, Olig2+, and Nkx2.2+ NPCs in the lesion compared to the controls. Finally, this response correlated with an elevation in genes involved in the Notch-BMP signaling pathway. Taken together, changes in NPC patterning factor expression with Notch-BMP signaling upregulation may be responsible for the altered astrogenesis patterns observed in the spinal cord in a retinoic acid-induced spina bifida model.
Collapse
Affiliation(s)
- Marc Oria
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States,*Correspondence: Marc Oria,
| | - Bedika Pathak
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Zhen Li
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kenan Bakri
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kara Gouwens
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Maria Florencia Varela
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kendall P. Murphy
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States,Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Chia-Ying Lin
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jose L. Peiro
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
5
|
Cohrs G, Blumenröther AK, Sürie JP, Synowitz M, Held-Feindt J, Knerlich-Lukoschus F. Fetal and perinatal expression profiles of proinflammatory cytokines in the neuroplacodes of rats with myelomeningoceles: A contribution to the understanding of secondary spinal cord injury in open spinal dysraphism. J Neurotrauma 2021; 38:3376-3392. [PMID: 34541905 DOI: 10.1089/neu.2021.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cellular and molecular mechanisms that presumably underlie the progressive functional decline of the myelomeningocele (MMC) placode are not well understood. We previously identified key players in posttraumatic spinal cord injury cascades in human MMC tissues obtained during postnatal repair. In this study we conducted experiments to further investigate these mediators in the prenatal time course under standardized conditions in a retinoic-acid-induced MMC rat model. A retinoic acid MMC model was established using time-dated Sprague-Dawley rats, which were gavage-fed with all-trans retinoic acid (RA; 60 mg/kg) dissolved in olive oil at E10. Control animals received olive oil only. Fetuses from both groups were obtained at E16, E18, E22. The spinal cords (SCs) of both groups were formalin-fixed or snap-frozen. Tissues were screened by real-time RT-PCR for the expression of cytokines and chemokines known to play a role in the lesion cascades of the central nervous system after trauma. MMC placodes exhibited inflammatory cells and glial activation in the later gestational stages. At the mRNA level, IL-1b, TNFa, and TNF-R1 exhibited significant induction at E22. IL1-R1 mRNA was induced significantly at E16 and E22. Double labeling experiments confirmed the costaining of these cytokines and their receptors with Iba1 (i.e., inflammatory cells), Vimentin, and Nestin in different anatomical SC areas and NeuN in ventral horn neurons. CXCL12 mRNA was elevated in control and MMC animals at E16 compared to E18 and E22. CX3CL1 mRNA was lower in MMC tissues than in control tissues on E16. The presented findings contribute to the concept that pathophysiological mechanisms, such as cytokine induction in the neuroplacode, in addition to the "first hit", promote secondary spinal cord injury with functional loss in the late fetal time course. Furthermore, these mediators should be taken into consideration in the development of new therapeutic approaches for open spinal dysraphism.
Collapse
Affiliation(s)
- Gesa Cohrs
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Dept. of Neurosurgery, Arnold-Heller-Straße 3, Kiel, Germany, 24105;
| | - Ann-Kathrin Blumenröther
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Jan-Philip Sürie
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Michael Synowitz
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Janka Held-Feindt
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Friederike Knerlich-Lukoschus
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany.,Asklepios Kinderklinik Sankt Augustin, 248587, Pediatric Neurosurgery, Sankt Augustin, Nordrhein-Westfalen, Germany;
| |
Collapse
|
6
|
Sbragia L, da Costa KM, Nour ALA, Ruano R, Santos MV, Machado HR. State of the art in translating experimental myelomeningocele research to the bedside. Childs Nerv Syst 2021; 37:2769-2785. [PMID: 34333685 DOI: 10.1007/s00381-021-05299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Myelomeningocele (MMC), the commonest type of spina bifida (SB), occurs due to abnormal development of the neural tube and manifest as failure of the complete fusion of posterior arches of the spinal column, leading to dysplastic growth of the spinal cord and meninges. It is associated with several degrees of motor and sensory deficits below the level of the lesion, as well as skeletal deformities, bladder and bowel incontinence, and sexual dysfunction. These children might develop varying degrees of neuropsychomotor delay, partly due to the severity of the injuries that affect the nervous system before birth, partly due to the related cerebral malformations (notably hydrocephalus-which may also lead to an increase in intracranial pressure-and Chiari II deformity). Traditionally, MMC was repaired surgically just after birth; however, intrauterine correction of MMC has been shown to have several potential benefits, including better sensorimotor outcomes (since exposure to amniotic fluid and its consequent deleterious effects is shortened) and reduced rates of hydrocephalus, among others. Fetal surgery for myelomeningocele, nevertheless, would not have been made possible without the development of experimental models of this pathological condition. Hence, the aim of the current article is to provide an overview of the animal models of MMC that were used over the years and describe how this knowledge has been translated into the fetal treatment of MMC in humans.
Collapse
Affiliation(s)
- Lourenço Sbragia
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karina Miura da Costa
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Landolffi Abdul Nour
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Ruano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas, Houston, TX, USA
| | - Marcelo Volpon Santos
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Janik K, Manire MA, Smith GM, Krynska B. Spinal Cord Injury in Myelomeningocele: Prospects for Therapy. Front Cell Neurosci 2020; 14:201. [PMID: 32714152 PMCID: PMC7340150 DOI: 10.3389/fncel.2020.00201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023] Open
Abstract
Myelomeningocele (MMC) is the most common congenital defect of the central nervous system and results in devastating and lifelong disability. In MMC, the initial failure of neural tube closure early in gestation is followed by a progressive prenatal injury to the exposed spinal cord, which contributes to the deterioration of neurological function in fetuses. Prenatal strategies to control the spinal cord injury offer an appealing therapeutic approach to improve neurological function, although the definitive pathophysiological mechanisms of injury remain to be fully elucidated. A better understanding of these mechanisms at the cellular and molecular level is of paramount importance for the development of targeted prenatal MMC therapies to minimize or eliminate the effects of the injury and improve neurological function. In this review article, we discuss the pathological development of MMC with a focus on in utero injury to the exposed spinal cord. We emphasize the need for a better understanding of the causative factors in MMC spinal cord injury, pathophysiological alterations associated with the injury, and cellular and molecular mechanisms by which these alterations are induced.
Collapse
Affiliation(s)
- Karolina Janik
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Meredith A Manire
- Department of Obstetrics and Gynecology, West Penn Hospital, Allegheny Health Network, Pittsburgh, PA, United States
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Barbara Krynska
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Oria M, Figueira RL, Scorletti F, Sbragia L, Owens K, Li Z, Pathak B, Corona MU, Marotta M, Encinas JL, Peiro JL. CD200-CD200R imbalance correlates with microglia and pro-inflammatory activation in rat spinal cords exposed to amniotic fluid in retinoic acid-induced spina bifida. Sci Rep 2018; 8:10638. [PMID: 30006626 PMCID: PMC6045622 DOI: 10.1038/s41598-018-28829-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
Spina bifida aperta is a congenital malformation characterized by the failure of neural tube closure resulting in an unprotected fetal spinal cord. The spinal cord then undergoes progressive damage, likely due to chemical and mechanical factors related to exposure to the intrauterine environment. Astrogliosis in exposed spinal cords has been described in animal models of spina bifida during embryonic life but its relationship with neuroinflammatory processes are completely unknown. Using a retinoic acid-induced rat model of spina bifida we demonstrated that, when exposed to amniotic fluid, fetal spinal cords showed progressive astrogliosis with neuronal loss at mid-gestation (E15) compared to unexposed spinal cords. The number of microglial cells with a reactive phenotype and activation marker expression increased during gestation and exhibited progressive disruption in the inhibitory immune ligand-receptor system. Specifically we demonstrate down-regulation of CD200 expression and up-regulation of CD200R. Exposed spinal cords demonstrated neuroinflammation with increased tissue water content and cytokine production by the end of gestation (E20), which correlated with active Caspase3 expression in the exposed layers. Our findings provide new evidence that microglia activation, including the disruption of the endogenous inhibitory system (CD200-CD200R), may participate in the pathogenesis of spina bifida through late gestation.
Collapse
Affiliation(s)
- Marc Oria
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.
| | - Rebeca L Figueira
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.,Laboratory of Experimental Fetal Surgery "Michael Harrison", Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo-USP, Ribeirao Preto, Brazil
| | - Federico Scorletti
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Lourenco Sbragia
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.,Laboratory of Experimental Fetal Surgery "Michael Harrison", Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo-USP, Ribeirao Preto, Brazil
| | - Kathryn Owens
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Zhen Li
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Bedika Pathak
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Maria U Corona
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Mario Marotta
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Jose L Encinas
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Jose L Peiro
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| |
Collapse
|
9
|
Watanabe M, Kim AG, Flake AW. Tissue Engineering Strategies for Fetal Myelomeningocele Repair in Animal Models. Fetal Diagn Ther 2014; 37:197-205. [DOI: 10.1159/000362931] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myelomeningocele (MMC), the most severe form of spina bifida, is a common and devastating malformation. Over two decades of experimental work in animal models have led to the development and clinical application of open fetal surgery for the repair of the MMC defect. This approach offers improved neurofunctional outcomes and is now a clinical option for the management of prenatally diagnosed MMC in selected patients. However, there are still opportunities for further improvement in the prenatal treatment of MMC. A less invasive approach would allow for an application earlier in gestation, with a reduction in maternal and fetal risks and the potential for reduced neurological injury. Tissue engineering offers a realistic and appealing alternative approach for the prenatal treatment of MMC. This review discusses the rationale for tissue engineering in MMC, addresses recent experimental progress and describes potential future directions.
Collapse
|
10
|
Awad RA. Neurogenic bowel dysfunction in patients with spinal cord injury, myelomeningocele, multiple sclerosis and Parkinson’s disease. World J Gastroenterol 2011; 17:5035-48. [PMID: 22171138 PMCID: PMC3235587 DOI: 10.3748/wjg.v17.i46.5035] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023] Open
Abstract
Exciting new features have been described concerning neurogenic bowel dysfunction, including interactions between the central nervous system, the enteric nervous system, axonal injury, neuronal loss, neurotransmission of noxious and non-noxious stimuli, and the fields of gastroenterology and neurology. Patients with spinal cord injury, myelomeningocele, multiple sclerosis and Parkinson’s disease present with serious upper and lower bowel dysfunctions characterized by constipation, incontinence, gastrointestinal motor dysfunction and altered visceral sensitivity. Spinal cord injury is associated with severe autonomic dysfunction, and bowel dysfunction is a major physical and psychological burden for these patients. An adult myelomeningocele patient commonly has multiple problems reflecting the multisystemic nature of the disease. Multiple sclerosis is a neurodegenerative disorder in which axonal injury, neuronal loss, and atrophy of the central nervous system can lead to permanent neurological damage and clinical disability. Parkinson's disease is a multisystem disorder involving dopaminergic, noradrenergic, serotoninergic and cholinergic systems, characterized by motor and non-motor symptoms. Parkinson's disease affects several neuronal structures outside the substantia nigra, among which is the enteric nervous system. Recent reports have shown that the lesions in the enteric nervous system occur in very early stages of the disease, even before the involvement of the central nervous system. This has led to the postulation that the enteric nervous system could be critical in the pathophysiology of Parkinson's disease, as it could represent the point of entry for a putative environmental factor to initiate the pathological process. This review covers the data related to the etiology, epidemiology, clinical expression, pathophysiology, genetic aspects, gastrointestinal motor dysfunction, visceral sensitivity, management, prevention and prognosis of neurogenic bowel dysfunction patients with these neurological diseases. Embryological, morphological and experimental studies on animal models and humans are also taken into account.
Collapse
|