1
|
Li P, Gan Y, Wang H, Xu Y, Song L, Wang L, Ouyang B, Zhou Q. A Substance Exchanger-Based Bioreactor Culture of Pig Discs for Studying the Immature Nucleus Pulposus. Artif Organs 2017; 41:E308-E319. [PMID: 28188657 DOI: 10.1111/aor.12834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
Various research models have been developed to study the biology of disc cells. Recently, the adult disc nucleus pulposus (NP) has been well studied. However, the immature NP is underinvestigated due to a lack of a suitable model. This study aimed to establish an organ culture of immature porcine disc by optimizing culture conditions and using a self-developed substance exchanger-based bioreactor. Immature porcine discs were first cultured in the bioreactor for 7 days at various levels of glucose (low, medium, high), osmolarity (hypo-, iso-, hyper-) and serum (5, 10, 20%) to determine the respective optimal level. The porcine discs were then cultured under the optimized conditions in the novel bioreactor, and were compared with fresh discs at day 14. For high-glucose, iso-osmolarity, or 10% serum, cell viability, the gene expression profile (for anabolic genes and catabolic genes), and glycosaminoglycan (GAG) and hydroxyproline (HYP) contents were more favorable than for other levels of glucose, osmolarity, and serum. When the immature discs were cultured under the optimized conditions using the novel bioreactor for 14 days, the viability of the immature NP was maintained based on histology, cell viability, GAG and HYP contents, and matrix molecule expression. In conclusion, the viability of the immature NP in organ culture could be maintained under the optimized culture conditions (high-glucose, iso-osmolarity, and 10% serum) in the substance exchanger-based bioreactor.
Collapse
Affiliation(s)
- Pei Li
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| | - Yibo Gan
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| | - Haoming Wang
- Department of Orthopedic Surgery, Chongqing Three Gorges Central Hospital
| | - Yuan Xu
- Department of Orthopedic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lei Song
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| | - Liyuan Wang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| | - Bin Ouyang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| | - Qiang Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| |
Collapse
|
2
|
Li P, Gan Y, Wang H, Xu Y, Li S, Song L, Zhang C, Ou Y, Wang L, Zhou Q. Role of the ERK1/2 pathway in osmolarity effects on nucleus pulposus cell apoptosis in a disc perfusion culture. J Orthop Res 2017; 35:86-92. [PMID: 27035885 DOI: 10.1002/jor.23249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Osmolarity fluctuations are inevitable within the nucleus pulposus (NP). However, the effects of osmolarity on NP cell apoptosis within the organ-cultured disc remain unclear. The objective of this study was to investigate effects of different osmolarity levels (hypo-, iso-, and hyper-) and osmolarity modes (constant and cyclic) on NP cell apoptosis in a disc perfusion culture and to study the role of the ERK1/2 pathway in this regulatory process. Porcine discs were cultured for 7 days in different osmotic medium, including constant hypo-, iso-, and hyper-osmolarity (330, 430, and 550 mOsm/L, respectively) and cyclic-osmolarity (430 mOsm/L for 8 h, followed by 550 mOsm/L for 16 h). The role of the ERK1/2 pathway was investigated by using the pharmacological inhibitor U0126. NP cell apoptosis was analyzed by TUNEL staining, caspase-3 activity, gene expression of Bcl-2, Bax and caspase-3 and protein expression of cleaved caspase-3, and cleaved PARP. Our results showed that NP cell apoptosis was increased in hypo- and hyper-osmolarity cultures compared to iso- or cyclic-osmolarity culture, whereas the level of apoptosis in the iso-osmolarity culture was lower than that in the cyclic-osmolarity culture. When the ERK1/2 pathway was inhibited in the iso- and cyclic-osmolarity cultures, the level of NP cell apoptosis was significantly increased. In conclusion, the effects of osmolarity on NP cell apoptosis depend on the osmolarity level (hypo-, iso-, or hyper-) and osmolarity mode (constant or cyclic). Futhermore, inhibition of the ERK1/2 pathway promotes NP cell apoptosis in this process. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:86-92, 2017.
Collapse
Affiliation(s)
- Pei Li
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Yibo Gan
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Haoming Wang
- Department of Orthopedic Surgery, Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Yuan Xu
- Department of Orthopedic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Songtao Li
- Department of Orthopedic Surgery, No. 181 Hospital of PLA, Guilin, Guangxi 541002, China
| | - Lei Song
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Yangbin Ou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Liyuan Wang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Qiang Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| |
Collapse
|
3
|
Campos MFD, Oliveira CPD, Neff CB, Correa OMDT, Pinhal MAS, Rodrigues LMR. STUDIES OF MOLECULAR CHANGES IN INTERVERTEBRAL DISC DEGENERATION IN ANIMAL MODEL. ACTA ORTOPEDICA BRASILEIRA 2016; 24:16-21. [PMID: 26997908 PMCID: PMC4775483 DOI: 10.1590/1413-785220162401152960] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: To evaluate the structural and molecular changes in the extracellular matrix (ECM) during the process of intervertebral disc degeneration, using animal model. Methods: Wistar rats underwent intervertebral disc degeneration through 20-gauge needle puncture, and 360° rotation applied for 30 sec, representing the degenerated group, while control group was not submitted to this procedure. Histological parameters and expression of extracellular matrix molecules were evaluated in the 15th and 28th days after degenerative induction. Results: Fifteen days after the induction of intervertebral disc degeneration, significant changes were observed, such as reduction in the expression metalloprotease-9 (MMP9) and interleukins (IL-6 and IL-10). There was a significant increase in the expression of vascular endothelial growth factor (VEGF) and caspase-3. However, different alterations in the ECM were observed at 28 days, the level of collagen I, metalloprotease-2 (MMP2) and caspase-3 were enhanced. Furthermore, expression of heparanase isoforms (HPSE1 and HPSE2) mRNA were increased in the degenerative intervertebral disc. Conclusion: The different profiles of ECM molecules observed during the intervertebral disc degeneration suggest that molecular processes such as ECM remodeling, neovascularization, apoptosis and inflammation occur. Experimental Study.
Collapse
|
4
|
Chen S, Liao M, Li J, Peng H, Xiong M. The correlation between microvessel pathological changes of the endplate and degeneration of the intervertebral disc in diabetic rats. Exp Ther Med 2012; 5:711-717. [PMID: 23408796 PMCID: PMC3570219 DOI: 10.3892/etm.2012.868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/26/2012] [Indexed: 01/08/2023] Open
Abstract
In this study, the pathological microvessel changes to the endplate and the degeneration of the intervertebral disc of diabetic rats were examined in order to identify the possible mechanism by which diabetes mellitus (DM) induces degeneration of the intervertebral disc. A total of 30 Sprague-Dawley rats were randomly divided into two groups. DM was induced in one of the groups by streptozotocin (STZ) administration. The rats were sacrificed 4, 8 and 12 weeks later. Five rats from each group were sacrificed at each time interval and lumbar disc and endplate tissue were obtained from each rat. The histological changes, collagen expression, microvessel density (MVD) and apoptosis of the disc were investigated by different methods. The expression of collagen I in the diabetic DM group was higher compared to the control group at the three time points (P<0.01), in contrast to the expression of collagen II. The factor VIII-related antigen (FVIII RAg) was expressed in the control and DM groups, while its expression was relatively low in the DM group. The MVD of the DM group was smaller compared to that of the control group at the three time points (P<0.01). The apoptotic index (AI) in the diabetic group was significantly higher compared to that of the control group at the three time points (P<0.01). A negative correlation was observed between the MVD of the endplates and the notochordal cell AI in the two groups. Compared to the control group, the endplate MVD decreased and the cavity became smaller or disappeared in the diabetic rats. In conclusion, there was a negative correlation between MVD and degenerative changes of the intervertebral disc in diabetic rats.
Collapse
Affiliation(s)
- Sen Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060; ; Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | | | | | | | | |
Collapse
|
5
|
Shen C, Yan J, Jiang LS, Dai LY. Autophagy in rat annulus fibrosus cells: evidence and possible implications. Arthritis Res Ther 2011; 13:R132. [PMID: 21846367 PMCID: PMC3239374 DOI: 10.1186/ar3443] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/13/2011] [Accepted: 08/16/2011] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Programmed cell death of intervertebral disc (IVD) cells plays an important role in IVD degeneration, but the role of autophagy, a closely related cell death event, in IVD cells has not been documented. The current study was designed to investigate the effect of interleukin (IL)-1β on the occurrence of autophagy of rat annulus fibrosus (AF) cells and the interrelationship between autophagy and apoptosis. METHODS Rat AF cells were isolated and exposed, in tissue cultures with or without serum, to IL-1β in different concentrations for 24 hours. Ultrastructural analysis, flow cytometry and lysosomal activity assessment were performed after the in vitro treatment to determine the presence and levels of autophagy. The mRNA expression of autophagy-related proteins (Beclin-1, Bcl-2 and microtubule associated protein 1 light chain 3 (LC3)) were evaluated using real-time PCR. 3-methyladenine (3-MA), a PI3K inhibitor, was used to determine the interaction between autophagy and apoptosis via the suppression of autophagy. RESULTS Autophagy was detected in rat AF cells under serum starvation condition by transmission electron microscopy. PCR and flow cytometry results showed that IL-1β enhanced the autophagy-induction effect of serum deprivation in a dose-dependent manner. However, IL-1β alone failed to induce autophagy in AF cells cultured without serum starvation. When autophagy was suppressed by 3-MA, the apoptosis incidence was increased. Serum supplement also partly reversed the autophagy incidence without affecting the apoptosis incidence in the same cells. CONCLUSIONS IL-1β up-regulates serum deprivation-induced autophagy of AF cells in a dose-dependent manner. Autophagy may represent a protective mechanism against apoptosis in AF cells and IVD degeneration.
Collapse
Affiliation(s)
- Chao Shen
- Department of Orthopedic Surgery, Xinhua Hospital, 1665 Kongjiang Road, 200092, Shanghai, China
| | | | | | | |
Collapse
|