1
|
Alahdad N, Hamidpour SK, Yazdanpanah MA, Amiri M, Alizadeh R, Rezayat SM, Tavakol S. Nitric oxide synthases: A delicate dance between bone regeneration and neuronal birth. Biomed Pharmacother 2025; 187:118105. [PMID: 40294491 DOI: 10.1016/j.biopha.2025.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/23/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025] Open
Abstract
Spinal cord injury (SCI) is a devastating condition resulting from traumatic or nontraumatic injury/chronic disorder. The pathogenesis of SCI necessitates a comprehensive approach, as it involves therapeutic strategies addressing both bone (spine) and neural (spinal cord) damage. This review centers on the pivotal role of nitric oxide (NO) and its synthesizing enzymes, nitric oxide synthases (NOS), in mediating the crosstalk between osteogenesis and neurogenesis. NO's effects are context-dependent, exhibiting a delicate balance between beneficial and detrimental actions. Reduced levels of nitric oxide (NO), primarily derived from endothelial NOS (eNOS), tipically stimulate osteoblast activity and promote neurogenesis by influencing neural stem cell (NSC) migration and differentiation. Conversely, elevated NO levels, predominantly from inducible NOS (iNOS), tipically triggered by inflammation, inhibit both processes through pro-apoptotic mechanisms. Nevertheless, these phenomena are not merely simplistic; they can be influenced by a variety of other factors. We explore the intricate interplay of NO/NOS with key signaling pathways crucial in neurogenesis and osteogenesis, including mechanical stimuli, Wnt, interleukins, BMPs, NF-κB, etc., revealing their influence on neuroinflammation, neurogenesis, and osteoblast differentiation. The temporal and spatial dynamics of NO/NOS activity and the implications for therapeutic intervention have been discussed. Precise modulation of NO levels and NOS isoforms, potentially through targeted therapies manipulating these interacting signaling pathways, emerges as a promising strategy for promoting bone and neural regeneration. This review highlights the critical need for a balanced approach in therapeutic strategies to harness the beneficial effects of NO/NOS while mitigating its detrimental consequences.
Collapse
Affiliation(s)
- Niloofar Alahdad
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mohammad Ali Yazdanpanah
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
2
|
Effects of circulating extracellular microvesicles from spinal cord-injured adults on endothelial cell function. Clin Sci (Lond) 2020; 134:777-789. [PMID: 32219341 DOI: 10.1042/cs20200047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
People with spinal cord injury (SCI) have three- to four-fold greater risk of cardiovascular disease (CVD) compared with those without SCI. Although circulating extracellular microvesicles are key effectors of vascular health and disease, how their functional phenotype might be altered with SCI is unknown. The aim of the present study was to determine the effects of microvesicles isolated from SCI adults on endothelial cell inflammation and oxidative stress as well as endothelial nitric oxide (NO) synthase (eNOS) activation and tissue-type plasminogen activator (t-PA) expression. Eighteen young and middle-aged adults were studied: 10 uninjured (7M/3F; age: 39 ± 3 years) and 8 cervical level spinal cord injured (SCI; 7M/1F; 46 ± 4 years; cervical injury: C3: n=1; C5: n=4; C6: n=3). Circulating microvesicles were isolated, enumerated and collected from plasma by flow cytometry. Human umbilical vein endothelial cells (HUVECs) were cultured and treated with microvesicles from either the uninjured or SCI adults. Microvesicles from SCI adults did not affect cellular markers or mediators of inflammation and oxidative stress. However, microvesicles from the SCI adults significantly blunted eNOS activation, NO bioavailability and t-PA production. Intercellular expression of phosphorylated eNOS at Ser1177 and Thr495 sites, specifically, were ∼65% lower and ∼85% higher, respectively, in cells treated with microvesicles from SCI compared with uninjured adults. Decreased eNOS activity and NO production as well as impaired t-PA bioavailability renders the vascular endothelium highly susceptible to atherosclerosis and thrombosis. Thus, circulating microvesicles may contribute to the increased risk of vascular disease and thrombotic events associated with SCI.
Collapse
|
3
|
The Expression of IGFBP6 after Spinal Cord Injury: Implications for Neuronal Apoptosis. Neurochem Res 2016; 42:455-467. [PMID: 27888466 DOI: 10.1007/s11064-016-2092-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/11/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023]
Abstract
IGFBP6, a member of the insulin-like growth factor-binding proteins family that contains six high affinity IGFBPs, modulates insulin-like growth factor (IGF) activity and also showed an independent effect of IGF, such as growth inhibition and apoptosis. However, the role of IGFBP6 in spinal cord injury (SCI) remains largely elusive. In this study, we have performed an acute SCI model in adult rats and investigated the dynamic changes of IGFBP6 expression in the spinal cord. Our results showed that IGFBP6 was upregulated significantly after SCI, which was paralleled with the levels of apoptotic proteins p53 and active caspase-3. Immunofluorescent labeling showed that IGFBP6 was co-localizated with active caspase-3 and p53 in neurons. To further investigate the function of IGFBP6, an apoptosis model was established in primary neuronal cells. When IGFBP6 was knocked down by specific short interfering RNA (siRNA), the protein levels of active caspase-3 and Bax as well as the number of apoptotic primary neurons were significantly decreased in our study. Taken together, our findings suggest that the change of IGFBP6 protein expression plays a key role in neuronal apoptosis after SCI.
Collapse
|
4
|
Su YF, Lin CL, Lee KS, Tsai TH, Wu SC, Hwang SL, Chen SC, Kwan AL. A modified compression model of spinal cord injury in rats: functional assessment and the expression of nitric oxide synthases. Spinal Cord 2015; 53:432-5. [PMID: 25644387 PMCID: PMC5399152 DOI: 10.1038/sc.2014.245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 11/17/2014] [Accepted: 12/25/2014] [Indexed: 12/03/2022]
Abstract
Study design: Experimental study. Objectives: To investigate a modified compression model of spinal cord injury (SCI) in adult rats by using a room-air- inflated Fogarty balloon catheter. Setting: Kaohsiung, Taiwan. Methods: The rats were divided into injury, sham-operated and control groups. A 2-French Fogarty catheter was passed from the lumbar spine (L3–L4) epidurally, with a mini-laminectomy under the microscope, to the level of thoracic spine (T6–T7). The actual site of the catheter tip was confirmed with X-ray. The balloon of Fogarty catheter then was inflated with room air, 0.2 ml, for 10 min. Mini-laminectomy was performed without inserting the catheter in the sham-operated group. Quantitative neurological outcomes were evaluated with the Basso, Beattie and Bresnahan (BBB) locomotor rating scale daily. The gene expression of nitric oxide synthases (NOSs) of the spinal cord was investigated at the end of the functional assessment. Results: The mean BBB locomotor scores were 10±1.85 and 10±1.85, respectively, on days 1 and 3 in the injury group, and 21 and 20.29±0.69, respectively, in the sham-operated group. There was a significantly increased gene expression of inducible NOS in the SCI group compared with the sham-operated group and control group. Endothelial NOS gene expression was not significantly different among the groups. Conclusion: The functional and molecular assessments show that this modified balloon-compression technique is a reproducible, simple and inexpensive model of SCI in rats.
Collapse
Affiliation(s)
- Y-F Su
- 1] Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan [2] Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - C-L Lin
- 1] Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan [2] Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - K-S Lee
- 1] Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan [2] Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - T-H Tsai
- 1] Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan [2] Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - S-C Wu
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - S-L Hwang
- 1] Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan [2] Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - S-C Chen
- 1] Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan [2] Department of Anatomy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - A-L Kwan
- 1] Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan [2] Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Tardivo V, Crobeddu E, Pilloni G, Fontanella M, Spena G, Panciani PP, Berjano P, Ajello M, Bozzaro M, Agnoletti A, Altieri R, Fiumefreddo A, Zenga F, Ducati A, Garbossa D. Say "no" to spinal cord injury: is nitric oxide an option for therapeutic strategies? Int J Neurosci 2014; 125:81-90. [PMID: 24697508 DOI: 10.3109/00207454.2014.908877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE a literature review was made to investigate the role of nitric oxide (NO) in spinal cord injury, a pathological condition that leads to motor, sensory, and autonomic deficit. Besides, we were interested in potential therapeutic strategies interfering with NO mechanism of secondary damage. MATERIALS A literature search using PubMed Medline database has been performed. RESULTS excessive NO production after spinal cord injury promotes oxidative damage perpetuating the injury causing neuronal loss at the injured site and in the surrounding area. CONCLUSION different therapeutic approaches for contrasting or avoiding NO secondary damage have been studied, these include nitric oxide synthase inhibitors, compounds that interfere with inducible NO synthase expression, and molecules working as antioxidant. Further studies are needed to explain the neuroprotective or cytotoxic role of the different isoforms of NO synthase and the other mediators that take part or influence the NO cascade. In this way, it would be possible to find new therapeutic targets and furthermore to extend the experimentation to humans.
Collapse
Affiliation(s)
- Valentina Tardivo
- 1Division of Neurosurgery, Department of Neuroscience, University of Torino , Torino , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Myers SA, DeVries WH, Gruenthal MJ, Andres KR, Hagg T, Whittemore SR. Sildenafil improves epicenter vascular perfusion but not hindlimb functional recovery after contusive spinal cord injury in mice. J Neurotrauma 2011; 29:528-38. [PMID: 21970599 DOI: 10.1089/neu.2011.2036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nitric oxide (NO) is an important regulator of vasodilation and angiogenesis in the central nervous system (CNS). Signaling initiated by the membrane receptor CD47 antagonizes vasodilation and angiogenesis by inhibiting synthesis of cyclic guanosine monophosphate (cGMP). We recently found that deletion of CD47 led to significant functional locomotor improvements, enhanced angiogenesis, and increased epicenter microvascular perfusion in mice after moderate contusive spinal cord injury (SCI). We tested the hypothesis that improving NO/cGMP signaling within the spinal cord immediately after injury would increase microvascular perfusion, angiogenesis, and functional recovery, with an acute, 7-day administration of the cGMP phosphodiesterase 5 (PDE5) inhibitor sildenafil. PDE5 expression is localized within spinal cord microvascular endothelial cells and smooth muscle cells. While PDE5 antagonism has been shown to increase angiogenesis in a rat embolic stroke model, sildenafil had no significant effect on angiogenesis at 7 days post-injury after murine contusive SCI. Sildenafil treatment increased cGMP concentrations within the spinal cord and improved epicenter microvascular perfusion. Basso Mouse Scale (BMS) and Treadscan analyses revealed that sildenafil treatment had no functional consequence on hindlimb locomotor recovery. These data support the hypothesis that acutely improving microvascular perfusion within the injury epicenter by itself is an insufficient strategy for improving functional deficits following contusive SCI.
Collapse
Affiliation(s)
- Scott A Myers
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
7
|
Kasai M, Fukumitsu H, Soumiya H, Furukawa S. Caffeic acid phenethyl ester reduces spinal cord injury-evoked locomotor dysfunction. ACTA ACUST UNITED AC 2011; 32:1-7. [PMID: 21383505 DOI: 10.2220/biomedres.32.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caffeic acid phenethyl ester (CAPE) is a component of propolis, which is a substance taken from the hives of honeybees, and is known to exhibit an anti-inflammatory activity. Such activity has been thought to be partly based on its potential and specific inhibitory activities toward nuclear factor-κB, a transcription factor. Therefore, in the present study, we evaluated the effect of CAPE on functional locomotor recovery after spinal cord injury (SCI) caused by hemi-transection, because inflammatory responses are a major cause of the secondary injury observed following SCI and play a pivotal role in regulating the pathogenesis of acute and chronic SCI. When CAPE was i.p.-administered at a dosage of 10 µmol/kg, it enhanced the recovery of locomotor function and reduced the lesion size while suppressing the expression of the mRNAs for a pro-inflammatory cytokine interleukin-1β and the inflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2. These results suggest CAPE to be a promising therapeutic tool for reducing the secondary neuronal damage following primary physical injury to the spinal cord.
Collapse
Affiliation(s)
- Masaki Kasai
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
8
|
Hirakawa A, Shimizu K, Fukumitsu H, Furukawa S. Pyrroloquinoline quinone attenuates iNOS gene expression in the injured spinal cord. Biochem Biophys Res Commun 2009; 378:308-12. [DOI: 10.1016/j.bbrc.2008.11.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/14/2008] [Indexed: 11/16/2022]
|
9
|
Rafati DS, Geissler K, Johnson K, Unabia G, Hulsebosch C, Nesic-Taylor O, Perez-Polo JR. Nuclear factor-kappaB decoy amelioration of spinal cord injury-induced inflammation and behavior outcomes. J Neurosci Res 2008; 86:566-80. [PMID: 17918744 DOI: 10.1002/jnr.21508] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spinal cord injury (SCI) results in a pathophysiology characterized by multiple locomotor and sensory deficits, resulting in altered nociception and hyperalgesia. SCI triggers an early and prolonged inflammatory response, with increased interleukin-1beta levels. Transient changes are observed in subunit populations of the transcription factor nuclear factor-kappaB (NF-kappaB). There were decreases in neuronal c-Rel levels and inverse increases in p65 and p50 levels. There were no changes in neuronal p52 or RelB subunits after SCI at any time point tested. Similarly, SCI had no effect on oligodendroglial levels of any NF-kappaB subunit. There were significant early increases in COX-2 and inducible nitric oxide synthase mRNA and protein levels after SCI. We used synthetic double-stranded "decoy" deoxyoligonucleotides containing selective NF-kappaB protein dimer binding consensus sequences. Decoys targeting the p65/p50 binding site on the COX-2 promoter decreased SCI-induced cell losses, NF-kappaB p65/p50 DNA-binding activity, and COX-2 and iNOS protein levels. NF-kappaB p65/p50 targeted decoys improved early locomotor recovery after moderate but not severe SCI, yet ameliorated SCI-induced hypersensitization after both moderate and severe SCI. To determine whether changes in GABA activity played a role in decreased hypersensitivity after SCI and p65/p50 targeted decoy, we counted gamma-aminobutyric acid (GABA)-containing neurons in laminae 1-3. There were significantly more GABAergic neurons in the p65/p50 targeted decoy-treated group at the level of injury.
Collapse
Affiliation(s)
- Danny Salah Rafati
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Qin ZH, Tao LY, Chen X. Dual roles of NF-kappaB in cell survival and implications of NF-kappaB inhibitors in neuroprotective therapy. Acta Pharmacol Sin 2007; 28:1859-72. [PMID: 18031598 DOI: 10.1111/j.1745-7254.2007.00741.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NF-kappaB is a well-characterized transcription factor with multiple physiological and pathological functions. NF-kappaB plays important roles in the development and maturation of lymphoids, regulation of immune and inflammatory response, and cell death and survival. The influence of NF-kappaB on cell survival could be protective or destructive, depending on types, developmental stages of cells, and pathological conditions. The complexity of NF-kappaB in cell death and survival derives from its multiple roles in regulating the expression of a broad array of genes involved in promoting cell death and survival. The activation of NF-kappaB has been found in many neurological disorders, but its actual roles in pathogenesis are still being debated. Many compounds with neuroprotective actions are strongly associated with the inhibition of NF-kappaB, leading to speculation that blocking the pathological activation of NF-kappaB could offer neuroprotective effects in certain neurodegenerative conditions. This paper reviews the recent developments in understanding the dual roles of NF-kappaB in cell death and survival and explores its possible usefulness in treating neurological diseases. This paper will summarize the genes regulated by NF-kappaB that are involved in cell death and survival to elucidate why NF-kappaB promotes cell survival in some conditions while facilitating cell death in other conditions. This paper will also focus on the effects of various NF-kappaB inhibitors on neuroprotection in certain pathological conditions to speculate if NF-kappaB is a potential target for neuroprotective therapy.
Collapse
Affiliation(s)
- Zheng-hong Qin
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215123, China.
| | | | | |
Collapse
|
11
|
Conti A, Miscusi M, Cardali S, Germanò A, Suzuki H, Cuzzocrea S, Tomasello F. Nitric oxide in the injured spinal cord: synthases cross-talk, oxidative stress and inflammation. ACTA ACUST UNITED AC 2007; 54:205-18. [PMID: 17500094 DOI: 10.1016/j.brainresrev.2007.01.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a unique informational molecule involved in a variety of physiological processes in the central nervous system (SNS). It has been demonstrated that it can exert both protective and detrimental effects in several diseases states of the CNS, including spinal cord injury (SCI). The effects of NO on the spinal cord depend on several factors such as: concentration of produced NO, activity of different synthase isoforms, cellular source of production and time of release. Basically, it has been shown that low NO concentrations may play a role in physiologic processes, whereas large amounts of NO may be detrimental by increasing oxidative stress. However, this does not explain all the discrepancies evidenced studying the effects of NO in SCI models. The analysis of the different synthase isoforms, of their temporal profile of activation and cellular source has shed light on this topic. Two post-injury time intervals can be defined with reference to the NO production: immediately after injury and several hours-to-days later. The initial immediate peak of NO production after injury is due to the up-regulation of the neuronal NO synthase (nNOS) in resident spinal cord cells. The late peak is due primarily to the activity of inducible NOS (nNOS) produced by inflammatory infiltrating cells. High NO levels produced by up-regulated nNOS and iNOS are neurotoxic; the down-regulation of nNOS corresponds temporally to the expression of iNOS. On the bases of the evidence, therapeutic approaches should be aimed: (1) to reduce the NO-elicited damage by inhibition of specific synthases according to the temporal profile of activation; (2) by maintaining physiologic amount of NO to keep the induction of iNOS.
Collapse
Affiliation(s)
- Alfredo Conti
- Department of Neuroscience, University of Messina, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|