1
|
Yue KC, Zhu YY, Sun JW, Wu XT, Liu WJ, Shi HF. Imaging characteristics of brain microstructure and cerebral perfusion in Crohn's disease patients with anxiety: A prospective comparative study. World J Gastroenterol 2025; 31:99014. [PMID: 39877713 PMCID: PMC11718645 DOI: 10.3748/wjg.v31.i4.99014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Anxiety is a common comorbidity in patients with Crohn's disease (CD). Data on the imaging characteristics of brain microstructure and cerebral perfusion in CD with anxiety are limited. AIM To compare the imaging characteristics of brain microstructure and cerebral perfusion among CD patients with or without anxiety and healthy individuals. METHODS This prospective comparative study enrolled consecutive patients with active CD and healthy individuals who visited the study hospital between January 2022 and January 2023. Anxiety was measured using the Hospital Anxiety and Depression Scale-Anxiety. The imaging characteristics of brain microstructure and cerebral perfusion were measured by diffusion kurtosis imaging and intravoxel incoherent motion. RESULTS A total of 57 participants were enrolled. Among the patients with active CD, 16 had anxiety. Compared with healthy individuals, patients with active CD demonstrated significantly lower radial kurtosis values in the right cerebellar region 6, lower axial kurtosis (AK) values in the right insula, left superior temporal gyrus, and right thalamus, and higher slow and fast apparent diffusion coefficients (ADCslow and ADCfast) in the bilateral frontal lobe, bilateral temporal lobe, and bilateral insular lobe (all P < 0.05). Compared with patients with CD without anxiety, patients with CD and anxiety exhibited significantly higher ADCslow values in the left insular lobe and lower AK values in the right insula and right anterior cuneus (all P < 0.05). CONCLUSION There are variations in brain microstructure and perfusion among CD patients with/without anxiety and healthy individuals, suggesting potential use in assessing anxiety-related changes in active CD.
Collapse
Affiliation(s)
- Ke-Cen Yue
- Dalian Medical University, Dalian 116044, Liaoning Province, China
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213000, Jiangsu Province, China
| | - Ying-Yin Zhu
- Department of Radiology, Suzhou 100 Hospital, Suzhou 215000, Jiangsu Province, China
| | - Jing-Wen Sun
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213000, Jiangsu Province, China
| | - Xin-Tong Wu
- Dalian Medical University, Dalian 116044, Liaoning Province, China
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213000, Jiangsu Province, China
| | - Wen-Jia Liu
- Department of Gastroenterology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213000, Jiangsu Province, China
| | - Hai-Feng Shi
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
2
|
Mokarram N, Case A, Hossainy NN, Lyon JG, MacDonald TJ, Bellamkonda R. Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma. COMMUNICATIONS MATERIALS 2025; 6:5. [PMID: 39790893 PMCID: PMC11706785 DOI: 10.1038/s43246-024-00721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier, essential for protecting the central nervous system, also restricts drug delivery to this region. Thus, delivering drugs across the blood-brain barrier is an active research area in immunology, oncology, and neurology; moreover, novel methods are urgently needed to expand therapeutic options for central nervous system pathologies. While previous strategies have focused on small molecules that modulate blood-brain barrier permeability or penetrate the barrier, there is an increased focus on biomedical devices-external or implanted-for improving drug delivery. Here, we review device-assisted drug delivery across the blood-brain barrier, emphasizing its application in glioblastoma, an aggressively malignant primary brain cancer in which the blood-brain barrier plays a central role. We examine the blood-brain barrier and its features in glioblastoma, emerging models for studying the blood-brain barrier, and device-assisted methods for crossing the blood-brain barrier. We conclude by presenting methods to monitor the blood-brain barrier and paradigms for combined cross-BBB drug delivery.
Collapse
Affiliation(s)
- Nassir Mokarram
- Department of Neurosurgery, Emory University, Atlanta, GA USA
| | - Ayden Case
- Trinity College of Arts and Sciences, Duke University, Durham, NC USA
| | | | - Johnathan G. Lyon
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA USA
| | | |
Collapse
|
3
|
Lolli VE, Guenego A, Sadeghi N, Jodaitis L, Lubicz B, Taccone FS, Gouvea Bogossian E. CT perfusion imaging in aneurysmal subarachnoid hemorrhage. State of the art. FRONTIERS IN RADIOLOGY 2024; 4:1445676. [PMID: 39434941 PMCID: PMC11491345 DOI: 10.3389/fradi.2024.1445676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
CT perfusion (CTP) images can be easily and rapidly obtained on all modern CT scanners and have become part of the routine imaging protocol of patients with aneurysmal subarachnoid haemorrhage (aSAH). There is a growing body of evidence supporting the use of CTP imaging in these patients, however, there are significant differences in the software packages and methods of analysing CTP. In. addition, no quantitative threshold values for tissue at risk (TAR) have been validated in this patients' population. Here we discuss the contribution of the technique in the identification of patients at risk of aSAH-related delayed cerebral ischemia (DCI) and in the assessment of the response to endovascular rescue therapy (ERT). We also address the limitations and pitfalls of automated CTP postprocessing that are specific to aSAH patients as compared to acute ischemic stroke (AIS).
Collapse
Affiliation(s)
| | - Adrien Guenego
- Radiology Department, Hôpital Erasme- H.U.B., Brussels, Belgium
- Interventional Neuroradiology Department, Hôpital Erasme- H.U.B., Brussels, Belgium
| | | | - Lise Jodaitis
- Neurology Department, Hôpital Erasme- H.U.B., Brussels, Belgium
| | - Boris Lubicz
- Interventional Neuroradiology Department, Hôpital Erasme- H.U.B., Brussels, Belgium
| | | | | |
Collapse
|
4
|
Otgonbaatar C, Song H, Jung KH, Hwang I, Hun Jeon Y, Choi KS, Yoo DH, Sohn CH. Quantification of Infarct Core Volume in Patients with Acute Ischemic Stroke Using Cerebral Metabolic Rate of Oxygen in CT Perfusion. AJNR Am J Neuroradiol 2024; 45:1432-1440. [PMID: 38806237 PMCID: PMC11448980 DOI: 10.3174/ajnr.a8360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND AND PURPOSE The cerebral metabolic rate of oxygen (CMRO2) is considered a robust marker of the infarct core in 15O-tracer-based PET. We aimed to delineate the infarct core in patients with acute ischemic stroke by using commonly used relative CBF (rCBF) < 30% and oxygen metabolism parameter of CMRO2 on CT perfusion in comparison with pretreatment DWI-derived infarct core volume. MATERIALS AND METHODS Patients with acute ischemic stroke who met the inclusion criteria were recruited. The CMRO2 and CBF maps in CT perfusion were automatically generated by using postprocessing software. The infarct core volume was quantified with relative cerebral metabolic rate of oxygen (rCMRO2) <20% -30% and rCBF <30%. The optimal threshold was defined as those that demonstrated the smallest mean absolute error, lowest mean infarct core volume difference, narrowest 95% limit of agreement, and largest intraclass correlation coefficient (ICC) against the DWI. RESULTS This study included 76 patients (mean age ± standard deviation, 69.97 ± 12.15 years, 43 men). The optimal thresholds of rCMRO2 <26% resulted in the lowest mean infarct core volume difference, narrowest 95% limit of agreement, and largest ICC among different thresholds. Bland-Altman analysis demonstrated a volumetric bias of 1.96 mL between DWI and rCMRO2 <26%, whereas in cases of DWI and rCBF <30%, the bias was notably larger at 14.10 mL. The highest correlation was observed for rCMRO2 <26% (ICC = 0.936), whereas rCBF <30% showed a slightly lower ICC of 0.934. CONCLUSIONS CT perfusion-derived CMRO2 is a promising parameter for estimating the infarct core volume in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Chuluunbaatar Otgonbaatar
- From the Department of Radiology, College of Medicine (C.O., C.-H.S.), Seoul National University, Seoul, South Korea
| | - Huijin Song
- Biomedical Research Institute (H.S.), Seoul National University Hospital, Seoul, South Korea
| | - Keun-Hwa Jung
- Departments of Neurology (K.-H.J.), Seoul National University Hospital, Seoul, South Korea
| | - Inpyeong Hwang
- Departments of Radiology (I.H., Y.H.J., K.S.C., D.H.Y., C.-H.S.), Seoul National University Hospital, Seoul, South Korea
| | - Young Hun Jeon
- Departments of Radiology (I.H., Y.H.J., K.S.C., D.H.Y., C.-H.S.), Seoul National University Hospital, Seoul, South Korea
| | - Kyu Sung Choi
- Departments of Radiology (I.H., Y.H.J., K.S.C., D.H.Y., C.-H.S.), Seoul National University Hospital, Seoul, South Korea
| | - Dong Hyun Yoo
- Departments of Radiology (I.H., Y.H.J., K.S.C., D.H.Y., C.-H.S.), Seoul National University Hospital, Seoul, South Korea
| | - Chul-Ho Sohn
- From the Department of Radiology, College of Medicine (C.O., C.-H.S.), Seoul National University, Seoul, South Korea
- Departments of Radiology (I.H., Y.H.J., K.S.C., D.H.Y., C.-H.S.), Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
5
|
Ichikawa S, Ozaki M, Itadani H, Sugimori H, Kondo Y. Deep learning-based correction for time truncation in cerebral computed tomography perfusion. Radiol Phys Technol 2024; 17:666-678. [PMID: 38861134 DOI: 10.1007/s12194-024-00818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Cerebral computed tomography perfusion (CTP) imaging requires complete acquisition of contrast bolus inflow and washout in the brain parenchyma; however, time truncation undoubtedly occurs in clinical practice. To overcome this issue, we proposed a three-dimensional (two-dimensional + time) convolutional neural network (CNN)-based approach to predict missing CTP image frames at the end of the series from earlier acquired image frames. Moreover, we evaluated three strategies for predicting multiple time points. Seventy-two CTP scans with 89 frames and eight slices from a publicly available dataset were used to train and test the CNN models capable of predicting the last 10 image frames. The prediction strategies were single-shot prediction, recursive multi-step prediction, and direct-recursive hybrid prediction.Single-shot prediction predicted all frames simultaneously, while recursive multi-step prediction used prior predictions as input for subsequent steps, and direct-recursive hybrid prediction employed separate models for each step with prior predictions as input for the next step. The accuracies of the predicted image frames were evaluated in terms of image quality, bolus shape, and clinical perfusion parameters. We found that the image quality metrics were superior when multiple CTP images were predicted simultaneously rather than recursively. The bolus shape also showed the highest correlation (r = 0.990, p < 0.001) and the lowest variance (95% confidence interval, -453.26-445.53) in the single-shot prediction. For all perfusion parameters, the single-shot prediction had the smallest absolute differences from ground truth. Our proposed approach can potentially minimize time truncation errors and support the accurate quantification of ischemic stroke.
Collapse
Affiliation(s)
- Shota Ichikawa
- Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, 2-746 Asahimachi-Dori, Chuo-ku, Niigata, 951-8518, Japan.
- Institute for Research Administration, Niigata University, 8050 Ikarashi 2-No-cho, Nishi-ku, Niigata, 950-2181, Japan.
| | - Makoto Ozaki
- Department of Radiological Technology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 710-8602, Japan
| | - Hideki Itadani
- Department of Radiological Technology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 710-8602, Japan
| | - Hiroyuki Sugimori
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Yohan Kondo
- Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, 2-746 Asahimachi-Dori, Chuo-ku, Niigata, 951-8518, Japan
| |
Collapse
|
6
|
Rastogi A, Yalavarthy PK. Greybox: A hybrid algorithm for direct estimation of tracer kinetic parameters from undersampled DCE-MRI data. Med Phys 2024; 51:4838-4858. [PMID: 38214325 DOI: 10.1002/mp.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND A variety of deep learning-based and iterative approaches are available to predict Tracer Kinetic (TK) parameters from fully sampled or undersampled dynamic contrast-enhanced (DCE) MRI data. However, both the methods offer distinct benefits and drawbacks. PURPOSE To propose a hybrid algorithm (named as 'Greybox'), using both model- as well as DL-based, for solving a multi-parametric non-linear inverse problem of directly estimating TK parameters from undersampled DCE MRI data, which is invariant to undersampling rate. METHODS The proposed algorithm was inspired by plug-and-play algorithms used for solving linear inverse imaging problems. This technique was tested for its effectiveness in solving the nonlinear ill-posed inverse problem of generating 3D TK parameter maps from four-dimensional (4D; Spatial + Temporal) retrospectively undersampled k-space data. The algorithm learns a deep learning-based prior using UNET to estimate theK trans $\mathbf {K_{trans}}$ andV p $\mathbf {V_{p}}$ parameters based on the Patlak pharmacokinetic model, and this trained prior was utilized to estimate the TK parameter maps using an iterative gradient-based optimization scheme. Unlike the existing DL models, this network is invariant to the undersampling rate of the input data. The proposed method was compared with the total variation-based direct reconstruction technique on brain, breast, and prostate DCE-MRI datasets for various undersampling rates using the Radial Golden Angle (RGA) scheme. For the breast dataset, an indirect estimation using the Fast Composite Splitting algorithm was utilized for comparison. Undersampling rates of 8 × $\times$ , 12 × $\times$ and 20 × $\times$ were used for the experiments, and the results were compared using the PSNR and SSIM as metrics. For the breast dataset of 10 patients, data from four patients were utilized for training (1032 samples), two for validation (752 samples), and the entire volume of four patients for testing. Similarly, for the prostate dataset of 18 patients, 10 patients were utilized for training (720 samples), five for validation (216 samples), and the whole volume of three patients for testing. For the brain dataset of nineteen patients, ten patients were used for training (3152 samples), five for validation (1168 samples), and the whole volume of four patients for testing. Statistical tests were also conducted to assess the significance of the improvement in performance. RESULTS The experiments showed that the proposed Greybox performs significantly better than other direct reconstruction methods. The proposed algorithm improved the estimatedK trans $\mathbf {K_{trans}}$ andV p $\mathbf {V_{p}}$ in terms of the peak signal-to-noise ratio by up to 3 dB compared to other standard reconstruction methods. CONCLUSION The proposed hybrid reconstruction algorithm, Greybox, can provide state-of-the-art performance in solving the nonlinear inverse problem of DCE-MRI. This is also the first of its kind to utilize convolutional neural network-based encodings as part of the plug-and-play priors to improve the performance of the reconstruction algorithm.
Collapse
Affiliation(s)
- Aditya Rastogi
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
- University Hospital Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
7
|
Kundu K, Kumar A, Malik R, Sarawagi R, Khurana A, Sharma J, Bhagat AC, Patel A. The Role of CT Perfusion in Differentiating Benign Versus Malignant Focal Pulmonary Lesions. Cureus 2024; 16:e63618. [PMID: 39092336 PMCID: PMC11290953 DOI: 10.7759/cureus.63618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Contrast-enhanced CT scan is the standard imaging for the characterization and evaluation of focal parenchymal lung lesions. It relies on morphology and enhancement patterns for the characterization of lung lesions. However, there is significant overlap among imaging features of various malignant and benign lesions. Hence, it is often necessary to obtain tissue diagnosis with invasive percutaneous or endoscopic-guided tissue sampling. It is often desirable to have non-invasive techniques that can differentiate malignant and benign lung lesions. CT perfusion is an emerging CT technology that allows functional assessment of tissue vascularity through various parameters and can help in differentiating benign and malignant focal lung lesions. OBJECTIVE The purpose of this study was to assess the role of the CT perfusion technique in differentiating malignant and benign focal parenchymal lung lesions. MATERIALS AND METHODS In this prospective observational study, CT perfusion was performed on 41 patients with focal parenchymal lung lesions from December 2020 to June 2022. The four-dimensional range was planned to cover the entire craniocaudal extent of the lesion, followed by a volume perfusion CT (VPCT) of the lesion. A total of 27 dynamic datasets were acquired with a scan interval of 1.5 seconds and a total scan time of 42 seconds. CT perfusion parameters of blood flow (BF), blood volume (BV), and k-trans of the lesion were measured with mathematical algorithms available in the Syngo.via CT perfusion software (Siemens Healthcare, Erlangen, Germany). RESULTS The median BV in benign lesions was found to be 5.5 mL/100 g, with an interquartile range of 3.3-6.9 and a p-value < 0.001. The median BV in malignant lesions was found to be 11.35 mL/100 g, with an interquartile range of 9.57-13.21 and a p-value ≤ 0.001. The median BF for benign lesions was 45.5 mL/100 g/min, with an interquartile range of 33.8-48.5 and a p-value ≤ 0.001. The median BF for malignant lesion was 61.77 mL/100 g/min, with an interquartile range of 33.8-48.5 and a p-value ≤ 0.001. The median k-trans in the case of benign lesions was found to be 4.2 mL/100 g/min, with an interquartile range of 3.13-6.8 and a p-value ≤ 0.001. The median k-trans in the case of the malignant lesion was found to be 12.05 mL/100g/min, with an interquartile range of 7.20-33.42 and a p-value < 0.001. Our study has also shown BV to have an accuracy of 92.68%, sensitivity of 93.3%, and specificity of 90.01%. CONCLUSION Our study has shown that CT perfusion values of BV, BF, and k-trans can be used to differentiate between benign and malignant focal lung parenchymal lesions. K-trans is the most sensitive parameter while BV and BF have greater accuracy and specificity.
Collapse
Affiliation(s)
- Kriti Kundu
- Radiology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Aman Kumar
- Radiology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Rajesh Malik
- Radiology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Radha Sarawagi
- Radiology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Alkesh Khurana
- Pulmonary and Critical Care Medicine, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Jitendra Sharma
- Radiology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Abhinav C Bhagat
- Radiology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Ankur Patel
- Radiology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| |
Collapse
|
8
|
Busse TL, Munthe S, Ketharanathan B, Bülow K, Jóhannsson B, Diaz A, Nielsen TH. Perfusion Computed Tomography as a Screening Tool for Pending Delayed Cerebral Ischemia in Comatose Patients After Aneurysmal Subarachnoid Hemorrhage: A Retrospective Cohort Study. Neurocrit Care 2024; 40:964-975. [PMID: 37821720 PMCID: PMC11147906 DOI: 10.1007/s12028-023-01855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) is frequently complicated by delayed cerebral ischemia (DCI), leading to poor outcomes. Early diagnosis of DCI is crucial for improving survival and outcomes but remains challenging in comatose patients. In this study, we aimed to evaluate computed tomography with angiography and perfusion (P-CT) as a screening modality on postictal days four and eight for impending DCI after aSAH in comatose patients using vasospasm with hypoperfusion (hVS) as a surrogate and DCI-related infarction as an outcome measure. Two objectives were set: (1) to evaluate the screening's ability to accurately risk stratify patients and (2) to assess the validity of P-CT screening. METHODS We conducted a retrospective review of the records of comatose patients with aSAH from January 2019 to December 2021 who were monitored with P-CT scans on days four and eight. The event rates of DCI-related infarction, hVS, and endovascular rescue therapy (ERT) were analyzed, and the sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) for DCI were calculated. DCI-related infarction was defined as new secondary cerebral infarction > 48 h < 6 weeks post aSAH not attributable to other causes, and hVS was defined as arterial narrowing with corresponding hypoperfusion on P-CT. RESULTS Fifty-six comatose patients were included, and 98 P-CT scans were performed. The incidence of DCI-related infarction was 40%. Screening P-CT on days four and eight found vasospasm in 23% of all patients, including 11% with hVS. A positive hVS on day four or eight revealed a relative risk of 2.4 [95% confidence interval (CI) 1.13-5.11, p = 0.03], sensitivity of 23% (95% CI 8-45, p = 0.03), specificity of 95% (95% CI 36-100, p = 0.03), PPV of 0.83 (95% CI 0.36-1.00, p = 0.03), and NPV of 0.65 (95% CI 0.50-0.78). Six positive P-CT scans led to digital subtraction angiography in five patients, three of whom received ERT. All ERT-intervened patients developed DCI-related infarction. CONCLUSIONS P-CT resulted in few interventions and often resulted in late detection of DCI at an irreversible stage. Although a positive P-CT result accurately predicts impending DCI-related infarction, screening on days four and eight alone in comatose patients with aSAH often fails to timely detect impending DCI. Based on our analysis, we cannot recommend P-CT as a screening modality. P-CT is likely best used as a confirmatory test prior to invasive interventions when guided by continuous multimodal monitoring; however, prospective studies with comparison groups are warranted. The need for a reliable continuous screening modality is evident because of the high rate of deterioration and narrow treatment window.
Collapse
Affiliation(s)
- Thor Löwe Busse
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark.
| | - Sune Munthe
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | | | - Karsten Bülow
- Department of Anaesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Bjarni Jóhannsson
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | - Anabel Diaz
- Department of Radiology, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
9
|
Ozkara BB, Karabacak M, Hoseinyazdi M, Dagher SA, Wang R, Karadon SY, Ucisik FE, Margetis K, Wintermark M, Yedavalli VS. Utilizing imaging parameters for functional outcome prediction in acute ischemic stroke: A machine learning study. J Neuroimaging 2024; 34:356-365. [PMID: 38430467 DOI: 10.1111/jon.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND PURPOSE We aimed to predict the functional outcome of acute ischemic stroke patients with anterior circulation large vessel occlusions (LVOs), irrespective of how they were treated or the severity of the stroke at admission, by only using imaging parameters in machine learning models. METHODS Consecutive adult patients with anterior circulation LVOs who were scanned with CT angiography (CTA) and CT perfusion were queried in this single-center, retrospective study. The favorable outcome was defined as a modified Rankin score (mRS) of 0-2 at 90 days. Predictor variables included only imaging parameters. CatBoost, XGBoost, and Random Forest were employed. Algorithms were evaluated using the area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPRC), accuracy, Brier score, recall, and precision. SHapley Additive exPlanations were implemented. RESULTS A total of 180 patients (102 female) were included, with a median age of 69.5. Ninety-two patients had an mRS between 0 and 2. The best algorithm in terms of AUROC was XGBoost (0.91). Furthermore, the XGBoost model exhibited a precision of 0.72, a recall of 0.81, an AUPRC of 0.83, an accuracy of 0.78, and a Brier score of 0.17. Multiphase CTA collateral score was the most significant feature in predicting the outcome. CONCLUSIONS Using only imaging parameters, our model had an AUROC of 0.91 which was superior to most previous studies, indicating that imaging parameters may be as accurate as conventional predictors. The multiphase CTA collateral score was the most predictive variable, highlighting the importance of collaterals.
Collapse
Affiliation(s)
- Burak B Ozkara
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA
| | - Meisam Hoseinyazdi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Samir A Dagher
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Sadik Y Karadon
- School of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - F Eymen Ucisik
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Max Wintermark
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek S Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Chen Y, Tozer DJ, Liu W, Peake EJ, Markus HS. Prediction of response to thrombolysis in acute stroke using neural network analysis of CT perfusion imaging. Eur Stroke J 2023; 8:629-637. [PMID: 37350512 PMCID: PMC10472959 DOI: 10.1177/23969873231183206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND In ischaemic stroke patients undergoing reperfusion therapy, the amount of salvageable tissue, that is, extent of the ischaemic penumbra, predicts the clinical outcomes. CT perfusion (CTP) enables quantification of penumbral tissues to guide decision making, and current programmes have automated its analysis. More advanced machine learning techniques utilising the CTP maps may improve prediction beyond the ischaemic volume measures. METHOD We determined whether applying convolutional neural networks (CNN), a key machine learning technique in modelling image-label relationships, to post-processed CTP maps improved prediction of outcome, assessed by 3 months modified Rankin scale (mRS). Patients who underwent thrombolysis but not thrombectomy were included. CTP maps of a retrospective cohort of 230 patients with middle cerebral artery stroke were used to develop the model, which was validated in an independent cohort of 129 patients. RESULTS We constructed a CNN model that predicted a favourable post-thrombolysis outcome (mRS 0-2 at 3 months) with an area under receiver-operator characteristics curve (AUC) of 0.792 (95% CI, 0.707-0.877). This model outperformed a currently clinically used MISTAR software using previously validated thresholds (AUC = 0.583, 95% CI, 0.480-0.686) and a model modified using thresholds from the derivation cohort (AUC = 0.670, 95% CI, 0.571-0.769). By combining CNN-derived features and baseline demographic features, the prediction AUC was improved to 0.865 (95% CI, 0.794-0.936). CONCLUSION CNN improved prediction of post-thrombolysis outcome, and may be useful in selecting which patients benefit from thrombolysis.
Collapse
Affiliation(s)
- Yutong Chen
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel J Tozer
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Weiran Liu
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Edward J Peake
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Halil E. CT perfusion - an up-to-date element of the contemporary multimodal diagnostic approach to acute ischemic stroke. Folia Med (Plovdiv) 2023; 65:531-538. [PMID: 37655371 DOI: 10.3897/folmed.65.e96954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/22/2023] [Indexed: 09/02/2023] Open
Abstract
Acute ischemic stroke is of great clinical and societal importance due to its high incidence and mortality rates, as well as the fact that those who are affected suffer from permanent acquired disability. Modern trends explicitly state that the disease's diagnostic plan should use a multidisciplinary approach. The therapeutic steps that ultimately determine the clinical outcome are defined by an accurate diagnosis of acute ischemic stroke. Highly specialized facilities for the diagnosis and treatment of acute ischemic stroke (Stroke Units) are in operation in countries that make significant investments in healthcare. Imaging the brain parenchyma at risk, or the so-called ischemic penumbra, in acute ischemic stroke is one of the main tasks of the multimodal computed tomography approach. The most rapid method for imaging the ischemic penumbra is computed tomography perfusion (CTP). This modality provides information about the anatomy and the physiologic state of the brain parenchyma.
Collapse
Affiliation(s)
- Eray Halil
- Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
12
|
Lee JM, Shin YJ, Byoung-Soo S, Kang HG. A case series of acute ischemic strokes with contralateral perfusion time delay on brain computed tomography. Medicine (Baltimore) 2023; 102:e33790. [PMID: 37171320 PMCID: PMC10174393 DOI: 10.1097/md.0000000000033790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
INTRODUCTION Collateral circulation sustains cerebral perfusion in patients with arterial occlusion. Extensive arterial occlusion may redirect cerebral blood flow to compensate for insufficient perfusion. Cerebral artery occlusion can be observed in computed tomography perfusion imaging with increased mean transit time (MTT). However, in some cases, MTT delay occurs contralateral to the site of stenosis or occlusion. This delay cannot be explained simply by the collateral blood supply. Therefore, the authors considered the similarity of the perfusion delay observed at the normal site to that observed in subclavian steal syndrome. CASE PRESENTATION Three patients were reviewed: the first had severe stenosis in the left proximal internal carotid artery (ICA), and the second had left common carotid artery occlusion and diffusion restriction of the ICA-middle carotid artery border zone. The third patient had total occlusion of the left common carotid artery and right proximal ICA, with multifocal infarctions in the right frontal, occipital, left frontal, and parietal lobes. All 3 patients had a contralateral MTT delay on perfusion imaging. CONCLUSION The site of stenosis or occlusion did not correlate with ipsilateral perfusion delay in these 3 cases. Based on the precedent relationship between infarction and perfusion delay, we developed 2 hypotheses to explain why perfusion decreases on the contralateral side of the occlusion or stenosis. However, this study was limited because we could not identify events, like volume loss or decreased blood pressure, before stroke development.
Collapse
Affiliation(s)
- Ji Min Lee
- Jeonbuk National University Medical School, Jeonju, South Korea
| | - Yu Jeong Shin
- Jeonbuk National University Medical School, Jeonju, South Korea
| | - Shin Byoung-Soo
- Department of Neurology & Research Institute of Clinical Medicine of Jeonbuk National University – Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Hyun Goo Kang
- Department of Neurology & Research Institute of Clinical Medicine of Jeonbuk National University – Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|
13
|
Rastogi A, Dutta A, Yalavarthy PK. VTDCE-Net: A time invariant deep neural network for direct estimation of pharmacokinetic parameters from undersampled DCE MRI data. Med Phys 2023; 50:1560-1572. [PMID: 36354289 DOI: 10.1002/mp.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To propose a robust time and space invariant deep learning (DL) method to directly estimate the pharmacokinetic/tracer kinetic (PK/TK) parameters from undersampled dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) data. METHODS DCE-MRI consists of 4D (3D-spatial + temporal) data and has been utilized to estimate 3D (spatial) tracer kinetic maps. Existing DL architecture for this task needs retraining for variation in temporal and/or spatial dimensions. This work proposes a DL algorithm that is invariant to training and testing in both temporal and spatial dimensions. The proposed network was based on a 2.5-dimensional Unet architecture, where the encoder consists of a 3D convolutional layer and the decoder consists of a 2D convolutional layer. The proposed VTDCE-Net was evaluated for solving the ill-posed inverse problem of directly estimating TK parameters from undersampled k - t $k-t$ space data of breast cancer patients, and the results were systematically compared with a total variation (TV) regularization based direct parameter estimation scheme. In the breast dataset, the training was performed on patients with 32 time samples, and testing was carried out on patients with 26 and 32 time samples. Translation of the proposed VTDCE-Net for brain dataset to show the generalizability was also carried out. Undersampling rates (R) of 8× , 12× , and 20× were utilized with PSNR and SSIM as the figures of merit in this evaluation. TK parameter maps estimated from fully sampled data were utilized as ground truth. RESULTS Experiments carried out in this work demonstrate that the proposed VTDCE-Net outperforms the TV scheme on both breast and brain datasets across all undersampling rates. For K trans $\mathbf {K_{trans}}$ and V p $\mathbf {V_{p}}$ maps, the improvement over TV is as high as 2 and 5 dB, respectively, using the proposed VTDCE-Net. CONCLUSION Temporal points invariant DL network that was proposed in this work to estimate the TK-parameters using DCE-MRI data has provided state-of-the-art performance compared to standard image reconstruction methods and is shown to work across all undersampling rates.
Collapse
Affiliation(s)
- Aditya Rastogi
- Computational and Data Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | - Arindam Dutta
- Computational and Data Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | | |
Collapse
|
14
|
Rose SD, Lubner MG, Heil J, Greenwood GM, Szczykutowicz TP. Electrocardiographic Gating and Cerebral Perfusion Computed Tomography Option-Set Prevalence and Utilization Data From 62 Institutions in the United States. J Comput Assist Tomogr 2023; 47:315-321. [PMID: 36728742 DOI: 10.1097/rct.0000000000001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To provide the radiology community with data to address the question: "Compared with peer institutions, is my institution efficiently using its electrocardiographic (ECG) gating and cerebral perfusion-capable computed tomography (CT) scanners?" METHODS In this retrospective study, we analyze 6 months of scanner utilization data from 62 institutions (299 locations, 507 scanners) to identify scanners capable of performing ECG gating and perfusion CT studies. We report the number of ECG gating/perfusion-capable scanners and locations as a function of the total number of locations and scanners in each institution. We additionally regress the number of ECG-gated and perfusion examinations on (1) the number of locations/scanners capable of performing these examinations and (2) the fraction of the institution's CT examination volume that requires ECG gating or perfusion. We provide look-up tables so an institution can compare its ECG-gated/perfusion examination volume to other institutions with similar ECG-gated/perfusion examination fractions and capable scanners. RESULTS We detected an effect of both ECG-gating examination fraction and the number of ECG gating-capable scanners on ECG-gated examination volume ( χ21 = 77.5 [ P < 0.001] and χ21 = 64.2 [ P < 0.001], respectively). Similar results were obtained for perfusion examination fraction and perfusion-capable scanners as they relate to perfusion examination volume ( χ21 = 51.6 [ P < 0.001] and χ21 = 45.2 [ P < 0.001], respectively). The number of ECG gating/perfusion-capable scanners and locations within an institution were found to positively correlate with both the total number of locations and scanners within an institution ( P < 0.001 for all hypothesis tests). CONCLUSIONS The study provides multi-institutional data on ECG gating and perfusion examination volumes that can be used to inform CT purchasing decisions.
Collapse
Affiliation(s)
- Sean D Rose
- From the Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX
| | - Meghan G Lubner
- Department of Radiology, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI
| | - John Heil
- Imalogix Research Institute, Bryn Mawr, PA
| | - Gina M Greenwood
- Department of Radiology, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI
| | | |
Collapse
|
15
|
Avoiding brain hypoxia in severe traumatic brain injury in settings with limited resources - A pathophysiological guide. J Crit Care 2023; 75:154260. [PMID: 36773368 DOI: 10.1016/j.jcrc.2023.154260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 02/11/2023]
Abstract
Cerebral oxygenation represents the balance between oxygen delivery, consumption and utilization by the brain, and therefore reflects the adequacy of cerebral perfusion. Different factors can influence the amount of oxygen to the brain including arterial blood pressure, hemoglobin levels, systemic oxygenation, and transfer of oxygen from blood to the cerebral microcirculation. A mismatch between cerebral oxygen supply and demand results in cerebral hypoxia/ischemia, and is associated with secondary brain damage and worsened outcome after acute brain injury. Therefore, monitoring and prompt treatment of cerebral oxygenation compromise is warranted in both neuro and general intensive care unit populations. Several tools have been proposed for the assessment of cerebral oxygenation, including non-invasive/invasive or indirect/direct methods, including Jugular Venous Oxygen Saturation (SjO2), Partial Brain Tissue Oxygen Tension (PtiO2), Near infrared spectroscopy (NIRS), Transcranial Doppler, electroencephalography and Computed Tomography. In this manuscript, we aim to review the pathophysiology of cerebral oxygenation, describe monitoring technics, and generate recommendations for avoiding brain hypoxia in settings with low availability of resources for direct brain oxygen monitoring.
Collapse
|
16
|
Kaothanthong N, Atsavasirilert K, Sarampakhul S, Chantangphol P, Songsaeng D, Makhanov S. Artificial intelligence for localization of the acute ischemic stroke by non-contrast computed tomography. PLoS One 2022; 17:e0277573. [PMID: 36454916 PMCID: PMC9714826 DOI: 10.1371/journal.pone.0277573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/29/2022] [Indexed: 12/03/2022] Open
Abstract
A non-contrast cranial computer tomography (ncCT) is often employed for the diagnosis of the early stage of the ischemic stroke. However, the number of false negatives is high. More accurate results are obtained by an MRI. However, the MRI is not available in every hospital. Moreover, even if it is available in the clinic for the routine tests, emergency often does not have it. Therefore, this paper proposes an end-to-end framework for detection and segmentation of the brain infarct on the ncCT. The computer tomography perfusion (CTp) is used as the ground truth. The proposed ensemble model employs three deep convolution neural networks (CNNs) to process three end-to-end feature maps and a hand-craft features characterized by specific contra-lateral features. To improve the accuracy of the detected infarct area, the spatial dependencies between neighboring slices are employed at the postprocessing step. The numerical experiments have been performed on 18 ncCT-CTp paired stroke cases (804 image-pairs). The leave-one-out approach is applied for evaluating the proposed method. The model achieves 91.16% accuracy, 65.15% precision, 77.44% recall, 69.97% F1 score, and 0.4536 IoU.
Collapse
Affiliation(s)
- Natsuda Kaothanthong
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Kamin Atsavasirilert
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Soawapot Sarampakhul
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pantid Chantangphol
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Dittapong Songsaeng
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Stanislav Makhanov
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
17
|
Bücke P, Cohen JE, Horvath T, Cimpoca A, Bhogal P, Bäzner H, Henkes H. What You Always Wanted to Know about Endovascular Therapy in Acute Ischemic Stroke but Never Dared to Ask: A Comprehensive Review. Rev Cardiovasc Med 2022; 23:340. [PMID: 39077121 PMCID: PMC11267361 DOI: 10.31083/j.rcm2310340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Accepted: 06/08/2022] [Indexed: 07/31/2024] Open
Abstract
In 2015, mechanical thrombectomy (MT) in combination with intravenous thrombolysis was demonstrated to be superior to best medical treatment alone in patients with anterior circulation stroke. This finding resulted in an unprecedented boost in endovascular stroke therapy, and MT became widely available. MT was initially approved for patients presenting with large vessel occlusion in the anterior circulation (intracranial internal carotid artery or proximal middle cerebral artery) within a 6-hour time window. Eventually, it was shown to be beneficial in a broader group of patients, including those without known symptom-onset, wake-up stroke, or patients with posterior circulation stroke. Technical developments and the implementation of novel thrombectomy devices further facilitated endovascular recanalization for acute ischemic stroke. However, some aspects remain controversial. Is MT suitable for medium or very distal vessel occlusions? Should emergency stenting be performed for symptomatic stenosis or recurrent occlusion? How should patients with large vessel occlusion without disabling symptoms be treated? Do certain patients benefit from MT without intravenous thrombolysis? In the era of personalized decision-making, some of these questions require an individualized approach based on comorbidities, imaging criteria, and the severity or duration of symptoms. Despite its successful development in the past decade, endovascular stroke therapy will remain a challenging and fascinating field in the years to come. This review aims to provide an overview of patient selection, and the indications for and execution of MT in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Philipp Bücke
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Jose E. Cohen
- Department of Neurosurgery, Hadassah Medical Center, Hebrew University Jerusalem, 91905 Jerusalem, Israel
| | - Thomas Horvath
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Alexandru Cimpoca
- Neuroradiologische Klinik, Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Pervinder Bhogal
- Interventional Neuroradiology Department, The Royal London Hospital, E1 1FR London, UK
| | - Hansjörg Bäzner
- Neurologische Klinik, Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Hans Henkes
- Neuroradiologische Klinik, Klinikum Stuttgart, 70174 Stuttgart, Germany
- Medical Faculty, Universität Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
18
|
Katyal A, Bhaskar SMM. Value of pre-intervention computed tomography perfusion imaging in the assessment of tissue outcome and long-term clinical prognosis in patients with anterior circulation acute ischemic stroke receiving reperfusion therapy: a systematic review. Acta Radiol 2022; 63:1243-1254. [PMID: 34342497 DOI: 10.1177/02841851211035892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Computed tomography perfusion (CTP) imaging has emerged as an important adjunct to the current armamentarium of acute ischemic stroke (AIS) workflow. However, its adoption in routine clinical practice is far from optimal. PURPOSE To investigate the putative association of CTP imaging biomarkers in the assessment of prognosis in acute ischemic stroke. MATERIAL AND METHODS We performed a systematic review of the literature using MEDLINE, EMBASE, and Cochrane Central Register of Clinical Trials focusing on CTP biomarkers, tissue-based and clinical-based patient outcomes. We included randomized controlled trials, prospective cohort studies, and case-controlled studies published from January 2005 to 28 August 2020. Two independent reviewers conducted the study appraisal, data extraction, and quality assessment of the studies. RESULTS A total of 60 full-text studies were included in the final systematic review analysis. Increasing infarct core volume is associated with reduced odds of achieving functional independence (modified Rankin score 0-2) at 90 days and is correlated with the final infarct volume when reperfusion is achieved. CONCLUSION CTP has value in assessing tissue perfusion status in the hyperacute stroke setting and the long-term clinical prognosis of patients with AIS receiving reperfusion therapy. However, the prognostic use of CTP requires optimization and further validation.
Collapse
Affiliation(s)
- Anubhav Katyal
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, NSW, Australia.,University of New South Wales (UNSW), South West Sydney Clinical School, Sydney, NSW, Australia
| | - Sonu Menachem Maimonides Bhaskar
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, NSW, Australia.,Liverpool Hospital & South West Sydney Local Health District (SWSLHD), Department of Neurology & Neurophysiology, Sydney, NSW, Australia.,NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW, Australia.,Thrombolysis and Endovascular WorkFLOw Network (TEFLON), Sydney, NSW, Australia
| |
Collapse
|
19
|
Pai V, Ti JP, Tan LQ, Ho TS, Tham C, Sitoh YY. Practice enhancements with FastStroke ColorViz analysis in acute ischemic stroke. J Clin Imaging Sci 2022; 12:19. [PMID: 35510241 PMCID: PMC9062937 DOI: 10.25259/jcis_30_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022] Open
Abstract
In acute ischemic stroke (AIS), large vessel occlusion (LVO) and the status of pial collaterals are important factors in decision-making for further treatment such as endovascular therapy. Multiphasic CT Angiogram (mCTA) is the mainstay of AIS imaging, allowing detection of LVO, evaluation of intracranial arterial dynamics, and quantification of pial collaterals. However, thorough mCTA evaluation entails scrutiny of multiple image datasets, individually and then simultaneously, which can be time-consuming, causing a potential delay in treatment. ColorViz (FastStroke, GE Healthcare, Milwaukee, Wisconsin) is a novel CT application which combines mCTA information into a single color-coded dataset for quick, unequivocal evaluation of pial collaterals. In our practice, ColorViz is both time-saving and increases the diagnostic accuracy of LVO and pial collaterals as well as medium vessel, multivessel and posterior circulation occlusions. In this article, we discuss the practical aspects of ColorViz in patients presenting with AIS.
Collapse
Affiliation(s)
- Vivek Pai
- Division of Neuroradiology, Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Joanna Pearly Ti
- Department of Neuroradiology, National Neuroscience Institute, Singapore
| | | | - Thye Sin Ho
- Department of Neuroradiology, National Neuroscience Institute, Singapore
| | - Carol Tham
- Department of Neurology, National Neuroscience Institute, Singapore,
| | - Yih Yian Sitoh
- Department of Neuroradiology, National Neuroscience Institute, Singapore
| |
Collapse
|
20
|
Bhagat R, Muha A, Remmel K, Liu W. Assessment of computed tomography perfusion RAPID estimated core volume accuracy in patients following thrombectomy. CURRENT JOURNAL OF NEUROLOGY 2022; 21:17-22. [PMID: 38011429 PMCID: PMC9527863 DOI: 10.18502/cjn.v21i1.9356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/21/2021] [Indexed: 11/24/2022]
Abstract
Background: Computed Tomography Perfusion (CTP) maps ischemic core volume (CV) and penumbra following a stroke; however, its accuracy in early symptom onset is not well studied. We compared the accuracy of CTP RAPID estimated CV with diffusion weighted imaging (DWI) infarct volume (IV) in patients following thrombectomy. Methods: Charts of anterior circulation large vessel occlusion post-thrombectomy cases with thrombolysis in cerebral infarction (TICI) 2b/3 reperfusion from 2017 to 2019 were reviewed. CTP time was dichotomized as 0-3 hours and ≥ 3 hours from the last known normal (LKN) cognition. The volumetric difference (VD), defined as DWI IV minus CTP CV, core volume overestimation (CVO), defined as CTP CV minus DWI IV and Alberta stroke programme early CT score (ASPECTS) were calculated. Large CV was defined as ≥ 50 ml CV. Modified Rankin Score (mRS) at 90 days were reviewed. We performed independent sample t-test and Spearman correlation coefficient test. Results: Total cases (n) were 61. In < 3 hours window from LKN (n = 27), the mean VD was 58.3 ± 0.1 ml (P = 0.990) and CVO (n = 11; 40.7%) was 39.6 ± 35.7 ml (P = 0.008). Mean large CV (n = 8) was 78.3 ± 25.4 ml with median ASPECTS of 8 [interquartile range (IQR) = 6.5-9.0] and median mRS at 90 days of 2 (IQR = 0.8-3.3). In ≥ 3 hours window from LKN (n = 34), CVO (n = 5) was uncommon and large CV had median mRS at 90 days of 5 (IQR = 4.0-6.0). Conclusion: CTP more frequently overestimates CV in patients who are < 3 hours from LKN. The treated patients with large CV in < 3 hours and > 3 hours had good and poor functional outcomes, respectively.
Collapse
Affiliation(s)
- Riwaj Bhagat
- Department of Neurology, University of Louisville, Kentucky, USA
| | - Allison Muha
- Department of Neurology, University of Louisville, Kentucky, USA
| | - Kerri Remmel
- Department of Neurology, University of Louisville, Kentucky, USA
| | - Wei Liu
- Department of Neurology, University of Louisville, Kentucky, USA
| |
Collapse
|
21
|
Katyal A, Bhaskar SMM. Value of pre-intervention CT perfusion imaging in acute ischemic stroke prognosis. DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY (ANKARA, TURKEY) 2021; 27:774-785. [PMID: 34792033 DOI: 10.5152/dir.2021.20805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Noninvasive imaging plays an important role in acute stroke towards diagnosis and ongoing management of patients. Systemic thrombolysis and endovascular thrombectomy (EVT) are proven treatments currently used in standards of care in acute stroke settings. The role of computed tomography angiography (CTA) in selecting patients with large vessel occlusion for EVT is well established. However, the value of CT perfusion (CTP) imaging in predicting outcomes after stroke remains ambiguous. This article critically evaluates the value of multimodal CT imaging in early diagnosis and prognosis of acute ischemic stroke with a focus on the role of CTP in delineating tissue characteristics, patient selection, and outcomes after reperfusion therapy. Insights on various technical and clinical considerations relevant to CTP applications in acute ischemic stroke, recommendations for existing workflow, and future areas of research are discussed.
Collapse
Affiliation(s)
- Anubhav Katyal
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, Australia; University of New South Wales (UNSW), South Western Sydney Clinical School, NSW, Australia
| | - Sonu Menachem Maimonides Bhaskar
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, Australia; Department of Neurology - Neurophysiology, Liverpool Hospital - South West Sydney Local Health District (SWSLHD), Sydney, Australia;University of New South Wales (UNSW), South Western Sydney Clinical School, NSW, Australia; Ingham Institute for Applied Medical Research, Stroke - Neurology Research Group, Sydney, Australia; NSW Brain Clot Bank, NSW Health Statewide Biobank and NSW Health Pathology, Sydney, NSW, Australia;Thrombolysis and Endovascular WorkFLOw Network (TEFLON), Sydney, Australia
| |
Collapse
|
22
|
Abdou H, Elansary N, Poliner D, Patel N, Edwards J, Richmond M, Rasmussen T, Ptak T, Scalea TM, Morrison JJ. Development of a computed tomography perfusion protocol to support large animal resuscitation research. J Trauma Acute Care Surg 2021; 91:879-885. [PMID: 33797493 DOI: 10.1097/ta.0000000000003189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Adequate cerebral perfusion is crucial for a positive neurological outcome in trauma; however, it is difficult to characterize in the acute setting with noninvasive methods. Intra-arterial computed tomography perfusion may offer a solution. The aim of this study was to develop an intra-arterial computed tomography perfusion protocol for resuscitation research. METHODS The study examined intra-arterial contrast administration for computed tomography perfusion (CTP) acquisition. It consisted of three phases: intra-arterial contrast dose finding, evaluation of reproducibility, and evaluation during hypotension. Blood pressure and laser Doppler flow data were collected. In phase 1, animals underwent CTPs using several intra-arterial contrast injection protocols. In phase 2, animals underwent two CTPs 7 hours apart using the 2.5 mL/s for 3-second protocol. In phase 3, animals underwent CTPs at several pressures following a computer-controlled bleed including euvolemia and at systolic pressures of 60, 40, and 20 mm Hg. Phase 1 CTPs were evaluated for contrast-to-noise ratio. In phase 2, CTPs were compared within each animal and with laser Doppler flow using linear regression. Phase 3 CTPs were graphed against systolic pressure and fitted with a nonlinear fit. RESULTS The protocol using 2.5mL/s for 3 seconds was optimal, demonstrating a contrast-to-noise ratio of 40.1 and a superior arterial input function curve compared with the 1 mL/s bolus. Cerebral blood flow demonstrated high concordance between baseline and end of study CTPs (R2 = 0.82, p < 0.001). Cerebral blood flow also compared moderately well against laser Doppler flow during 8 (R2 = 0.53, p = 0.03); however, laser Doppler flow did not perform well during hypovolemia, and the favorable concordance was not maintained (R2 = 0.45, p = 0.06). Cerebral blood flow was graphed against systolic blood pressure and fitted with a nonlinear fit (R2 = 0.95, p = 0.003). CONCLUSION Computed tomography perfusion using intra-arterial contrast injection may offer a novel alternative to traditional CTP protocols that could prove a useful additional tool in the setting of resuscitation research.
Collapse
Affiliation(s)
- Hossam Abdou
- From the R Adams Cowley Shock Trauma Center (H.A., N.E., D.P., N.P., J.E., M.R., T.P., T.M.S., J.J.M.), University of Maryland Medical System, Baltimore; and Uniformed Services University of the Health Sciences (T.R.), Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nicolas-Jilwan M, Wintermark M. Automated Brain Perfusion Imaging in Acute Ischemic Stroke: Interpretation Pearls and Pitfalls. Stroke 2021; 52:3728-3738. [PMID: 34565174 DOI: 10.1161/strokeaha.121.035049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent advancements in computed tomography technology, including improved brain coverage and automated processing of the perfusion data, have reinforced the use of perfusion computed tomography imaging in the routine evaluation of patients with acute ischemic stroke. The DAWN (Diffusion Weighted Imaging or Computerized Tomography Perfusion Assessment With Clinical Mismatch in the Triage of Wake Up and Late Presenting Strokes Undergoing Neurointervention) and DEFUSE 3 (Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke 3) trials have established the benefit of endovascular thrombectomy in patients with acute ischemic stroke with anterior circulation large vessel occlusion up to 24 hours of last seen normal, using perfusion imaging-based patient selection. The compelling data has prompted stroke centers to increasingly introduce automated perfusion computed tomography imaging in the routine evaluation of patients with acute ischemic stroke. We present a comprehensive overview of the acquisition and interpretation of automated perfusion imaging in patients with acute ischemic stroke with a special emphasis on the interpretation pearls, pitfalls, and stroke mimicking conditions.
Collapse
Affiliation(s)
- Manal Nicolas-Jilwan
- Division of Neuroradiology, Department of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia (M.N.-J.)
| | - Max Wintermark
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford Healthcare, CA (M.W.)
| |
Collapse
|
24
|
McDonough R, Ospel J, Goyal M. State of the Art Stroke Imaging: A Current Perspective. Can Assoc Radiol J 2021; 73:371-383. [PMID: 34569306 DOI: 10.1177/08465371211028823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acute stroke is a widespread, debilitating disease. Fortunately, it also has one of the most effective therapeutic options available in medicine, endovascular treatment. Imaging plays a major role in the diagnosis of stroke and aids in appropriate therapy selection. Given the rapid accumulation of evidence for patient subgroups and concurrent broadening of therapeutic options and indications, it is important to recognize the benefits of certain imaging technologies for specific situations. An effective imaging protocol should: 1) be fast, 2) easily implementable, 3) produce reliable results, 4) have few contraindications, and 5) be safe, all with the goal of providing the patient the best chance of achieving a favorable outcome. In the following, we provide a review of the currently available imaging technologies, their advantages and disadvantages, as well as an overview of the future of stroke imaging. Finally, we offer a perspective.
Collapse
Affiliation(s)
- Rosalie McDonough
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Diagnostic Imaging, Foothills Medical Center, University of Calgary, Calgary, Alberta, Canada
| | - Johanna Ospel
- Division of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mayank Goyal
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Clinical Neurosciences, Foothills Medical Center, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
PET Detection of Cerebral Necrosis Using an Infarct-Avid Agent 2-Deoxy-2-[ 18F]Fluoro-D-Glucaric Acid (FGA) in a Mouse Model of the Brain Stroke. Mol Imaging Biol 2021; 22:1353-1361. [PMID: 32557188 DOI: 10.1007/s11307-020-01513-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Ischemic stroke is a leading cause of disability worldwide. The volume of necrotic core in affected tissue plays a major role in selecting stroke patients for thrombolytic therapy or endovascular thrombectomy. In this study, we investigated a recently reported positron emission tomography (PET) agent 2-deoxy-2-[18F]fluoro-D-glucaric acid (FGA) to determine necrotic core in a model of transient middle cerebral artery occlusion (t-MCAO) in mice. PROCEDURES The radiopharmaceutical, FGA, was synthesized by controlled, rapid, and quantitative oxidation of clinical doses of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) in a one-step reaction using a premade kit. Brain stroke was induced in the left cerebral hemisphere of CD-1 mice by occluding the middle cerebral artery for 1 h, and then allowing reperfusion by removing the occlusion. One day post-ictus, perfusion single-photon emission tomography (SPECT) was performed with 99mTc-lableled hexamethylpropyleneamine oxime (HMPAO), followed by PET acquisition with FGA. Plasma and brain tissue homogenates were assayed for markers of inflammation and neurotrophins. RESULTS The kit-based synthesis was able to convert up to 2.2 GBq of FDG into FGA within 5 min. PET images showed 375 % more accumulation of FGA in the ipsilateral hemisphere than in the contralateral hemisphere. SPECT images showed that the ipsilateral HMPAO accumulation was reduced to 55 % of normal levels; there was a significant negative correlation between the ipsilateral accumulation of FGA and HMAPO (p < 0.05). FGA accumulation in stroke also correlated with IL-6 levels in the ipsilateral hemisphere. There was no change in IL-6 or TNFα in the plasma of stroke mice. CONCLUSIONS Accumulation of FGA correlated well with the perfusion defect and inflammatory injury. As a PET agent, FGA has potential to image infarcted core in the brain stroke injury with high sensitivity, resolution, and specificity.
Collapse
|
26
|
Automated Processing of Head CT Perfusion Imaging for Ischemic Stroke Triage: A Practical Guide to Quality Assurance and Interpretation. AJR Am J Roentgenol 2021; 217:1401-1416. [PMID: 34259036 DOI: 10.2214/ajr.21.26139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent successful trials of thrombectomy launched a shift to imaging-based patient selection for stroke intervention. Many centers have adopted CT perfusion imaging (CTP) as a routine part of stroke workflow, and the demand for emergent CTP interpretation is growing. Fully automated CTP postprocessing software that rapidly generates standardized color-coded CTP summary maps with minimal user input and with easy accessibility of the software output is increasingly being adopted. Such automated postprocessing greatly streamlines clinical workflow and CTP interpretation for radiologists and other frontline physicians. However, the straightforward interface overshadows the computational complexity of the underlying postprocessing workflow, which, if not carefully examined, predisposes the interpreting physician to diagnostic errors. Using case examples, this article aims to familiarize the general radiologist with interpreting automated CTP software data output in the context of contemporary stroke management, providing a discussion of CTP acquisition and postprocessing, a stepwise guide for CTP quality assurance and troubleshooting, and a framework for avoiding clinically significant CTP interpretative pitfalls in commonly encountered clinical scenarios. Interpreting radiologists should apply the outlined approach for quality assurance and develop a comprehensive search pattern for the identified pitfalls, to ensure accurate CTP interpretation and optimize patient selection for reperfusion.
Collapse
|
27
|
Junejo HUR, Yusuf S, Zeb R, Zeb U, Zeb AA, Ali A. Predictive Value of CT Brain Perfusion Studies in Acute Ischemic Infarct Taking MRI Stroke Protocol As Gold Standard. Cureus 2021; 13:e16501. [PMID: 34430116 PMCID: PMC8375019 DOI: 10.7759/cureus.16501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 11/11/2022] Open
Abstract
Background Acute ischemic stroke is the leading cause of serious chronic disability worldwide. Imaging plays a key role in early diagnosis and intervention, thus reducing mortality and morbidity related to ischemic stroke. Computed tomography (CT) perfusion study is a valuable imaging tool for the assessment of acute infarction. The objective of this study was to determine the predictive value of CT perfusion in diagnosing acute ischemic infarction taking Magnetic Resonance Imaging (MRI) stroke protocol (including Diffusion Weighted Imaging (DWI)) as a gold standard. Methods The cross-sectional validation study was conducted at a teaching hospital in Islamabad from June 2019 to December 2019. The study comprised a total of 125 patients of either gender with suspected acute ischemic stroke. The patients were scanned for CT perfusion and MRI stroke protocol on the same day. Scans were reported separately for the detection of acute ischemic infarction by the same consultant radiologist. The predictive value of CT perfusion was calculated accordingly. Results Of the 125 patients, 58% were male and 42% were female. The age of selected patients ranged between 38 to 70 years with a mean age of 56.12 ± 9.69 years. Acute ischemic infarction was detected in 86 (69%) patients by CT perfusion study and in 120 (96%) patients by MRI stroke protocol. The positive predicted value of CT perfusion for the detection of acute infarction was calculated as 98.83 and the negative predicted value was 10.25. Conclusion CT perfusion study provides adequate sensitivity and specificity with good predictive value in the detection of acute ischemic infarct in stroke patients. This widely available and time-effective modality aids in the triage of patients for immediate endovascular intervention leading to maximal neurological benefit and improving outcomes.
Collapse
Affiliation(s)
| | - Shazia Yusuf
- Diagnostic Radiology, Capital Hospital, Islamabad, PAK
| | - Romasa Zeb
- House Officer Medicine, Capital Hospital, Islamabad, PAK
| | - Uswa Zeb
- Medicine, Capital Hospital, Islamabad, PAK
| | - Ahmed A Zeb
- Medicine, Army Medical College, Rawalpindi, PAK
| | - Aamena Ali
- Diagnostic Radiology, Capital Hospital, Islamabad, PAK
| |
Collapse
|
28
|
Li S, Zeng D, Bian Z, Li D, Zhu M, Huang J, Ma J. Learning non-local perfusion textures for high-quality computed tomography perfusion imaging. Phys Med Biol 2021; 66. [PMID: 33910178 DOI: 10.1088/1361-6560/abfc90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/28/2021] [Indexed: 11/11/2022]
Abstract
Background. Computed tomography perfusion (CTP) imaging plays a critical role in the acute stroke syndrome assessment due to its widespread availability, speed of image acquisition, and relatively low cost. However, due to its repeated scanning protocol, CTP imaging involves a substantial radiation dose, which might increase potential cancer risks.Methods. In this work, we present a novel deep learning model called non-local perfusion texture learning network (NPTN) for high-quality CTP imaging at low-dose cases. Specifically, considering abundant similarities in the CTP images, i.e. latent self-similarities within the non-local region in the CTP images, we firstly search the most similar pixels from the adjacent frames within a fixed search window to obtain the non-local similarities and to construct non-local textures vector. Then, both the low-dose frame and these non-local textures from adjacent frames are fed into a convolution neural network to predict high-quality CTP images, which can help better characterize the structure details and contrast variants in the targeted CTP image rather than simply utilizing the targeted frame itself. The residual learning strategy and batch normalization are utilized to boost the performance of the convolution neural network. In the experiment, the CTP images of 31 patients with suspected stroke disease are collected to demonstrate the performance of the presented NPTN method.Results. The results show the presented NPTN method obtains superior performance compared with the competing methods. From numerical value, at all dose levels, the presented NPTN method has achieved around 3.0 dB improvement of average PSNR, an increase of around 1.4% of average SSIM, and a decrease of around 4.8% of average RMSE in the low-dose CTP reconstruction task, and also has achieved an increase of around 3.4% of average SSIM and a decrease of around 61.1% of average RMSE in the cerebral blood flow (CBF) estimation task.Conclusions. The presented NPTN method can obtain high-quality CTP images and estimate high-accuracy CBF map by characterizing more structure details and contrast variants in the CTP image and outperform the competing methods at low-dose cases.
Collapse
Affiliation(s)
- Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Dong Zeng
- College of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Danyang Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Manman Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jing Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.,Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048, People's Republic of China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, People's Republic of China
| |
Collapse
|
29
|
Hoonhorst MHJ, Nijland RHM, Emmelot CH, Kollen BJ, Kwakkel G. TMS-Induced Central Motor Conduction Time at the Non-Infarcted Hemisphere Is Associated with Spontaneous Motor Recovery of the Paretic Upper Limb after Severe Stroke. Brain Sci 2021; 11:brainsci11050648. [PMID: 34063558 PMCID: PMC8157217 DOI: 10.3390/brainsci11050648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Stroke affects the neuronal networks of the non-infarcted hemisphere. The central motor conduction time (CMCT) induced by transcranial magnetic stimulation (TMS) could be used to determine the conduction time of the corticospinal tract of the non-infarcted hemisphere after a stroke. Objectives: Our primary aim was to demonstrate the existence of prolonged CMCT in the non-infarcted hemisphere, measured within the first 48 h when compared to normative data, and secondly, if the severity of motor impairment of the affected upper limb was significantly associated with prolonged CMCTs in the non-infarcted hemisphere when measured within the first 2 weeks post stroke. Methods: CMCT in the non-infarcted hemisphere was measured in 50 patients within 48 h and at 11 days after a first-ever ischemic stroke. Patients lacking significant spontaneous motor recovery, so-called non-recoverers, were defined as those who started below 18 points on the FM-UE and showed less than 6 points (10%) improvement within 6 months. Results: CMCT in the non-infarcted hemisphere was prolonged in 30/50 (60%) patients within 48 h and still in 24/49 (49%) patients at 11 days. Sustained prolonged CMCT in the non-infarcted hemisphere was significantly more frequent in non-recoverers following FM-UE. Conclusions: The current study suggests that CMCT in the non-infarcted hemisphere is significantly prolonged in 60% of severely affected, ischemic stroke patients when measured within the first 48 h post stroke. The likelihood of CMCT is significantly higher in non-recoverers when compared to those that show spontaneous motor recovery early post stroke.
Collapse
Affiliation(s)
| | - Rinske H. M. Nijland
- Amsterdam Rehabilitation Research Center|Reade, 1054 HW Amsterdam, The Netherlands;
| | - Cornelis H. Emmelot
- Department of Rehabilitation Medicine, Isala, 8025 AB Zwolle, The Netherlands;
| | - Boudewijn J. Kollen
- Department of General Practice and Elderly Care Medicine, University of Groningen, University Medical Center Groningen, 9712 CP Groningen, The Netherlands;
| | - Gert Kwakkel
- Amsterdam Rehabilitation Research Center|Reade, 1054 HW Amsterdam, The Netherlands;
- Amsterdam University Medical Center, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
- Amsterdam Neurosciences, Amsterdam University Medical Centre, 1081 HV Amsterdam, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University of Chicago, Evanston, IL 60208, USA
- Correspondence: ; Tel.: +31-204-441-940
| |
Collapse
|
30
|
Chen L, Zhao N, Xu S. Research progress of imaging technologies for ischemic cerebrovascular diseases. J Int Med Res 2021; 49:300060520972601. [PMID: 33730890 PMCID: PMC7983435 DOI: 10.1177/0300060520972601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cerebrovascular diseases mainly affect the blood supply of the brain, which has a high demand for oxygen and glucose for the nerve tissues to perform its nerve functions. Ischemic cerebrovascular disease can not only cause stroke, but is also associated with a high incidence of asymptomatic infarction and minimal bleeding that can lead to cognitive and behavioral changes. These changes ultimately manifest as vascular dementia or cognitive impairment. In clinical settings, ischemic cerebrovascular disease can be classified as a transient ischemic attack, reversible ischemic neurological deficit, progressive stroke, complete stroke, marginal infarction, or lacunar infarction. In this review, the research progress of imaging technologies for ischemic cerebrovascular diseases was reviewed, with an aim to provide evidence for clinical practitioners.
Collapse
Affiliation(s)
- Li Chen
- Department of Nuclear Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ningning Zhao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shan Xu
- Department of Neurology, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Shan Xu, Department of Neurology, the First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Rd, Jinan 250014, China.
| |
Collapse
|
31
|
Recanalization Therapy for Acute Ischemic Stroke with Large Vessel Occlusion: Where We Are and What Comes Next? Transl Stroke Res 2021; 12:369-381. [PMID: 33409732 PMCID: PMC8055567 DOI: 10.1007/s12975-020-00879-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
Abstract
In the past 5 years, the success of multiple randomized controlled trials of recanalization therapy with endovascular thrombectomy has transformed the treatment of acute ischemic stroke with large vessel occlusion. The evidence from these trials has now established endovascular thrombectomy as standard of care. This review will discuss the chronological evolution of large vessel occlusion treatment from early medical therapy with tissue plasminogen activator to the latest mechanical thrombectomy. Additionally, it will highlight the potential areas in endovascular thrombectomy for acute ischemic stroke open to exploration and further progress in the next decade.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This article reviews the actual indications for mechanical thrombectomy in patients with acute ischemic stroke and how the opportunities for endovascular therapy can be expanded by using the concept of clinical-imaging or perfusion-imaging mismatch (as a surrogate for salvageable tissue) rather than time of ischemia. RECENT FINDINGS Six randomized controlled trials undoubtedly confirmed the benefits of using endovascular thrombectomy on the clinical outcome of patients with stroke with large vessel occlusion within 6 hours from symptom onset compared with those receiving only standard medical care. In a meta-analysis of individual patient data, the number needed to treat with endovascular thrombectomy to reduce disability by at least one level on the modified Rankin Scale for one patient was 2.6. Recently, the concept of "tissue window" versus time window has proved useful for selecting patients for mechanical thrombectomy up to 24 hours from symptom onset. The DAWN (DWI or CTP Assessment With Clinical Mismatch in the Triage of Wake-Up and Late Presenting Strokes Undergoing Neurointervention) trial included patients at a median of 12.5 hours from onset and showed the largest effect in functional outcome ever described in any acute stroke treatment trial (35.5% increase in functional independence). In DEFUSE 3 (Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution 3), patients treated with mechanical thrombectomy at a median of 11 hours after onset had a 28% increase in functional independence and an additional 20% absolute reduction in death or severe disability. SUMMARY For patients with acute ischemic stroke and a large vessel occlusion in the proximal anterior circulation who can be treated within 6 hours of stroke symptom onset, mechanical thrombectomy with a second-generation stent retriever or a catheter aspiration device should be indicated regardless of whether the patient received treatment with intravenous (IV) recombinant tissue plasminogen activator (rtPA) in patients with limited signs of early ischemic changes on neuroimaging. Two clinical trials completely disrupted the time window concept in acute ischemic stroke, showing excellent clinical outcomes in patients treated up to 24 hours from symptom onset. Time of ischemia is, on average, a good biomarker for tissue viability; however, the window of opportunity for treatment varies across different individuals because of a range of compensatory mechanisms. Adjusting time to the adequacy of collateral flow leads to the concept of tissue window, a paradigm shift in stroke reperfusion therapy.
Collapse
|
33
|
Automated CT Perfusion Imaging to Aid in the Selection of Patients With Acute Ischemic Stroke for Mechanical Thrombectomy: A Health Technology Assessment. ONTARIO HEALTH TECHNOLOGY ASSESSMENT SERIES 2020; 20:1-87. [PMID: 33240454 PMCID: PMC7668535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Stroke is a sudden interruption in the blood supply to a part of the brain, causing loss of neurological function. It is the third leading cause of death in Canada and affects mainly older people. In the acute setting, neuroimaging is integral to stroke evaluation and decision-making. The neuroimaging results guide patient selection for mechanical thrombectomy. Using automated image processing techniques facilitates efficient review of this information and communication between centres. We conducted a health technology assessment of automated CT perfusion imaging as a tool for selecting stroke patients with anterior circulation occlusion for mechanical thrombectomy. This assessment included an evaluation of clinical effectiveness, cost-effectiveness, and the budget impact of publicly funding automated CT perfusion imaging. METHODS We performed a systematic literature search of the clinical evidence. We assessed the risk of bias of each study using QUADAS-2 or the Cochrane risk-of-bias tool, and the quality of the body of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. We performed a systematic economic literature search and approximated cost-effectiveness based on previous analyses. We also analyzed the budget impact of publicly funding automated CT perfusion imaging to evaluate people with acute ischemic stroke in Ontario. RESULTS Automated CT perfusion imaging had a sensitivity of 84% for identifying the infarct core (dead tissue that does not recover despite restoring blood flow with mechanical thrombectomy), compared with diffusion-weighted MRI imaging at 24 hours. One study reported that 7% of patients were misclassified with respect to eligibility for mechanical thrombectomy (either erroneously classified as eligible or erroneously classified non-eligible). Two randomized controlled trials (DEFUSE 3 and DAWN) demonstrated the efficacy of mechanical thrombectomy up to 24 hours after stroke onset, with patient selection guided by automated CT perfusion imaging. These data showed that a significantly higher proportion of patients in the mechanical thrombectomy group achieved functional independence compared with the standard care group (DEFUSE 3: risk ratio: 2.67 [95% confidence interval 1.60-4.48]; DAWN: adjusted rate difference: 33% [95% credible interval 21%-44%]; GRADE: Moderate).A previous health technology assessment in stroke patients presenting at 0 to 6 hours after stroke symptom onset and the results from recent randomized controlled trials for patients presenting at 6 to 24 hours informed the evaluation of cost-effectiveness. Mechanical thrombectomy informed by automated CT perfusion imaging to assess eligibility is likely to be cost-effective for patients presenting at 6 to 24 hours after stroke symptom onset. The annual budget impact of publicly funding automated CT perfusion imaging in Ontario over the next 5 years would be $1.3 million in year 1 and $0.9 million each year thereafter. Some of the costs of automated CT perfusion imaging could be offset by avoiding unnecessary patient transfers between hospitals. CONCLUSIONS Automated CT perfusion imaging has an acceptable sensitivity and specificity for detecting brain areas that have been affected by stroke. In patients selected for mechanical thrombectomy using automated CT perfusion imaging, there was significant improvement in functional independence. Mechanical thrombectomy informed by automated CT perfusion imaging is likely to be cost-effective. We estimate that publicly funding automated CT perfusion imaging in Ontario would result in additional costs of $1.3 million in year 1 and $0.9 million per year thereafter.
Collapse
|
34
|
Goyal M, Ospel JM, Menon B, Almekhlafi M, Jayaraman M, Fiehler J, Psychogios M, Chapot R, van der Lugt A, Liu J, Yang P, Agid R, Hacke W, Walker M, Fischer U, Asdaghi N, McTaggart R, Srivastava P, Nogueira RG, Moret J, Saver JL, Hill MD, Dippel D, Fisher M. Challenging the Ischemic Core Concept in Acute Ischemic Stroke Imaging. Stroke 2020; 51:3147-3155. [DOI: 10.1161/strokeaha.120.030620] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endovascular treatment is a highly effective therapy for acute ischemic stroke due to large vessel occlusion and has recently revolutionized stroke care. Oftentimes, ischemic core extent on baseline imaging is used to determine endovascular treatment-eligibility. There are, however, 3 fundamental issues with the core concept: First, computed tomography and magnetic resonance imaging, which are mostly used in the acute stroke setting, are not able to precisely determine whether and to what extent brain tissue is infarcted (core) or still viable, due to variability in tissue vulnerability, the phenomenon of selective neuronal loss and lack of a reliable gold standard. Second, treatment decision-making in acute stroke is multifactorial, and as such, the relative importance of single variables, including imaging factors, is reduced. Third, there are often discrepancies between core volume and clinical outcome. This review will address the uncertainty in terminology and proposes a direction towards more clarity. This theoretical exercise needs empirical data that clarify the definitions further and prove its value.
Collapse
Affiliation(s)
- Mayank Goyal
- Department of Clinical Neurosciences, University of Calgary, Canada. (M.G., J.M.O., B.M., M.A., M.D.H.)
- Department of Radiology, University of Calgary, Canada. (M.G., B.M., M.A., M.D.H.)
| | - Johanna M. Ospel
- Department of Clinical Neurosciences, University of Calgary, Canada. (M.G., J.M.O., B.M., M.A., M.D.H.)
- Division of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Switzerland (J.M.O., M.P.)
| | - Bijoy Menon
- Department of Clinical Neurosciences, University of Calgary, Canada. (M.G., J.M.O., B.M., M.A., M.D.H.)
- Department of Radiology, University of Calgary, Canada. (M.G., B.M., M.A., M.D.H.)
| | - Mohammed Almekhlafi
- Department of Clinical Neurosciences, University of Calgary, Canada. (M.G., J.M.O., B.M., M.A., M.D.H.)
- Department of Radiology, University of Calgary, Canada. (M.G., B.M., M.A., M.D.H.)
| | - Mahesh Jayaraman
- Department of Interventional Radiology, Warren Alpert Medical School of Brown University, Providence, RI (M.J., R.M.)
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Germany (J.F.)
| | - Marios Psychogios
- Division of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Switzerland (J.M.O., M.P.)
| | - Rene Chapot
- Department of Neuroradiology, Alfred Krupp Krankenhaus, Essen, Germany (R.C.)
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.v.d.L.)
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China (J.L.)
| | - Pengfei Yang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China (P.Y.)
| | - Ronit Agid
- Department of Medical Imaging, University of Toronto, Canada (R.A.)
| | - Werner Hacke
- Department of Neurology, University Hospital Heidelberg, Germany (W.H.)
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle (M.W.)
| | - Urs Fischer
- Department of Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Switzerland (U.F.)
| | - Negar Asdaghi
- Department of Neurology, University of Miami Miller School of Medicine (N.A.)
| | - Ryan McTaggart
- Department of Interventional Radiology, Warren Alpert Medical School of Brown University, Providence, RI (M.J., R.M.)
| | - Padma Srivastava
- Department of Neurology, All India Institute of Medicine, New Delhi, India (P.S.)
| | - Raul G. Nogueira
- Department of Neurology, Emory University School of Medicine, Atlanta (R.G.N.)
| | - Jacques Moret
- The Brain Vascular Center, Baujon University Hospital, Paris, France (J.M.)
| | - Jeffrey L. Saver
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine, University of California, Los Angeles (J.L.S.)
| | - Michael D. Hill
- Department of Clinical Neurosciences, University of Calgary, Canada. (M.G., J.M.O., B.M., M.A., M.D.H.)
- Department of Radiology, University of Calgary, Canada. (M.G., B.M., M.A., M.D.H.)
| | - Diederik Dippel
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands (D.D.)
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA (M.F.)
| |
Collapse
|
35
|
Lehman VT, Cogswell PM, Rinaldo L, Brinjikji W, Huston J, Klaas JP, Lanzino G. Contemporary and emerging magnetic resonance imaging methods for evaluation of moyamoya disease. Neurosurg Focus 2020; 47:E6. [PMID: 31786551 DOI: 10.3171/2019.9.focus19616] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
Numerous recent technological advances offer the potential to substantially enhance the MRI evaluation of moyamoya disease (MMD). These include high-resolution volumetric imaging, high-resolution vessel wall characterization, improved cerebral angiographic and perfusion techniques, high-field imaging, fast scanning methods, and artificial intelligence. This review discusses the current state-of-the-art MRI applications in these realms, emphasizing key imaging findings, clinical utility, and areas that will benefit from further investigation. Although these techniques may apply to imaging of a wide array of neurovascular or other neurological conditions, consideration of their application to MMD is useful given the comprehensive multidimensional MRI assessment used to evaluate MMD. These MRI techniques span from basic cross-sectional to advanced functional sequences, both qualitative and quantitative.The aim of this review was to provide a comprehensive summary and analysis of current key relevant literature of advanced MRI techniques for the evaluation of MMD with image-rich case examples. These imaging methods can aid clinical characterization, help direct treatment, assist in the evaluation of treatment response, and potentially improve the understanding of the pathophysiology of MMD.
Collapse
Affiliation(s)
| | | | | | | | | | - James P Klaas
- 3Neurology, Mayo Clinic College of Graduate Medical Education, Rochester, Minnesota
| | | |
Collapse
|
36
|
Liu J, Zhu J, Zhu L, Yang Q, Fan F, Zhang F. Quantitative assessment of optical coherence tomography angiography algorithms for neuroimaging. JOURNAL OF BIOPHOTONICS 2020; 13:e202000181. [PMID: 32542943 DOI: 10.1002/jbio.202000181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Optical coherence tomography (OCT) angiography can noninvasively map microvascular networks and quantify blood flow in a cerebral cortex with a resolution of 1 to 10 μm and a penetration depth of 2 to 3 mm incorporating OCT signals and angiography algorithms. Different angiography algorithms have been developed in recent years; however, the performance of the algorithms has not been assessed quantitatively for neuroimaging applications. In this paper, we developed four metrics including vascular connectivity, contrast-to-noise ratio, signal-to-noise ratio and processing time to quantitatively assess the performance of OCT angiography algorithms in image quality and computation speed. After the imaging of a rat cortex using an OCT system, the cerebral microvascular networks were visualized by seven algorithms, and the performance of the algorithms was quantified and compared. Quantitative performance assessment of the algorithms can provide suggestions for the selection of appropriate OCT angiography algorithms in neuroimaging.
Collapse
Affiliation(s)
- Jianting Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Jiang Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Lianqing Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing, China
| | - Qiang Yang
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Fan Fan
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Fan Zhang
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
37
|
Capasso R, Vallone S, Serra N, Zelent G, Verganti L, Sacchetti F, Bigliardi G, Picchetto L, Caranci F, Zini A. Qualitative versus automatic evaluation of CT perfusion parameters in acute posterior circulation ischaemic stroke. Neuroradiology 2020; 63:317-330. [PMID: 32813027 PMCID: PMC7880970 DOI: 10.1007/s00234-020-02517-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022]
Abstract
Purpose To compare the diagnostic accuracy (ACC) in the detection of acute posterior circulation strokes between qualitative evaluation of software-generated colour maps and automatic assessment of CT perfusion (CTP) parameters. Methods Were retrospectively collected 50 patients suspected of acute posterior circulation stroke who underwent to CTP (GE “Lightspeed”, 64 slices) within 24 h after symptom onset between January 2016 and December 2018. The Posterior circulation-Acute Stroke Prognosis Early CT Score (pc-ASPECTS) was used for quantifying the extent of ischaemic areas on non-contrast (NC)CT and colour-coded maps generated by CTP4 (GE) and RAPID (iSchemia View) software. Final pc-ASPECTS was calculated on follow-up NCCT and/or MRI (Philips Intera 3.0 T or Philips Achieva Ingenia 1.5 T). RAPID software also elaborated automatic quantitative mismatch maps. Results By qualitative evaluation of colour-coded maps, MTT-CTP4D and Tmax-RAPID showed the highest sensitivity (SE) (88.6% and 90.9%, respectively) and ACC (84% and 88%, respectively) compared with the other perfusion parameters (CBV, CBF). Baseline NCCT and CBF provided by RAPID quantitative perfusion mismatch maps had the lowest SE (29.6% and 6.8%, respectively) and ACC (38% and 18%, respectively). CBF and Tmax assessment provided by quantitative RAPID perfusion mismatch maps showed significant lower SE and ACC than qualitative evaluation. No significant differences were found between the pc-ASPECTSs assessed on colour-coded MTT and Tmax maps neither between the scores assessed on colour-coded CBV-CTP4D and CBF-RAPID maps. Conclusion Qualitative analysis of colour-coded maps resulted more sensitive and accurate in the detection of ischaemic changes than automatic quantitative analysis.
Collapse
Affiliation(s)
- Raffaella Capasso
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Via Francesco De Sanctis, 1, 86100, Campobasso, Italy. .,Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy.
| | - Stefano Vallone
- Neuroradiology Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Serra
- Statistic Unit, Department of Public Health, University of Federico II, Naples, Italy
| | - Gabriele Zelent
- Neuroradiology Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Verganti
- Neuroradiology Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Sacchetti
- Neuroradiology Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Guido Bigliardi
- Stroke Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Livio Picchetto
- Stroke Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Ferdinando Caranci
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Via Francesco De Sanctis, 1, 86100, Campobasso, Italy.,Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Andrea Zini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Neurology and Stroke Center, Maggiore Hospital, Bologna, Italy
| |
Collapse
|
38
|
Abstract
Although acute ischemic stroke remains one of the most common causes of death and disability worldwide, it is a potentially treatable condition if appropriately managed in a timely manner. The goals of acute stroke imaging include establishing a diagnosis as fast as possible with (1) accurate infarct quantification, (2) intracranial and cervical vasculature assessment, and (3) brain perfusion analysis for detection of infarct core and potentially salvageable penumbra allowing optimal patient selection for appropriate therapy. Given the extensive number of images generated from acute stroke imaging studies and as "time is brain," this article aims to highlight a logical approach for the radiologist in acute stroke computed tomography imaging in order to accurately interpret and communicate results in a timely manner.
Collapse
Affiliation(s)
- D Byrne
- Division of Neuroradiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - J P Walsh
- University of British Columbia, Vancouver, British Columbia, Canada
- Division of Emergency Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - G Sugrue
- University of British Columbia, Vancouver, British Columbia, Canada
- Division of Emergency Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - S Nicolaou
- University of British Columbia, Vancouver, British Columbia, Canada
- Division of Emergency Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - A Rohr
- Division of Neuroradiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Potter CA, Vagal AS, Goyal M, Nunez DB, Leslie-Mazwi TM, Lev MH. CT for Treatment Selection in Acute Ischemic Stroke: A Code Stroke Primer. Radiographics 2020; 39:1717-1738. [PMID: 31589578 DOI: 10.1148/rg.2019190142] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CT is the primary imaging modality used for selecting appropriate treatment in patients with acute stroke. Awareness of the typical findings, pearls, and pitfalls of CT image interpretation is therefore critical for radiologists, stroke neurologists, and emergency department providers to make accurate and timely decisions regarding both (a) immediate treatment with intravenous tissue plasminogen activator up to 4.5 hours after a stroke at primary stroke centers and (b) transfer of patients with large-vessel occlusion (LVO) at CT angiography to comprehensive stroke centers for endovascular thrombectomy (EVT) up to 24 hours after a stroke. Since the DAWN and DEFUSE 3 trials demonstrated the efficacy of EVT up to 24 hours after last seen well, CT angiography has become the operational standard for rapid accurate identification of intracranial LVO. A systematic approach to CT angiographic image interpretation is necessary and useful for rapid triage, and understanding common stroke syndromes can help speed vessel evaluation. Moreover, when diffusion-weighted MRI is unavailable, multiphase CT angiography of collateral vessels and source-image assessment or perfusion CT can be used to help estimate core infarct volume. Both have the potential to allow distinction of patients likely to benefit from EVT from those unlikely to benefit. This article reviews CT-based workup of ischemic stroke for making tPA and EVT treatment decisions and focuses on practical skills, interpretation challenges, mimics, and pitfalls.©RSNA, 2019.
Collapse
Affiliation(s)
- Christopher A Potter
- From the Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115 (C.A.P., D.B.N.); Department of Radiology, University of Cincinnati, Cincinnati, Ohio (A.S.V.); Department of Diagnostic Imaging, University of Calgary, Calgary, AB, Canada (M.G.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (T.M.L.M., M.H.L.)
| | - Achala S Vagal
- From the Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115 (C.A.P., D.B.N.); Department of Radiology, University of Cincinnati, Cincinnati, Ohio (A.S.V.); Department of Diagnostic Imaging, University of Calgary, Calgary, AB, Canada (M.G.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (T.M.L.M., M.H.L.)
| | - Mayank Goyal
- From the Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115 (C.A.P., D.B.N.); Department of Radiology, University of Cincinnati, Cincinnati, Ohio (A.S.V.); Department of Diagnostic Imaging, University of Calgary, Calgary, AB, Canada (M.G.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (T.M.L.M., M.H.L.)
| | - Diego B Nunez
- From the Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115 (C.A.P., D.B.N.); Department of Radiology, University of Cincinnati, Cincinnati, Ohio (A.S.V.); Department of Diagnostic Imaging, University of Calgary, Calgary, AB, Canada (M.G.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (T.M.L.M., M.H.L.)
| | - Thabele M Leslie-Mazwi
- From the Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115 (C.A.P., D.B.N.); Department of Radiology, University of Cincinnati, Cincinnati, Ohio (A.S.V.); Department of Diagnostic Imaging, University of Calgary, Calgary, AB, Canada (M.G.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (T.M.L.M., M.H.L.)
| | - Michael H Lev
- From the Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115 (C.A.P., D.B.N.); Department of Radiology, University of Cincinnati, Cincinnati, Ohio (A.S.V.); Department of Diagnostic Imaging, University of Calgary, Calgary, AB, Canada (M.G.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (T.M.L.M., M.H.L.)
| |
Collapse
|
40
|
A novel computed tomography perfusion-based quantitative tool for evaluation of perfusional abnormalities in migrainous aura stroke mimic. Neurol Sci 2020; 41:3321-3328. [PMID: 32458253 DOI: 10.1007/s10072-020-04476-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Migrainous aura (MA) represents the third most common stroke mimic (SM). Advanced neuroimaging is pivotal in the assessment of patients with focal neurological acute symptoms. We investigated brain perfusion alterations in MA-SM patients using a novel CT perfusion (CTP)-based quantitative approach in order to improve differential diagnosis between MA and acute stroke. METHODS We processed and analysed the clinical and neuroimaging CTP data, acquired within 4.5 h from symptom onset, of patients with acute focal neurological symptoms receiving a final diagnosis of MA. The differences between ROI, compatible with MA symptoms, and contralateral side were automatically estimated in terms of asymmetry index (AI%) by the newly developed tool for mean transit time (MTT), CBF, and cerebral blood volume (CBV) CTP parameters. The AI% ≥ 10% was considered significant. RESULTS Out of 923 admitted patients, 14 patients with MA were included. In 13 out of 14 cases, a significant pattern of hypoperfusion was observed by quantitative analysis in at least one of the CTP maps. In 7 patients, all three CTP maps were significantly altered. In particular, MTT-AI% increased in 11 (79%) cases, while CBF-AI% and CBV-AI% decreased in 12 (86%) and in 9 (64%) patients, respectively. All CBV values were above ischemic stroke core threshold and all MTT-AI were below ischemic penumbra threshold. CONCLUSIONS Our data suggest that a novel CTP-quantitative approach may detect during MA a moderate hypoperfusion pattern in the cerebral regions compatible with aura symptoms. The use of this novel tool could support differential diagnosis between MA and acute stroke.
Collapse
|
41
|
Turner AC, Schwamm LH, Etherton MR. Acute ischemic stroke: improving access to intravenous tissue plasminogen activator. Expert Rev Cardiovasc Ther 2020; 18:277-287. [PMID: 32323590 DOI: 10.1080/14779072.2020.1759422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Since approval by the United States Food and Drug Administration in 1996, alteplase utilization rates for acute ischemic stroke have increased. Despite its efficacy for improving stroke outcomes, however, the majority of ischemic stroke patients still do not receive alteplase. To address this issue, different methods for improving access to alteplase have been tested with varying degrees of success. AREAS COVERED This article gives an overview of the recent approaches pursued to improve access to alteplase for acute ischemic stroke patients. Utilization of stroke systems of care, quality metrics, and quality-improvement initiatives to improve alteplase treatment rates are discussed. The implementation of Telestroke networks to improve access and timely evaluation by a stroke specialist are also reviewed. Lastly, this review discusses the use of neuroimaging techniques to identify alteplase candidates in stroke of unknown symptom onset or beyond the 4.5-h treatment window. EXPERT COMMENTARY Expanding access to alteplase therapy for acute ischemic stroke is a multi-faceted approach. Specific considerations based on region, population, and health-care resources should be considered for each strategy. Neuroimaging approaches to identify alteplase-eligible patients beyond the 4.5-h treatment window are a recent development in acute stroke care that holds promise for increasing alteplase treatment rates.
Collapse
Affiliation(s)
- Ashby C Turner
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| | - Lee H Schwamm
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| | - Mark R Etherton
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
42
|
Rousslang LK, Reitz TJ, Rooks E, Wood JR. Rare case of atypical Dejerine syndrome in a child. J Clin Imaging Sci 2020; 10:2. [PMID: 32038888 PMCID: PMC7006447 DOI: 10.25259/jcis_172_2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/25/2020] [Indexed: 12/03/2022] Open
Abstract
Medial medullary syndrome (aka Dejerine syndrome) is a rare condition that develops following infarction of the medial medulla and is classically defined by the presence of Dejerine’s triad of contralateral weakness in upper and lower extremities, contralateral hemisensory loss of vibration and proprioception, and ipsilateral tongue weakness. It is typically caused by occlusion of the vertebral artery or one of its branches. We report the case of a 6-year-old girl who suffered a medial medullary infarction, and she was diagnosed with atypical Dejerine syndrome. Medial medullary infarct leading to atypical Dejerine syndrome has not been reported in this young of a patient in the literature to date.
Collapse
Affiliation(s)
- Lee K Rousslang
- Department of Radiology, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | - Trevor J Reitz
- Department of Radiology, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | - Elizabeth Rooks
- Department of Neuroscience, College of Arts and Sciences, Duke University, Durham, North Carolina, USA
| | - Jonathan R Wood
- Department of Radiology, Tripler Army Medical Center, Honolulu, Hawaii, USA
| |
Collapse
|
43
|
Bressem KK, Vahldiek JL, Erxleben C, Geyer B, Poch F, Shnayien S, Lehmann KS, Hamm B, Niehues SM. Comparison of different 4D CT-Perfusion algorithms to visualize lesions after microwave ablation in an in vivo porcine model. Int J Hyperthermia 2019; 36:1098-1107. [DOI: 10.1080/02656736.2019.1679894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Keno K. Bressem
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Janis L. Vahldiek
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Christoph Erxleben
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Beatrice Geyer
- Department of Surgery, Charité-University Medicine Berlin, Berlin, Germany
| | - Franz Poch
- Department of Surgery, Charité-University Medicine Berlin, Berlin, Germany
| | - Seyd Shnayien
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Kai S. Lehmann
- Department of Surgery, Charité-University Medicine Berlin, Berlin, Germany
| | - B. Hamm
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Stefan M. Niehues
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
44
|
Sotoudeh H, Bag AK, Brooks MD. "Code-Stroke" CT Perfusion; Challenges and Pitfalls. Acad Radiol 2019; 26:1565-1579. [PMID: 30655051 DOI: 10.1016/j.acra.2018.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
Abstract
RATIONALE AND OBJECTIVES Regarding the most recent ischemic stroke treatment guideline, perfusion imaging has been recommended up to 24 hours after initial symptoms of brain infarction. Patients with a significant amount of salvageable peri-infarct ischemia and no contraindications benefit from delayed thrombolysis and intra-arterial thrombectomy. This approach causes increasingly more CT perfusion to be done in the subacute phase of ischemic stroke. CT perfusion findings in this "subacute phase" are slightly different from "hyper-acute" ischemic stroke. The interpreting radiologist must be confident in reporting the CT perfusion study in an urgent setting since these studies are under the umbrella of "code-stroke" and should be read in minutes. In addition, results of the CT perfusion have a critical effect on the patient's outcome and misinterpretation can be fatal in that underestimation of the salvageable ischemia excludes the patient from potential effective treatment. Underestimation of infarct volume may cause unnecessary thrombolysis/thrombectomy and potentially fatal intracranial hemorrhage. MATERIALS AND METHODS In this review, we are trying to explain the basic concept of "code-stroke" CT perfusion, typical findings, and pitfalls in a practical way.
Collapse
|
45
|
Appearance of cerebral infarct fogging on CT perfusion. Radiol Case Rep 2019; 14:889-893. [PMID: 31193262 PMCID: PMC6522841 DOI: 10.1016/j.radcr.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 11/24/2022] Open
Abstract
Fogging is a deceptive phenomenon that can partially or completely obscure a subacute infarct on noncontrast head CT. We present the appearance of infarct fogging on CT perfusion through 3 cases. At time of fogging, the subacute infarctions demonstrated variable mean transit time with increased cerebral blood volume and cerebral blood flow on CT perfusion. Fogging occurred within 6-10 days, sooner than the previously described 2-3 weeks in classic fogging. At time of fogging, CT perfusion demonstrated a "luxury-like" perfusion pattern and augmented the identification of the true extent of the infarction at time of fogging.
Collapse
|
46
|
Jenson M, Libby J, Soule E, Sandhu SJ, Fiester PJ, Rao D. CT Perfusion Protocol for Acute Stroke Expedites Mechanical Thrombectomy. Cureus 2019; 11:e4546. [PMID: 31275770 PMCID: PMC6592833 DOI: 10.7759/cureus.4546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The evaluation of a patient suspected of having an acute cerebrovascular accident is initiated with computed tomography (CT) and computed tomography angiogram (CTA) cross-sectional imaging of the head. Eligible patients may subsequently receive magnetic resonance imaging (MRI) utilizing a hyperacute stroke protocol. Clinical and imaging selection criteria are used to assess candidates for possible thrombectomy or thrombolysis. Prompt restoration of flow to ischemic regions of the cerebrum may result in improved neurological outcomes. Reducing delays in diagnosis and treatment remains paramount to effective treatment of ischemic cerebrovascular events. In an effort to expedite intra-arterial intervention, we replaced our institutional MRI protocol with a CT perfusion protocol. The amount of time the patient spent undergoing imaging was measured with each protocol and is referred to as "stroke imaging time." The purpose of this study was to compare the difference in the amount of time patients spent undergoing imaging when the acute stroke workup was performed with MRI vs. CT perfusion. Stroke imaging time decreased from an average of 158 minutes to 81 minutes (49%) by substituting CT perfusion for MRI. Utilizing CT perfusion in lieu of MRI in the hyperacute stroke protocol may expedite intra-arterial intervention.
Collapse
Affiliation(s)
- Matthew Jenson
- Radiology, University of Florida College of Medicine, Jacksonville, USA
| | - Jeremiah Libby
- Radiology, University of Florida College of Medicine, Jacksonville, USA
| | - Erik Soule
- Interventional Radiology, University of Florida College of Medicine, Jacksonville, USA
| | | | - Peter J Fiester
- Neuroradiology, University of Florida Health, Jacksonville, USA
| | - Dinesh Rao
- Neuroradiology, University of Florida Health, Jacksonville, USA
| |
Collapse
|
47
|
Kadimesetty VS, Gutta S, Ganapathy S, Yalavarthy PK. Convolutional Neural Network-Based Robust Denoising of Low-Dose Computed Tomography Perfusion Maps. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2860788] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
An acute stroke CT imaging algorithm incorporating automated perfusion analysis. Emerg Radiol 2019; 26:319-329. [PMID: 30706257 DOI: 10.1007/s10140-019-01675-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
In this paper, we propose a CT imaging algorithm for patients presenting with suspected acute stroke that incorporates automated CT perfusion (CTP) imaging. The algorithm details evaluation of the non-contrast CT (NCCT) for hemorrhage and acute ischemia, calculation of ASPECTS, with performance and interpretation of CTP if appropriate. In particular, we consider the key steps in expeditious interpretation of non-contrast CT and CT angiography in the context of suspected acute ischemic stroke. Given the recent expansion of the "imaging based" treatment window for thrombectomy from 6 to 24 h in the 2018 American Heart Association stroke guidelines, we consider the key criteria in the decision to perform CT perfusion and the patient cohorts in which this might be most helpful. We also describe how imaging findings might be incorporated into the treatment paradigm for suspected with acute ischemic stroke and we allude to some of the most frequently encountered pitfalls associated with CTP which we think will be particularly helpful for radiologists and stroke physicians who are considering adding CT perfusion to their work-up for acute stroke.
Collapse
|
49
|
Automated CT Perfusion Imaging Versus Non-contrast CT for Ischemic Core Assessment in Large Vessel Occlusion. Clin Neuroradiol 2018; 30:109-114. [DOI: 10.1007/s00062-018-0745-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
|
50
|
Perfusion Computed Tomography Parameters Are Useful for Differentiating Glioblastoma, Lymphoma, and Metastasis. World Neurosurg 2018; 119:e890-e897. [DOI: 10.1016/j.wneu.2018.07.291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/25/2023]
|