1
|
Azadinejad H, Farhadi Rad M, Shariftabrizi A, Rahmim A, Abdollahi H. Optimizing Cancer Treatment: Exploring the Role of AI in Radioimmunotherapy. Diagnostics (Basel) 2025; 15:397. [PMID: 39941326 PMCID: PMC11816985 DOI: 10.3390/diagnostics15030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Radioimmunotherapy (RIT) is a novel cancer treatment that combines radiotherapy and immunotherapy to precisely target tumor antigens using monoclonal antibodies conjugated with radioactive isotopes. This approach offers personalized, systemic, and durable treatment, making it effective in cancers resistant to conventional therapies. Advances in artificial intelligence (AI) present opportunities to enhance RIT by improving precision, efficiency, and personalization. AI plays a critical role in patient selection, treatment planning, dosimetry, and response assessment, while also contributing to drug design and tumor classification. This review explores the integration of AI into RIT, emphasizing its potential to optimize the entire treatment process and advance personalized cancer care.
Collapse
Affiliation(s)
- Hossein Azadinejad
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran;
| | - Mohammad Farhadi Rad
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Ahmad Shariftabrizi
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Arman Rahmim
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada
| |
Collapse
|
2
|
Fujii T, Matsuda Y. Novel formats of antibody conjugates: recent advances in payload diversity, conjugation, and linker chemistry. Expert Opin Biol Ther 2023; 23:1053-1065. [PMID: 37953519 DOI: 10.1080/14712598.2023.2276873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In the field of bioconjugates, the focus on antibody - drug conjugates (ADCs) with novel payloads beyond the traditional categories of potent cytotoxic agents is increasing. These innovative ADCs exhibit various molecular formats, ranging from small-molecule payloads, such as immune agonists and proteolytic agents, to macromolecular payloads, such as oligonucleotides and proteins. AREAS COVERED This review offers an in-depth exploration of unconventional strategies for designing conjugates with novel mechanisms of action and notable examples of approaches that show promising prospects. Representative examples of novel format payloads and their classification, attributes, and appropriate conjugation techniques are discussed in detail. EXPERT OPINION The existing basic technologies used to manufacture ADCs can be directly applied to synthesize novel formatted conjugates. However, a wide variety of new payloads require the creation of customized technologies adapted to the unique characteristics of these payloads. Consequently, fundamental technologies, such as conjugation methods aimed at achieving high drug - antibody ratios and developing stable crosslinkers, are likely to become increasingly important research areas in the future.
Collapse
|
3
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Wang X, Phan MM, Sun Y, Koerber JT, Ho H, Chen Y, Yang J. Development of an SPR-based binding assay for characterization of anti-CD20 antibodies to CD20 expressed on extracellular vesicles. Anal Biochem 2022; 646:114635. [DOI: 10.1016/j.ab.2022.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/01/2022]
|
5
|
Ferris T, Carroll L, Jenner S, Aboagye EO. Use of radioiodine in nuclear medicine-A brief overview. J Labelled Comp Radiopharm 2021; 64:92-108. [PMID: 33091159 DOI: 10.1002/jlcr.3891] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/06/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Radioiodines have a long history in nuclear medicine. Herein, we discuss the production, properties and applications of these versatile iodine-based imaging and theragnostic agents. There are 38 isotopes of iodine (I) including one stable form (127 I). The most common radionuclides used in medical imaging and treatment, including Iodine-123 (123 I), Iodine-124 (124 I), Iodine-125 (125 I) and Iodine-131 (131 I), are discussed in this review.
Collapse
Affiliation(s)
- Trevor Ferris
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, London, UK
| | - Laurence Carroll
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College, Hammersmith Campus, London, UK
| |
Collapse
|
6
|
Sivaccumar J, Sandomenico A, Vitagliano L, Ruvo M. Monoclonal Antibodies: A Prospective and Retrospective View. Curr Med Chem 2021; 28:435-471. [PMID: 32072887 DOI: 10.2174/0929867327666200219142231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoclonal Antibodies (mAbs) represent one of the most important classes of biotherapeutic agents. They are used to cure many diseases, including cancer, autoimmune diseases, cardiovascular diseases, angiogenesis-related diseases and, more recently also haemophilia. They can be highly varied in terms of format, source, and specificity to improve efficacy and to obtain more targeted applications. This can be achieved by leaving substantially unchanged the basic structural components for paratope clustering. OBJECTIVES The objective was to trace the most relevant findings that have deserved prestigious awards over the years, to report the most important clinical applications and to emphasize their latest emerging therapeutic trends. RESULTS We report the most relevant milestones and new technologies adopted for antibody development. Recent efforts in generating new engineered antibody-based formats are briefly reviewed. The most important antibody-based molecules that are (or are going to be) used for pharmacological practice have been collected in useful tables. CONCLUSION The topics here discussed prove the undisputed role of mAbs as innovative biopharmaceuticals molecules and as vital components of targeted pharmacological therapies.
Collapse
Affiliation(s)
- Jwala Sivaccumar
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
7
|
Florou D, Katsara M, Feehan J, Dardiotis E, Apostolopoulos V. Anti-CD20 Agents for Multiple Sclerosis: Spotlight on Ocrelizumab and Ofatumumab. Brain Sci 2020; 10:E758. [PMID: 33092190 PMCID: PMC7589300 DOI: 10.3390/brainsci10100758] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 01/23/2023] Open
Abstract
Until recently, in the pathogenesis of Multiple Sclerosis (MS), the contribution of B cells has been largely underestimated, and the disease was considered a T-cell-mediated disorder. However, newer evidence shows that B cells play a crucial role in the pathogenesis of MS via antigen-driven autoantibody responses and through the cross regulation of T-helper cells. As B cells express the surface molecule CD20 at all points of differentiation, it provides a specific target for monoclonal antibodies, and the development and clinical testing of anti-CD20 antibody treatments for MS have been successful. After some observations, some small clinical trials found positive effects for the first anti-CD20 therapeutic rituximab in MS; newer agents have been specifically evaluated, resulting in the development of ocrelizumab and ofatumumab. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, was approved in March 2017 by the Food and Drug Administration (FDA) and is also the first proven therapy to reduce disability progression in primary progressive MS. This is particularly significant considering that disease-modifying treatment options are few for both primary and secondary progressive MS. Ofatumumab, a fully human anti-CD20 monoclonal antibody, that binds a distinct epitope, has been further investigated in phase 3 trials for relapsing forms of MS. In this review, we discuss in detail these two anti-CD20 agents and their advent for treatment of MS.
Collapse
Affiliation(s)
- Despoina Florou
- Neurology Department, University Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece;
| | - Maria Katsara
- Therapeutic Area Head Neuroscience & Ophthalmology, Novartis (Hellas) S.A.C.I., Medical Department, 14451 Athens, Greece;
| | - Jack Feehan
- Department of Medicine, Western Health, The University of Melbourne, Melbourne 3010, Australia;
- Institute for Health and Sport, Victoria University, Melbourne 8001, Australia
| | - Efthimios Dardiotis
- Neurology Department, University Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece;
| | | |
Collapse
|
8
|
Abstract
Nuclear medicine has come a long way since 2007 when Adrian Nunn pointed out the approval of radiopharmaceuticals was at an all-time low with all the major radiopharmaceutical agents in use having been approved over 10 years ago. Challenges being the prohibitively high cost of drug development and the large number of drugs failing in clinical trials. Proceed to today where molecular imaging is fast-tracking the drug discovery process by reducing both the time and cost to screen candidates by quantitating the drugs effect on the target and toxicity to normal tissues. Nuclear medicine is now leading medical practice in personalized medicine using the theragnostic approach. Theragnostics is defined as the use of molecular diagnostic techniques in real time to stratify patients to guide treatment decisions such as the choice of drug, the dose of administration, and the timing of drug delivery for a given patient. Enabling visualization and quantitation of in vivo function of the whole body and thus patient heterogeneity and variability informs the physician on how to treat an individual patient. Recent successes such as the Food and Drug Administration approval of Lutathera and NETSPOT have resulted in an increasing number of pharmaceutical companies pursing theragnostics further heightened by the purchase of Advanced Accelerator Applications for 3.9 billion by Novartis and Endocyte, Inc for 2.1 billion. Theragnostics are further aiding drug development by showing which agents are most viable and reducing the overall cost of bringing a drug to clinical trials and regulatory approval. This is indeed a renaissance for nuclear medicine in which the acceptance of imaging to inform and monitor therapy has been embraced and even required by the Food and Drug Administration for the clinical evaluation of targeted therapeutic radiopharmaceuticals showing there is indeed a viable business model for targeted theragnostic radiopharmaceuticals and personalized medicine.
Collapse
Affiliation(s)
- Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY.
| |
Collapse
|
9
|
Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S, Garcia-Sanz JA, Kremer L. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness. Front Immunol 2017; 8:1804. [PMID: 29312320 PMCID: PMC5742572 DOI: 10.3389/fimmu.2017.01804] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin) and bevacizumab (Avastin), respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system.
Collapse
Affiliation(s)
- Isabel Corraliza-Gorjón
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Silvia Santamaria
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Jose A Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Kim JS. Combination Radioimmunotherapy Approaches and Quantification of Immuno-PET. Nucl Med Mol Imaging 2016; 50:104-11. [PMID: 27275358 PMCID: PMC4870465 DOI: 10.1007/s13139-015-0392-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/18/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022] Open
Abstract
Monoclonal antibodies (mAbs), which play a prominent role in cancer therapy, can interact with specific antigens on cancer cells, thereby enhancing the patient's immune response via various mechanisms, or mAbs can act against cell growth factors and, thereby, arrest the proliferation of tumor cells. Radionuclide-labeled mAbs, which are used in radioimmunotherapy (RIT), are effective for cancer treatment because tumor associated-mAbs linked to cytotoxic radionuclides can selectively bind to tumor antigens and release targeted cytotoxic radiation. Immunological positron emission tomography (immuno-PET), which is the combination of PET with mAb, is an attractive option for improving tumor detection and mAb quantification. However, RIT remains a challenge because of the limited delivery of mAb into tumors. The transport and uptake of mAb into tumors is slow and heterogeneous. The tumor microenvironment contributed to the limited delivery of the mAb. During the delivery process of mAb to tumor, mechanical drug resistance such as collagen distribution or physiological drug resistance such as high intestinal pressure or absence of lymphatic vessel would be the limited factor of mAb delivery to the tumor at a potentially lethal mAb concentration. When α-emitter-labeled mAbs were used, deeper penetration of α-emitter-labeled mAb inside tumors was more important because of the short range of the α emitter. Therefore, combination therapy strategies aimed at improving mAb tumor penetration and accumulation would be beneficial for maximizing their therapeutic efficacy against solid tumors.
Collapse
Affiliation(s)
- Jin Su Kim
- />Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812 Korea
- />Korea Drug Development Platform using Radio-Isotope(KDePRI), Seoul, Korea
- />Radiologcial and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Korea
| |
Collapse
|
11
|
Witkowska M, Smolewski P. Emerging immunotherapy and strategies directly targeting B cells for the treatment of diffuse large B-cell lymphoma. Immunotherapy 2015; 7:37-46. [PMID: 25572478 DOI: 10.2217/imt.14.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During the last decade, significant prolonged survival in diffusive large B-cell lymphoma (DLBCL) has been observed. The efficacy of initial treatment improved mostly due to addition of a chimeric anti-CD20 monoclonal antibody (rituximab) to standard chemotherapeutic regimens. Moreover, accurate understanding of DLBCL pathogenesis and remarkable progress in gene expression profiling have led to the development of a variety of tumor-specific regimens. Novel agents target directly the pathways involved in signal transduction, lead to apoptosis and cancer cells differentiation. In this article, we mainly focus on new treatment options, such as monoclonal antibodies, tyrosine kinase inhibitors and immunomodulatory drugs, currently investigated in aggressive B-cell lymphoma with particular attention to DLBCL type.
Collapse
Affiliation(s)
- Magdalena Witkowska
- Department of Experimental Hematology, Medical University of Lodz, Poland Copernicus Memorial Hospital, 93-510 Lodz, Ciołkowskiego 2, Poland
| | | |
Collapse
|
12
|
Podhorecka M, Markowicz J, Szymczyk A, Pawlowski J. Target Therapy in Hematological Malignances: New Monoclonal Antibodies. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:701493. [PMID: 27433507 PMCID: PMC4897146 DOI: 10.1155/2014/701493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 11/17/2022]
Abstract
Apart from radio- and chemotherapy, monoclonal antibodies (MoAbs) represent a new, more selective tool in the treatment of hematological malignancies. MoAbs bind with the specific antigens of the tumors. This interaction is a basis for targeted therapies which exhibit few side effects and significant antitumor activity. This review provides an overview of the functional characteristics of MoAbs, with some examples of their clinical application. The promising results in the treatment of hematological malignancies have led to the more frequent usage of MoAbs in the therapy. Development of MoAbs is a subject of extensive research. They are a promising method of cancer treatment in the future.
Collapse
Affiliation(s)
- Monika Podhorecka
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| | - Justyna Markowicz
- Students Scientific Association at the Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Szymczyk
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| | - Johannes Pawlowski
- Students Scientific Association at the Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
13
|
Glassman PM, Balthasar JP. Mechanistic considerations for the use of monoclonal antibodies for cancer therapy. Cancer Biol Med 2014; 11:20-33. [PMID: 24738036 PMCID: PMC3969805 DOI: 10.7497/j.issn.2095-3941.2014.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/09/2014] [Indexed: 01/15/2023] Open
Abstract
Since the approval of rituximab in 1997, monoclonal antibodies (mAbs) have become an increasingly important component of therapeutic regimens in oncology. The success of mAbs as a therapeutic class is a result of great strides that have been made in molecular biology and in biotechnology over the past several decades. Currently, there are 14 approved mAb products for oncology indications, and there are ten additional mAbs in late stages of clinical trials. Compared to traditional chemotherapeutic agents, mAbs have several advantages, including a long circulating half-life and high target specificity. Antibodies can serve as cytotoxic agents when administered alone, exerting a pharmacologic effect through several mechanisms involving the antigen binding (Fab) and/or Fc domains of the molecule, and mAbs may also be utilized as drug carriers, targeting a toxic payload to cancer cells. The extremely high affinity of mAbs for their targets, which is desirable with respect to pharmacodynamics (i.e., contributing to the high therapeutic selectivity of mAb), often leads to complex, non-linear, target-mediated pharmacokinetics. In this report, we summarize the pharmacokinetic and pharmacodynamics of mAbs that have been approved and of mAbs that are near approval for oncology indications, with particular focus on the molecular and cellular mechanisms responsible for their disposition and efficacy.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| |
Collapse
|
14
|
Zheng SG, Xu HX, Guo LH, Liu LN, Lu F. The safety and treatment response of combination therapy of radioimmunotherapy and radiofrequency ablation for solid tumor: a study in vivo. PLoS One 2014; 9:e96539. [PMID: 24787957 PMCID: PMC4008584 DOI: 10.1371/journal.pone.0096539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022] Open
Abstract
OBJECTION To investigate the safety and treatment response of radioimmunotherapy (RIT) in combination with radiofrequency ablation (RFA) for the treatment of VX2 tumor on rabbit. MATERIALS AND METHODS A total of 36 rabbits bearing VX2 tumor on the thigh were randomly assigned into 3 groups (group I: 1-2 cm; group II: 2-3 cm; group III: 3-4 cm) and 4 subgroups (A: as control, just puncture the tumor using the RFA electrode without power output; B: RFA alone; C: 131I-chTNT intratumoral injection alone; D: RFA+131I-chTNT intratumoral injection 3 days later). The variation of blood assay, weight and survival among different groups and subgroups were used to assess the treatment safety. Ultrasound (US) was used to monitor and assess the tumor response after treatment. RESULTS According to the results of the weight and the blood assay among different groups, subgroups, and at two time points (one day before and the 16th day after treatment), no damages to the liver, kidney function and myelosuppression resulting from the treatment were found. No significant differences in survivals among the four subgroups (p = 0.087) were found. In addition, 131I-chTNT did not show significant inhibition effect on VX2 tumor progression according to US measurements. CONCLUSION 131I-chTNT intratumoral injection alone or in combination with RFA is relatively safe for rabbit without significant toxicity and shows no significant effect on the survival. The treatment response is not as satisfactory as anticipated.
Collapse
Affiliation(s)
- Shu-Guang Zheng
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, Shanghai, China
- Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Xiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, Shanghai, China
- Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Le-Hang Guo
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Lin-Na Liu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Feng Lu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, Shanghai, China
| |
Collapse
|
15
|
Zheng SG, Xu HX, Lu MD, Yue DC, Xie XY, Liu GJ. Radiofrequency ablation before intratumoral injection of (131)I-chTNT improves the tumor-to-normal tissue ratio in solid VX2 tumor. Cancer Biother Radiopharm 2013; 28:725-30. [PMID: 23964639 DOI: 10.1089/cbr.2012.1418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE This study was aimed to investigate whether the tumor necrosis induced by radiofrequency ablation (RFA) can improve the ratio of tumor-to-normal tissue (T/NT) after intratumoral injection of (131)I-chTNT. MATERIALS AND METHOD Eighteen New Zealand rabbits bearing VX2 tumor on the thigh were randomly divided into two treatment groups (control group: intratumoral injection of (131)I-chTNT alone; RFA group: RFA + intratumoral injection of (131)I-chTNT 3 days after RFA) and each group was further divided into three subgroups I, II, and III (1-2 cm, 2-3 cm, and 3-4 cm in maximum diameter, respectively), by the tumor size. SPECT was performed to evaluate the T/NT on days 1, 8, and 15 after (131)I-chTNT injection. RESULTS After treatment, all rabbits underwent the SPECT whole-body scan and the T/NT was analyzed. The results showed that T/NT in the RFA group (55.45±41.83) was significantly higher compared with the control group (7.23±5.61) (F=18.89, p=0.001). Meanwhile, a linear ascending trend was found for T/NT in the RFA group along with the follow-up time (r=0.47, p=0.01). The tumor size or the dose of (131)I-TNT injection had no significant effect on the variation of T/NT in both groups (p>0.05). CONCLUSION RFA before intratumoral injection of (131)I-chTNT can dramatically improve T/NT, demonstrating the potential application of this combination therapy.
Collapse
Affiliation(s)
- Shu-Guang Zheng
- 1 Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-Sen University , Guangzhou, China
| | | | | | | | | | | |
Collapse
|
16
|
SIB-DOTA: a trifunctional prosthetic group potentially amenable for multi-modal labeling that enhances tumor uptake of internalizing monoclonal antibodies. Bioorg Med Chem 2012; 20:6929-39. [PMID: 23159039 DOI: 10.1016/j.bmc.2012.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/07/2012] [Accepted: 10/17/2012] [Indexed: 11/22/2022]
Abstract
A major drawback of internalizing monoclonal antibodies (mAbs) radioiodinated with direct electrophilic approaches is that tumor retention of radioactivity is compromised by the rapid washout of iodo-tyrosine, the primary labeled catabolite for mAbs labeled via this strategy. In our continuing efforts to develop more versatile residualizing labels that could overcome this problem, we have designed SIB-DOTA, a prosthetic labeling template that combines the features of the prototypical, dehalogenation-resistant N-succinimidyl 3-iodobenzoate (SIB) with DOTA, a useful macrocyclic chelator for labeling with radiometals. Herein we describe the synthesis of the unlabeled standard of this prosthetic moiety, its protected tin precursor, and radioiodinated SIB-DOTA. An anti-EGFRvIII-reactive mAb, L8A4 was radiolabeled with [(131)I]SIB-DOTA in 27.1±6.2% (n=2) conjugation yields and its targeting properties to the same mAb labeled with [(125)I]SGMIB both in vitro and in vivo using U87MG·ΔEGFR cells and xenografts were compared. In vitro paired-label internalization assays showed that the intracellular radioactivity from [(131)I]SIB-DOTA-L8A4 was 21.4±0.5% and 26.2±1.1% of initially bound radioactivity at 16 and 24h, respectively. In comparison, these values for [(125)I]SGMIB-L8A4 were 16.7±0.5% and 14.9±1.1%. Similarly, the SIB-DOTA prosthetic group provided better tumor targeting in vivo than SGMIB over 8 d period. These results suggest that SIB-DOTA warrants further evaluation as a residualizing agent for labeling internalizing mAbs including those targeted to EGFRvIII.
Collapse
|
17
|
Focosi D, Maggi F, Pistello M, Boggi U, Scatena F. Immunosuppressive monoclonal antibodies: current and next generation. Clin Microbiol Infect 2011; 17:1759-68. [PMID: 21995285 DOI: 10.1111/j.1469-0691.2011.03677.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Monoclonal antibodies (mAbs) are well-established therapeutics, as evidenced by the large number of Food and Drug Administration-approved mAbs for the treatment of cancers, and inflammatory or autoimmune diseases, and for the prevention and treatment of solid organ transplant rejection. Although, in many cases, mAbs have improved patient survival, they are also associated with an increased incidence of opportunistic infections. We review here the current and next generation of mAbs and the risks that infectious disease specialists should be aware of.
Collapse
Affiliation(s)
- D Focosi
- U.O. Immuoematologia SSN, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
| | | | | | | | | |
Collapse
|