1
|
Leng F, Gao Y, Li F, Wei L, Sun Y, Liu F, Zhu Y, Qiu J, Wang Z, Zhang Y. Iron deposition is associated with motor and non-motor network breakdown in parkinsonism. Front Aging Neurosci 2025; 16:1518155. [PMID: 39902281 PMCID: PMC11788357 DOI: 10.3389/fnagi.2024.1518155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Background Iron deposition has been observed in Parkinsonism and is emerging as a diagnostic marker for movement disorders. Brain functional network disruption has also been detected in parkinsonism, and is believed to be accountable for specific symptoms in parkinsonism. However, how iron deposition influences brain network remains to be elucidated. Methods We recruited 16 Parkinson's disease (PD), 8 multiple system atrophy (MSA) and 7 progressive supranuclear palsy (PSP) patients. T1-weighted, susceptibility weighted images and resting-state functional MRI (rs-fMRI) were acquired. Quantitative susceptibility mapping (QSM) analysis was performed to quantify iron deposition in substantia nigra, putamen and dentate nucleus. Cerebellar network, sensorimotor network, default mode network and language networks were segregated using independent analysis. Network and iron deposition status were evaluated in relation to diagnostic groups, motor and non-motor symptoms. The relationship between quantitative iron deposition and brain network status was further interrogated. To further validate the findings, 13 healthy controls and 37 PD patients who had available T1 and rs-fMRI scans were selected from Parkinson's progression markers initiative (PPMI) database, and network analysis was performed. Results In local cohort, compared to PD, MSA patients showed greater iron deposition in putamen, while PSP patients had greater iron deposition in caudate nucleus and thalamus. Cerebellar and language networks showed significant difference across diagnostic groups, while default mode network and sensorimotor network did not. MSA patients had significantly impaired cerebellar network and language networks compared to PD patients. Cerebellar network was positively associated with motor symptom scores while language network was positively associated with MoCA scores in the patients. Iron deposition was negatively associated with both networks' activity in the patients. In PPMI cohort, impairment was found in both cerebellar and language networks in PD. Cerebellar and language networks correlated with motor and cognitive impairment, respectively. Conclusion Cerebellar network and language networks are differently influenced in MSA, PD and PSP, which can serve as potential diagnostic marker. Impairment of cerebellar network and language network are associated with motor symptoms and cognitive impairment, respectively. Moreover, dysfunction of the networks is associated with iron deposition in deep nuclei (SN, DN, Putamen).
Collapse
Affiliation(s)
- Fangda Leng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yue Gao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Luhua Wei
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yunchuang Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Fang Liu
- Department of Neurology, Tsinghua University First Hospital, Beijing, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jianxing Qiu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yiwei Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Mohammadi S, Ghaderi S. Parkinson's disease and Parkinsonism syndromes: Evaluating iron deposition in the putamen using magnetic susceptibility MRI techniques - A systematic review and literature analysis. Heliyon 2024; 10:e27950. [PMID: 38689949 PMCID: PMC11059419 DOI: 10.1016/j.heliyon.2024.e27950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic resonance imaging (MRI) techniques, such as quantitative susceptibility mapping (QSM) and susceptibility-weighted imaging (SWI), can detect iron deposition in the brain. Iron accumulation in the putamen (PUT) can contribute to the pathogenesis of Parkinson's disease (PD) and atypical Parkinsonian disorders. This systematic review aimed to synthesize evidence on iron deposition in the PUT assessed by MRI susceptibility techniques in PD and Parkinsonism syndromes. The PubMed and Scopus databases were searched for relevant studies. Thirty-four studies from January 2007 to October 2023 that used QSM, SWI, or other MRI susceptibility methods to measure putaminal iron in PD, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and healthy controls (HCs) were included. Most studies have found increased putaminal iron levels in PD patients versus HCs based on higher quantitative susceptibility. Putaminal iron accumulation correlates with worse motor scores and cognitive decline in patients with PD. Evidence regarding differences in susceptibility between PD and atypical Parkinsonism is emerging, with several studies showing greater putaminal iron deposition in PSP and MSA than in PD patients. Alterations in putaminal iron levels help to distinguish these disorders from PD. Increased putaminal iron levels appear to be associated with increased disease severity and progression. Thus, magnetic susceptibility MRI techniques can detect abnormal iron accumulation in the PUT of patients with Parkinsonism. Moreover, quantifying putaminal susceptibility may serve as an MRI biomarker to monitor motor and cognitive changes in PD and aid in the differential diagnosis of Parkinsonian disorders.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zeng W, Cai J, Zhang L, Peng Q. Iron Deposition in Parkinson's Disease: A Mini-Review. Cell Mol Neurobiol 2024; 44:26. [PMID: 38393383 PMCID: PMC10891198 DOI: 10.1007/s10571-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results. In this review, we provide an overview of iron deposition in PD, from both basic research and clinical perspectives. PD patients exhibit abnormalities in various iron metabolism-related proteins, leading to disruptions in iron distribution, transport, storage, and circulation, ultimately resulting in iron deposition. Excess iron can induce oxidative stress and iron-related cell death, and exacerbate mitochondrial dysfunction, contributing to the progression of PD pathology. Magnetic resonance imaging studies have indicated that the characteristics of iron deposition in the brains of PD patients vary. Iron deposition correlates with the clinical symptoms of PD, and patients with different disease courses and clinical presentations display distinct patterns of iron deposition. These iron deposition patterns may contribute to PD diagnosis. Iron deposition is a promising target for PD treatment. However, further research is required to elucidate the underlying mechanisms and their impacts on PD.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan, China
| | - Jin Cai
- Department of Cardiology, The Second Hospital of Zhangzhou, Zhangzhou, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiwei Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Wang Z, Mo J, Zhang J, Feng T, Zhang K. Surface-Based Neuroimaging Pattern of Multiple System Atrophy. Acad Radiol 2023; 30:2999-3009. [PMID: 37495425 DOI: 10.1016/j.acra.2023.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 07/28/2023]
Abstract
RATIONALE AND OBJECTIVES Overlapping parkinsonism, cerebellar ataxia, and pyramidal signs render challenges in the clinical diagnosis of multiple system atrophy (MSA). The neuroimaging pattern is valuable to understand its pathophysiology and improve its diagnostic effect. MATERIALS AND METHODS We retrospectively obtained magnetic resonance imaging and susceptibility-weighted imaging in patients with MSA (including parkinsonian type [MSA-P] and cerebellar type [MSA-C]), Parkinson's disease, and normal controls. We quantified neuroimaging features to identify the optimal threshold for diagnosis. Furthermore, we explore neuroimaging patterns of MSA by mapping the subcortical morphological alterations and constructing a diagnostic model. RESULTS Compared to controls, normalized putaminal volume significantly decreased in patients with MSA-P (P < .001) and normalized pontine volume significantly decreased in patients with MSA-C (P < .001). The Youden index of the threshold-based clinical prediction model was 0.871-0.928 in patients with MSA. The neuroimaging pattern in patients with MSA was jointly located in the lateral putamen, and the neuroimaging pattern prediction model achieved a classification accuracy of 83.9%-100%. CONCLUSION The quantitative neuroimaging features and surface-based morphologic anomalies represent the markers of MSA and open new avenues for personalized clinical diagnosis.
Collapse
Affiliation(s)
- Zhan Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (Z.W., T.F.); China National Clinical Research Center for Neurological Disease, NCRC-ND, Beijing, China (Z.W., T.F.)
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.)
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.)
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (Z.W., T.F.); China National Clinical Research Center for Neurological Disease, NCRC-ND, Beijing, China (Z.W., T.F.)
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.).
| |
Collapse
|
5
|
Hu R, Gao B, Tian S, Liu Y, Jiang Y, Li W, Li Y, Song Q, Wang W, Miao Y. Regional high iron deposition on quantitative susceptibility mapping correlates with cognitive decline in type 2 diabetes mellitus. Front Neurosci 2023; 17:1061156. [PMID: 36793541 PMCID: PMC9922715 DOI: 10.3389/fnins.2023.1061156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
Objective To quantitatively evaluate the iron deposition and volume changes in deep gray nuclei according to threshold-method of quantitative susceptibility mapping (QSM) acquired by strategically acquired gradient echo (STAGE) sequence, and to analyze the correlation between the magnetic susceptibility values (MSV) and cognitive scores in type 2 diabetes mellitus (T2DM) patients. Methods Twenty-nine patients with T2DM and 24 healthy controls (HC) matched by age and gender were recruited in this prospective study. QSM images were used to evaluate whole-structural volumes (Vwh), regional magnetic susceptibility values (MSVRII), and volumes (VRII) in high-iron regions in nine gray nuclei. All QSM data were compared between groups. Receiver operating characteristic (ROC) analysis was used to assess the discriminating ability between groups. The predictive model from single and combined QSM parameters was also established using logistic regression analysis. The correlation between MSVRII and cognitive scores was further analyzed. Multiple comparisons of all statistical values were corrected by false discovery rate (FDR). A statistically significant P-value was set at 0.05. Results Compared with HC group, the MSVRII of all gray matter nuclei in T2DM were increased by 5.1-14.8%, with significant differences found in bilateral head of caudate nucleus (HCN), right putamen (PUT), right globus pallidus (GP), and left dentate nucleus (DN) (P < 0.05). The Vwh of most gray nucleus in T2DM group were decreased by 1.5-16.9% except bilateral subthalamic nucleus (STN). Significant differences were found in bilateral HCN, bilateral red nucleus (RN), and bilateral substantia nigra (SN) (P < 0.05). VRII was increased in bilateral GP, bilateral PUT (P < 0.05). VRII/Vwh was also increased in bilateral GP, bilateral PUT, bilateral SN, left HCN and right STN (P < 0.05). Compared with the single QSM parameter, the combined parameter showed the largest area under curve (AUC) of 0.86, with a sensitivity of 87.5% and specificity of 75.9%. The MSVRII in the right GP was strongly associated with List A Long-delay free recall (List A LDFR) scores (r = -0.590, P = 0.009). Conclusion In T2DM patients, excessive and heterogeneous iron deposition as well as volume loss occurs in deep gray nuclei. The MSV in high iron regions can better evaluate the distribution of iron, which is related to the decline of cognitive function.
Collapse
|
6
|
Ryan SK, Zelic M, Han Y, Teeple E, Chen L, Sadeghi M, Shankara S, Guo L, Li C, Pontarelli F, Jensen EH, Comer AL, Kumar D, Zhang M, Gans J, Zhang B, Proto JD, Saleh J, Dodge JC, Savova V, Rajpal D, Ofengeim D, Hammond TR. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat Neurosci 2023; 26:12-26. [PMID: 36536241 PMCID: PMC9829540 DOI: 10.1038/s41593-022-01221-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 10/28/2022] [Indexed: 12/24/2022]
Abstract
Iron dysregulation has been implicated in multiple neurodegenerative diseases, including Parkinson's disease (PD). Iron-loaded microglia are frequently found in affected brain regions, but how iron accumulation influences microglia physiology and contributes to neurodegeneration is poorly understood. Here we show that human induced pluripotent stem cell-derived microglia grown in a tri-culture system are highly responsive to iron and susceptible to ferroptosis, an iron-dependent form of cell death. Furthermore, iron overload causes a marked shift in the microglial transcriptional state that overlaps with a transcriptomic signature found in PD postmortem brain microglia. Our data also show that this microglial response contributes to neurodegeneration, as removal of microglia from the tri-culture system substantially delayed iron-induced neurotoxicity. To elucidate the mechanisms regulating iron response in microglia, we performed a genome-wide CRISPR screen and identified novel regulators of ferroptosis, including the vesicle trafficking gene SEC24B. These data suggest a critical role for microglia iron overload and ferroptosis in neurodegeneration.
Collapse
Affiliation(s)
- Sean K Ryan
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | - Matija Zelic
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | - Yingnan Han
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | - Erin Teeple
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | - Luoman Chen
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | - Mahdiar Sadeghi
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | - Srinivas Shankara
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | - Lilu Guo
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | - Cong Li
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | | | | | - Ashley L Comer
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | - Dinesh Kumar
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | - Mindy Zhang
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | - Joseph Gans
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | - Bailin Zhang
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | | | | | - James C Dodge
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | - Virginia Savova
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | - Deepak Rajpal
- Sanofi, Precision Medicine and Computational Biology, Cambridge, MA, USA
| | | | | |
Collapse
|
7
|
Li W, Gao B, Du W, Jiang Y, Yang J, Hu R, Liu Y, Liu N, Zhang Y, Song Q, Miao Y. Iron deposition heterogeneity in extrapyramidal system assessed by quantitative susceptibility mapping in Parkinson’s disease patients with type 2 diabetes mellitus. Front Aging Neurosci 2022; 14:975390. [PMID: 36177478 PMCID: PMC9513156 DOI: 10.3389/fnagi.2022.975390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Excessive brain iron depositions were found in both patients with Parkinson’s disease (PD) and those with type 2 diabetes mellitus (T2DM). The present study aimed to explore iron deposition and heterogeneity in the extrapyramidal system in PD patients with T2DM using quantitative susceptibility mapping (QSM) and further to reveal the effect of T2DM on the changes in brain iron in patients with PD. Materials and methods A total of 38 PD patients with T2DM (PDDM), 30 PD patients without T2DM (PDND), and 20 asymptomatic control subjects (CSs) were recruited for this study. All subjects underwent multiple MRI sequences involving enhanced gradient echo T2 star weighted angiography (ESWAN). The magnetic sensitivity values (MSV) and volume of the whole nuclei (MSVW, VW) and high iron region (MSVRII, VRII) were measured on the bilateral caudate nucleus (CN), the putamen (PUT), the globus pallidus (GP), the substantia nigra (SN), the red nucleus (RN) and the dentate nucleus (DN). Clinical and laboratory data were recorded, especially for the Hoehn and Yahr (H-Y) stage, the Montreal Cognitive Assessment (MoCA), the Mini-Mental State Examination (MMSE), the Hamilton Depression Rating Scale (HAMD), and the Hamilton Anxiety Rating Scale (HAMA). All QSM data were compared between PDDM and PDND groups and correlated with clinical and laboratory data. Results Compared to the PDND group, the VRII/VW of the left CN was significantly increased in the PDDM group. Significantly higher MSVW and MSVRII were also found in the PDDM group, including bilateral SN of MSVW, right PUT, and bilateral CN, GP, and SN of MSVRII. The H-Y stage of the PDDM group was significantly higher than that of the PDND group. The MSVRII of bilateral RN of the PDDM group was positively correlated with the HAMA scores. HDL, DBP, and SBP levels were associated with MSVRII of right CN in the PDDM group. Conclusion T2DM could aggravate the disease severity and anxiety in patients with PD. The iron distribution of deep gray matter nuclei in PD patients with T2DM was significantly heterogeneous, which was related to blood pressure and blood lipids.
Collapse
|
8
|
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease that is characterized by neuronal loss and gliosis in multiple areas of the central nervous system including striatonigral, olivopontocerebellar and central autonomic structures. Oligodendroglial cytoplasmic inclusions containing misfolded and aggregated α-synuclein are the histopathological hallmark of MSA. A firm clinical diagnosis requires the presence of autonomic dysfunction in combination with parkinsonism that responds poorly to levodopa and/or cerebellar ataxia. Clinical diagnostic accuracy is suboptimal in early disease because of phenotypic overlaps with Parkinson disease or other types of degenerative parkinsonism as well as with other cerebellar disorders. The symptomatic management of MSA requires a complex multimodal approach to compensate for autonomic failure, alleviate parkinsonism and cerebellar ataxia and associated disabilities. None of the available treatments significantly slows the aggressive course of MSA. Despite several failed trials in the past, a robust pipeline of putative disease-modifying agents, along with progress towards early diagnosis and the development of sensitive diagnostic and progression biomarkers for MSA, offer new hope for patients.
Collapse
|
9
|
Ren Q, Wang Y, Xia X, Zhang J, Zhao C, Meng X. Differentiation of Parkinson’s disease and Parkinsonism predominant multiple system atrophy in early stage by morphometrics in susceptibility weighted imaging. Front Hum Neurosci 2022; 16:806122. [PMID: 35982687 PMCID: PMC9380856 DOI: 10.3389/fnhum.2022.806122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Background and purpose We previously established a radiological protocol to discriminate multiple system atrophy-parkinsonian subtype (MSA-P) from Parkinson’s disease (PD). However, we do not know if it can differentiate early stage disease. This study aimed to investigate whether the morphological and intensity changes in susceptibility weighted imaging (SWI) of the lentiform nucleus (LN) could discriminate MSA-P from PD at early stages. Methods We retrospectively enrolled patients with MSA-P, PD and sex- and age-matched controls whose brain MRI included SWI, between January 2015 and July 2020 at the Movement Disorder Center. Two specialists at the center reviewed the medical records and made the final diagnosis, and two experienced neuroradiologists performed MRI analysis, based on a defined and revised protocol for conducting morphological measurements of the LN and signal intensity. Results Nineteen patients with MSA-P and 19 patients with PD, with less than 2 years of disease duration, and 19 control individuals were enrolled in this study. We found that patients with MSA- P presented significantly decreased size in the short line (SL) and corrected short line (cSL), ratio of the SL to the long line (SLLr) and corrected SLLr (cSLLr) of the LN, increased standard deviation of signal intensity (SIsd_LN, cSIsd_LN) compared to patients with PD and controls (P < 0.05). With receiver operating characteristic (ROC) analysis, this finding had a sensitivity of 89.5% and a specificity of 73.7% to distinguish MSA- P from PD. Conclusion Compared to PD and controls, patients with MSA-P are characterized by a narrowing morphology of the posterior region of the LN. Quantitative morphological changes provide a reference for clinical auxiliary diagnosis.
Collapse
Affiliation(s)
- Qingguo Ren
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yihua Wang
- Department of Neurosurgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaona Xia
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jianyuan Zhang
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Cuiping Zhao
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- *Correspondence: Cuiping Zhao,
| | - Xiangshui Meng
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Xiangshui Meng,
| |
Collapse
|
10
|
Okada T, Fujimoto K, Fushimi Y, Akasaka T, Thuy DHD, Shima A, Sawamoto N, Oishi N, Zhang Z, Funaki T, Nakamoto Y, Murai T, Miyamoto S, Takahashi R, Isa T. Neuroimaging at 7 Tesla: a pictorial narrative review. Quant Imaging Med Surg 2022; 12:3406-3435. [PMID: 35655840 PMCID: PMC9131333 DOI: 10.21037/qims-21-969] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/05/2022] [Indexed: 01/26/2024]
Abstract
Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dinh H. D. Thuy
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medial Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhilin Zhang
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
A Review of Diagnostic Imaging Approaches to Assessing Parkinson's Disease. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
An Updated Overview of the Magnetic Resonance Imaging of Brain Iron in Movement Disorders. Behav Neurol 2022; 2022:3972173. [PMID: 35251368 PMCID: PMC8894064 DOI: 10.1155/2022/3972173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 01/12/2023] Open
Abstract
Brain iron load is one of the most important neuropathological hallmarks in movement disorders. Specifically, the iron provides most of the paramagnetic metal signals in the brain and its accumulation seems to play a key role, although not completely explained, in the degeneration of the basal ganglia, as well as other brain structures. Moreover, iron distribution patterns have been implicated in depicting different movement disorders. This work reviewed current literature on Magnetic Resonance Imaging for Brain Iron Detection and Quantification (MRI-BIDQ) in neurodegenerative processes underlying movement disorders.
Collapse
|
13
|
Onder H. The utility of susceptibility-weighted imaging in the diagnosis of multiple system atrophy, cerebellar type. JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.4103/jmedsci.jmedsci_149_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Mortezazadeh T, Seyedarabi H, Mahmoudian B, Islamian JP. Imaging modalities in differential diagnosis of Parkinson’s disease: opportunities and challenges. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00454-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Parkinson’s disease (PD) diagnosis is yet largely based on the related clinical aspects. However, genetics, biomarkers, and neuroimaging studies have demonstrated a confirming role in the diagnosis, and future developments might be used in a pre-symptomatic phase of the disease.
Main text
This review provides an update on the current applications of neuroimaging modalities for PD diagnosis. A literature search was performed to find published studies that were involved on the application of different imaging modalities for PD diagnosis. An organized search of PubMed/MEDLINE, Embase, ProQuest, Scopus, Cochrane, and Google Scholar was performed based on MeSH keywords and suitable synonyms. Two researchers (TM and JPI) independently and separately performed the literature search. Our search strategy in each database was done by the following terms: ((Parkinson [Title/Abstract]) AND ((“Parkinsonian syndromes ”[Mesh]) OR Parkinsonism [Title/Abstract])) AND ((PET [Title/Abstract]) OR “SPECT”[Mesh]) OR ((Functional imaging, Transcranial sonography [Title/Abstract]) OR “Magnetic resonance spectroscopy ”[Mesh]). Database search had no limitation in time, and our last update of search was in February 2021. To have a comprehensive search and to find possible relevant articles, a manual search was conducted on the reference list of the articles and limited to those published in English.
Conclusion
Early diagnosis of PD could be vital for early management and adequate neuroprotection. Recent neuroimaging modalities such as SPECT and PET imaging using radiolabeled tracers, MRI, and CT are used to discover the disease. By the modalities, it is possible to early diagnose dopaminergic degeneration and also to differentiate PD from others parkinsonian syndromes, to monitor the natural progression of the disease and the effect of neuroprotective treatments on the progression. In this regard, functional imaging techniques have provided critical insights and roles on PD.
Collapse
|
15
|
Sobański M, Zacharzewska-Gondek A, Waliszewska-Prosół M, Sąsiadek MJ, Zimny A, Bladowska J. A Review of Neuroimaging in Rare Neurodegenerative Diseases. Dement Geriatr Cogn Disord 2021; 49:544-556. [PMID: 33508841 DOI: 10.1159/000512543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Due to the variety of clinical symptoms that occur in rare neurodegenerative diseases and difficulties in the correct diagnosis, there is a need to learn their characteristic imaging findings by using conventional MRI. That knowledge helps to determine the appropriate differential diagnosis and avoid misdiagnosis. The aim of this review is to present the typical neuroimaging signs of the selected neurodegenerative disorders and to create a practical approach to imaging findings useful in everyday clinical practice. Images: Images of progressive supranuclear palsy (PSP), multiple system atrophy (MSA), corticobasal degeneration (CBD), Creutzfeldt-Jakob disease (CJD), Wilson's disease (WD), and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) are provided to visualize and distinguish the typical features of those diseases and therefore to assist neurologists and neuroradiologists in decision-making process. CONCLUSIONS It is important to know the characteristic MRI features of rare neurodegenerative diseases and to use them in everyday clinical practice. MRI is a valuable tool when considering the initial diagnosis because it is proven to be very useful in the differentiation of more advanced stages of the rare neurodegenerative diseases but also from other neurodegenerative disorders.
Collapse
Affiliation(s)
- Michał Sobański
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Zacharzewska-Gondek
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland,
| | | | - Marek Jan Sąsiadek
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Bladowska
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
Shukla JJ, Stefanova N, Bush AI, McColl G, Finkelstein DI, McAllum EJ. Therapeutic potential of iron modulating drugs in a mouse model of multiple system atrophy. Neurobiol Dis 2021; 159:105509. [PMID: 34537326 DOI: 10.1016/j.nbd.2021.105509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Multiple System Atrophy (MSA) is a rare neurodegenerative synucleinopathy which leads to severe disability followed by death within 6-9 years of symptom onset. There is compelling evidence suggesting that biological trace metals like iron and copper play an important role in synucleinopathies like Parkinson's disease and removing excess brain iron using chelators could slow down the disease progression. In human MSA, there is evidence of increased iron in affected brain regions, but role of iron and therapeutic efficacy of iron-lowering drugs in pre-clinical models of MSA have not been studied. We studied age-related changes in iron metabolism in different brain regions of the PLP-αsyn mice and tested whether iron-lowering drugs could alleviate disease phenotype in aged PLP-αsyn mice. Iron content, iron-ferritin association, ferritin protein levels and copper-ceruloplasmin association were measured in prefrontal cortex, putamen, substantia nigra and cerebellum of 3, 8, and 20-month-old PLP-αsyn and age-matched non-transgenic mice. Moreover, 12-month-old PLP-αsyn mice were administered deferiprone or ceruloplasmin or vehicle for 2 months. At the end of treatment period, motor testing and stereological analyses were performed. We found iron accumulation and perturbed iron-ferritin interaction in substantia nigra, putamen and cerebellum of aged PLP-αsyn mice. Furthermore, we found significant reduction in ceruloplasmin-bound copper in substantia nigra and cerebellum of the PLP-αsyn mice. Both deferiprone and ceruloplasmin prevented decline in motor performance in aged PLP-αsyn mice and were associated with higher neuronal survival and reduced density of α-synuclein aggregates in substantia nigra. This is the first study to report brain iron accumulation in a mouse model of MSA. Our results indicate that elevated iron in MSA mice may result from ceruloplasmin dysfunction and provide evidence that targeting iron in MSA could be a viable therapeutic option.
Collapse
Affiliation(s)
- Jay J Shukla
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Parkville, Victoria, Australia
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Parkville, Victoria, Australia
| | - Gawain McColl
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Parkville, Victoria, Australia
| | - David I Finkelstein
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Parkville, Victoria, Australia..
| | - Erin J McAllum
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
立花 久. [Diagnosis and treatment of old-onset Parkinson's disease]. Nihon Ronen Igakkai Zasshi 2021; 58:341-352. [PMID: 34483156 DOI: 10.3143/geriatrics.58.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Lim SJ, Suh CH, Shim WH, Kim SJ. Diagnostic performance of T2* gradient echo, susceptibility-weighted imaging, and quantitative susceptibility mapping for patients with multiple system atrophy-parkinsonian type: a systematic review and meta-analysis. Eur Radiol 2021; 32:308-318. [PMID: 34272590 DOI: 10.1007/s00330-021-08174-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To investigate the diagnostic performance of T2*-weighted gradient echo (GRE) imaging, susceptibility-weighted imaging (SWI), or quantitative susceptibility mapping (QSM) in differentiating multiple system atrophy-parkinsonian type (MSA-P) from Parkinson's disease (PD). METHODS A systematic literature search through the MEDLINE and EMBASE databases was performed, starting on September 8, 2020, to identify studies evaluating the diagnostic performance of putaminal hypointensity on T2* GRE or SWI and phase shift on QSM in differentiating MSA-P from PD. The pooled sensitivity and specificity were obtained using hierarchical logistic regression modeling and hierarchical summary receiver operating characteristic (HSROC) modeling. The pooled diagnostic yields of T2* GRE, SWI, or QSM among MSA-P patients were calculated using the DerSimonian-Laird random-effects model. RESULTS Twelve original articles with 985 patients were finally included. SWI was performed in seven studies, T2* GRE was performed in three studies, and QSM was performed in two studies. The pooled sensitivity and specificity were 0.65 (95% CI 0.51-0.78) and 0.90 (95% CI 0.83-0.95), respectively. The area under the HSROC curve was 0.87 (95% CI 0.84-0.90). The Higgins I2 statistic calculations revealed considerable heterogeneity in terms of both sensitivity (I2 = 72.12%) and specificity (I2 = 70.38%). The coupled forest plot revealed the threshold effect. For the nine studies in which area under the curve (AUC) was obtainable, the AUC ranged from 0.68 to 0.947, with a median of 0.819. The pooled diagnostic yield of T2* GRE, SWI, or QSM was 66% (95% CI 51-78%). CONCLUSIONS Putaminal hypointensity on T2* GRE or SWI and phase shift on QSM might be a promising diagnostic tool in differentiating MSA-P from PD. Further large multicenter prospective study is warranted. KEY POINTS • Three different index tests, definitions of positive image findings, thresholds, the way how to draw ROIs, reference standard, and MRI parameters could affect the heterogeneity of the study. • The pooled sensitivity and specificity were 0.65 (95% CI 0.51-0.78) and 0.90 (95% CI 0.83-0.95), respectively. • The pooled diagnostic yield of T2* GRE, SWI, or QSM was 66% (95% CI 51-78%).
Collapse
Affiliation(s)
- Su Jin Lim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Woo Hyun Shim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Feraco P, Gagliardo C, La Tona G, Bruno E, D’angelo C, Marrale M, Del Poggio A, Malaguti MC, Geraci L, Baschi R, Petralia B, Midiri M, Monastero R. Imaging of Substantia Nigra in Parkinson's Disease: A Narrative Review. Brain Sci 2021; 11:brainsci11060769. [PMID: 34207681 PMCID: PMC8230134 DOI: 10.3390/brainsci11060769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by motor and non-motor symptoms due to the degeneration of the pars compacta of the substantia nigra (SNc) with dopaminergic denervation of the striatum. Although the diagnosis of PD is principally based on a clinical assessment, great efforts have been expended over the past two decades to evaluate reliable biomarkers for PD. Among these biomarkers, magnetic resonance imaging (MRI)-based biomarkers may play a key role. Conventional MRI sequences are considered by many in the field to have low sensitivity, while advanced pulse sequences and ultra-high-field MRI techniques have brought many advantages, particularly regarding the study of brainstem and subcortical structures. Nowadays, nigrosome imaging, neuromelanine-sensitive sequences, iron-sensitive sequences, and advanced diffusion weighted imaging techniques afford new insights to the non-invasive study of the SNc. The use of these imaging methods, alone or in combination, may also help to discriminate PD patients from control patients, in addition to discriminating atypical parkinsonian syndromes (PS). A total of 92 articles were identified from an extensive review of the literature on PubMed in order to ascertain the-state-of-the-art of MRI techniques, as applied to the study of SNc in PD patients, as well as their potential future applications as imaging biomarkers of disease. Whilst none of these MRI-imaging biomarkers could be successfully validated for routine clinical practice, in achieving high levels of accuracy and reproducibility in the diagnosis of PD, a multimodal MRI-PD protocol may assist neuroradiologists and clinicians in the early and differential diagnosis of a wide spectrum of neurodegenerative disorders.
Collapse
Affiliation(s)
- Paola Feraco
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via S. Giacomo 14, 40138 Bologna, Italy;
- Neuroradiology Unit, S. Chiara Hospital, 38122 Trento, Italy;
| | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
- Correspondence:
| | - Giuseppe La Tona
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Eleonora Bruno
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Costanza D’angelo
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Maurizio Marrale
- Department of Physics and Chemistry, University of Palermo, 90128 Palermo, Italy;
| | - Anna Del Poggio
- Department of Neuroradiology and CERMAC, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, 20132 Milan, Italy;
| | | | - Laura Geraci
- Diagnostic and Interventional Neuroradiology Unit, A.R.N.A.S. Civico-Di Cristina-Benfratelli, 90127 Palermo, Italy;
| | - Roberta Baschi
- Section of Neurology, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.B.); (R.M.)
| | | | - Massimo Midiri
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Roberto Monastero
- Section of Neurology, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.B.); (R.M.)
| |
Collapse
|
20
|
Bae YJ, Kim JM, Sohn CH, Choi JH, Choi BS, Song YS, Nam Y, Cho SJ, Jeon B, Kim JH. Imaging the Substantia Nigra in Parkinson Disease and Other Parkinsonian Syndromes. Radiology 2021; 300:260-278. [PMID: 34100679 DOI: 10.1148/radiol.2021203341] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkinson disease is characterized by dopaminergic cell loss in the substantia nigra of the midbrain. There are various imaging markers for Parkinson disease. Recent advances in MRI have enabled elucidation of the underlying pathophysiologic changes in the nigral structure. This has contributed to accurate and early diagnosis and has improved disease progression monitoring. This article aims to review recent developments in nigral imaging for Parkinson disease and other parkinsonian syndromes, including nigrosome imaging, neuromelanin imaging, quantitative iron mapping, and diffusion-tensor imaging. In particular, this article examines nigrosome imaging using 7-T MRI and 3-T susceptibility-weighted imaging. Finally, this article discusses volumetry and its clinical importance related to symptom manifestation. This review will improve understanding of recent advancements in nigral imaging of Parkinson disease. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Yun Jung Bae
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jong-Min Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Chul-Ho Sohn
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Ji-Hyun Choi
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Byung Se Choi
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoo Sung Song
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoonho Nam
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Se Jin Cho
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Beomseok Jeon
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jae Hyoung Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| |
Collapse
|
21
|
Parr AC, Calabro F, Larsen B, Tervo-Clemmens B, Elliot S, Foran W, Olafsson V, Luna B. Dopamine-related striatal neurophysiology is associated with specialization of frontostriatal reward circuitry through adolescence. Prog Neurobiol 2021; 201:101997. [PMID: 33667595 PMCID: PMC8096717 DOI: 10.1016/j.pneurobio.2021.101997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
Characterizing developmental changes in frontostriatal circuitry is critical to understanding adolescent development and can clarify neurobiological mechanisms underlying increased reward sensitivity and risk-taking and the emergence of psychopathology during this period. However, the role of striatal neurobiology in the development of frontostriatal circuitry through human adolescence remains largely unknown. We examined background connectivity during a reward-guided decision-making task ("reward-state"), in addition to resting-state, and assessed the association between age-related changes in frontostriatal connectivity and age-related changes in reward learning and risk-taking through adolescence. Further, we examined the contribution of dopaminergic processes to changes in frontostriatal circuitry and decision-making using MR-based assessments of striatal tissue-iron as a correlate of dopamine-related neurobiology. Connectivity between the nucleus accumbens (NAcc) and ventral anterior cingulate, subgenual cingulate, and orbitofrontal cortices decreased through adolescence into adulthood, and decreases in reward-state connectivity were associated with improvements reward-guided decision-making as well as with decreases in risk-taking. Finally, NAcc tissue-iron mediated age-related changes and was associated with variability in connectivity, and developmental increases in NAcc R2' corresponded with developmental decreases in connectivity. Our results provide evidence that dopamine-related striatal properties contribute to the specialization of frontostriatal circuitry, potentially underlying changes in risk-taking and reward sensitivity into adulthood.
Collapse
Affiliation(s)
- Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Bart Larsen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Brenden Tervo-Clemmens
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Samuel Elliot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Valur Olafsson
- NUBIC, Northeastern University, Boston, MA, 02115, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| |
Collapse
|
22
|
Hu X, Sun X, Hu F, Liu F, Ruan W, Wu T, An R, Lan X. Multivariate radiomics models based on 18F-FDG hybrid PET/MRI for distinguishing between Parkinson's disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2021; 48:3469-3481. [PMID: 33829415 DOI: 10.1007/s00259-021-05325-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE To construct multivariate radiomics models using hybrid 18F-FDG PET/MRI for distinguishing between Parkinson's disease (PD) and multiple system atrophy (MSA). METHODS Ninety patients (60 with PD and 30 with MSA) were randomized to training and test sets in a 7:3 ratio. All patients underwent 18F-fluorodeoxyglucose (18F-FDG) PET/MRI to simultaneously obtain metabolic images (18F-FDG), structural MRI images (T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) and T2-weighted fluid-attenuated inversion recovery (T2/FLAIR)) and functional MRI images (susceptibility-weighted imaging (SWI) and apparent diffusion coefficient). Using PET and five MRI sequences, we extracted 1172 radiomics features from the putamina and caudate nuclei. The radiomics signatures were constructed with the least absolute shrinkage and selection operator algorithm in the training set, with progressive optimization through single-sequence and double-sequence radiomics models. Multivariable logistic regression analysis was used to develop a clinical-radiomics model, combining the optimal multi-sequence radiomics signature with clinical characteristics and SUV values. The diagnostic performance of the models was assessed by receiver operating characteristic and decision curve analysis (DCA). RESULTS The radiomics signatures showed favourable diagnostic efficacy. The optimal model comprised structural (T1WI), functional (SWI) and metabolic (18F-FDG) sequences (RadscoreFDG_T1WI_SWI) with the area under curves (AUCs) of the training and test sets of 0.971 and 0.957, respectively. The integrated model, incorporating RadscoreFDG_T1WI_SWI, three clinical symptoms (disease duration, dysarthria and autonomic failure) and SUVmax, demonstrated satisfactory calibration and discrimination in the training and test sets (0.993 and 0.994, respectively). DCA indicated the highest clinical benefit of the clinical-radiomics integrated model. CONCLUSIONS The radiomics signature with metabolic, structural and functional information provided by hybrid 18F-FDG PET/MRI may achieve promising diagnostic efficacy for distinguishing between PD and MSA. The clinical-radiomics integrated model performed best.
Collapse
Affiliation(s)
- Xuehan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tingfan Wu
- GE Healthcare, Pudong New Town, No.1, Huatuo Road, Shanghai, 200000, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
23
|
Sotoudeh H, Sarrami AH, Wang JX, Saadatpour Z, Razaei A, Gaddamanugu S, Choudhary G, Shafaat O, Singhal A. Susceptibility-Weighted Imaging in Neurodegenerative Disorders: A Review. J Neuroimaging 2021; 31:459-470. [PMID: 33624404 DOI: 10.1111/jon.12841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
As human life expectancy increases, there is an increased prevalence of neurodegenerative disorders and dementia. There are many ongoing research trials for early diagnosis and management of dementia, and neuroimaging is a critical part of such studies. However, conventional neuroimaging often fails to provide enough diagnostic findings in patients with neurodegenerative disorders. In this context, different MRI sequences are currently under investigation to facilitate the accurate diagnosis of such disorders. Susceptibility-weighted imaging (SWI) is an innovative MRI technique that utilizes "magnitude" and "phase" images to produce an image contrast that is sensitive for the detection of susceptibility differences of the tissues. As many neurodegenerative disorders are associated with accelerated iron deposition and/or microhemorrhages in different parts of the brain, SWI can be applied to detect these diagnostic clues. For instance, in cerebral amyloid angiopathy, SWI can demonstrate cortical microhemorrhages, which are predominantly in the frontal and parietal regions. Or in Parkinson disease, abnormal swallow-tail sign on high-resolution SWI is highly diagnostic. Also, SWI is a useful sequence to detect the low signal intensity of precentral cortices in patients with amyotrophic lateral sclerosis. Being familiar with SWI findings in neurodegenerative disorders is critical for an accurate diagnosis. In this paper, the authors review the technical parameters of SWI, physiologic, and pathologic iron deposition in the brain, and the role of SWI in the evaluation of neurodegenerative disorders in daily practice.
Collapse
Affiliation(s)
- Houman Sotoudeh
- Department of Radiology and Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL
| | | | - Jian-Xiong Wang
- Division of Physics and Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Zahra Saadatpour
- Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Ali Razaei
- Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Siddhartha Gaddamanugu
- Department of Radiology, University of Alabama at Birmingham (UAB) and VA Hospital, Birmingham, AL
| | - Gagandeep Choudhary
- Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Omid Shafaat
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aparna Singhal
- Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, AL
| |
Collapse
|
24
|
Ren Q, Meng X, Zhang B, Zhang J, Shuai X, Nan X, Zhao C. Morphology and signal changes of the lentiform nucleus based on susceptibility weighted imaging in parkinsonism-predominant multiple system atrophy. Parkinsonism Relat Disord 2020; 81:194-199. [DOI: 10.1016/j.parkreldis.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022]
|
25
|
Fedeli MP, Contarino VE, Siggillino S, Samoylova N, Calloni S, Melazzini L, Conte G, Sacilotto G, Pezzoli G, Triulzi FM, Scola E. Iron deposition in Parkinsonisms: A Quantitative Susceptibility Mapping study in the deep grey matter. Eur J Radiol 2020; 133:109394. [PMID: 33190103 DOI: 10.1016/j.ejrad.2020.109394] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/30/2020] [Indexed: 02/09/2023]
Abstract
PURPOSE The aim of the study is to quantify the susceptibility in deep grey nuclei that are affected by pathological processes related to iron accumulation in patients with Parkinson's disease and primary atypical parkinsonisms such as Progressive Supranuclear Palsy, Multiple System Atrophy and Cortico-Basal Degeneration, in order to assist the differential diagnosis among parkinsonian syndromes. METHODS We enrolled 49 patients with Parkinson's disease and 26 patients with primary atypical parkinsonisms. Automatic segmentation of putamen, globus pallidus, caudate nucleus and thalamus and manual segmentation of red nuclei and substantia nigra were performed, and region of interest-based Quantitative Susceptibility Mapping analysis were performed. Statistical comparisons of the mean susceptibility values in the segmented brain regions were performed among primary atypical parkinsonisms and Parkinson's disease. RESULTS Susceptibility values in red nuclei were increased in Progressive Supranuclear Palsy patients compared to parkinsonian phenotype Multiple System Atrophy (p = 0.004), and Parkinson's disease patients (p = 0.006). Susceptibility in thalamus was decreased in Cortico-Basal Degeneration patients compared to Parkinson's disease (p = 0.006), Multiple System Atrophy with cerebellar phenotype (p = 0.031) and parkinsonian phenotype (p = 0.001) patients, and in Progressive Supranuclear Palsy patients compared to Multiple System Atrophy with parkinsonian phenotype patients (p = 0.012). CONCLUSIONS Quantitative Susceptibility Mapping allows the depiction and quantification of different patterns of iron deposition in the deep gray nuclei occurring in primary atypical parkinsonisms and Parkinson's disease and it may help as a non-invasive tool in the differential diagnosis between parkinsonian syndromes.
Collapse
Affiliation(s)
- Maria Paola Fedeli
- Radiology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Valeria Elisa Contarino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy.
| | - Silvia Siggillino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy
| | - Nina Samoylova
- Faculty of Medicine and Surgery, Università degli Studi di Milano, Milan, Italy
| | - Sonia Calloni
- San Raffaele Scientific Institute, Department of Neuroradiology, Milan, Italy
| | - Luca Melazzini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Conte
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy
| | | | - Gianni Pezzoli
- Parkinson Institute, ASST 'Gaetano Pini-CTO', Milan, Italy; Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Fabio Maria Triulzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Italy
| | - Elisa Scola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy
| |
Collapse
|
26
|
Martin-Bastida A, Tilley BS, Bansal S, Gentleman SM, Dexter DT, Ward RJ. Iron and inflammation: in vivo and post-mortem studies in Parkinson's disease. J Neural Transm (Vienna) 2020; 128:15-25. [PMID: 33079260 DOI: 10.1007/s00702-020-02271-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
In these present studies, in vivo and and post-mortem studies have investigated the association between iron and inflammation. Early-stage Parkinson's disease (PD) patients, of less than 5 years disease duration, showed associations of plasmatic ferritin concentrations with both proinflammatory cytokine interleukin-6 and hepcidin, a regulator of iron metabolism as well as clinical measures. In addition ratios of plasmatic ferritin and iron accumulation in deep grey matter nuclei assessed with relaxometry T2* inversely correlated with disease severity and duration of PD. On the hand, post-mortem material of the substantia nigra compacta (SNc) divided according to Braak and Braak scores, III-IV and V-VI staging, exhibited comparable microgliosis, with a variety of phenotypes present. There was an association between the intensity of microgliosis and iron accumulation as assayed by Perl's staining in the SNc sections. In conclusion, markers of inflammation and iron metabolism in both systemic and brain systems are closely linked in PD, thus offering a potential biomarker for progression of the disease.
Collapse
Affiliation(s)
- Antonio Martin-Bastida
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
- Department of Neurology and Neurosciences, Clínica Universidad de Navarra, Pamplona-Madrid, Spain.
| | - Bension Shlomo Tilley
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Sukhi Bansal
- Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Steve M Gentleman
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - David T Dexter
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Roberta J Ward
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
27
|
Saeed U, Lang AE, Masellis M. Neuroimaging Advances in Parkinson's Disease and Atypical Parkinsonian Syndromes. Front Neurol 2020; 11:572976. [PMID: 33178113 PMCID: PMC7593544 DOI: 10.3389/fneur.2020.572976] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) and atypical Parkinsonian syndromes are progressive heterogeneous neurodegenerative diseases that share clinical characteristic of parkinsonism as a common feature, but are considered distinct clinicopathological disorders. Based on the predominant protein aggregates observed within the brain, these disorders are categorized as, (1) α-synucleinopathies, which include PD and other Lewy body spectrum disorders as well as multiple system atrophy, and (2) tauopathies, which comprise progressive supranuclear palsy and corticobasal degeneration. Although, great strides have been made in neurodegenerative disease research since the first medical description of PD in 1817 by James Parkinson, these disorders remain a major diagnostic and treatment challenge. A valid diagnosis at early disease stages is of paramount importance, as it can help accommodate differential prognostic and disease management approaches, enable the elucidation of reliable clinicopathological relationships ideally at prodromal stages, as well as facilitate the evaluation of novel therapeutics in clinical trials. However, the pursuit for early diagnosis in PD and atypical Parkinsonian syndromes is hindered by substantial clinical and pathological heterogeneity, which can influence disease presentation and progression. Therefore, reliable neuroimaging biomarkers are required in order to enhance diagnostic certainty and ensure more informed diagnostic decisions. In this article, an updated presentation of well-established and emerging neuroimaging biomarkers are reviewed from the following modalities: (1) structural magnetic resonance imaging (MRI), (2) diffusion-weighted and diffusion tensor MRI, (3) resting-state and task-based functional MRI, (4) proton magnetic resonance spectroscopy, (5) transcranial B-mode sonography for measuring substantia nigra and lentiform nucleus echogenicity, (6) single photon emission computed tomography for assessing the dopaminergic system and cerebral perfusion, and (7) positron emission tomography for quantifying nigrostriatal functions, glucose metabolism, amyloid, tau and α-synuclein molecular imaging, as well as neuroinflammation. Multiple biomarkers obtained from different neuroimaging modalities can provide distinct yet corroborative information on the underlying neurodegenerative processes. This integrative "multimodal approach" may prove superior to single modality-based methods. Indeed, owing to the international, multi-centered, collaborative research initiatives as well as refinements in neuroimaging technology that are currently underway, the upcoming decades will mark a pivotal and exciting era of further advancements in this field of neuroscience.
Collapse
Affiliation(s)
- Usman Saeed
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Center, Toronto, ON, Canada.,Cognitive and Movement Disorders Clinic, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| |
Collapse
|
28
|
Pellecchia MT, Stankovic I, Fanciulli A, Krismer F, Meissner WG, Palma JA, Panicker JN, Seppi K, Wenning GK. Can Autonomic Testing and Imaging Contribute to the Early Diagnosis of Multiple System Atrophy? A Systematic Review and Recommendations by the Movement Disorder Society Multiple System Atrophy Study Group. Mov Disord Clin Pract 2020; 7:750-762. [PMID: 33043073 DOI: 10.1002/mdc3.13052] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/23/2020] [Indexed: 01/01/2023] Open
Abstract
Background In the current consensus diagnostic criteria, the diagnosis of probable multiple system atrophy (MSA) is based solely on clinical findings, whereas neuroimaging findings are listed as aid for the diagnosis of possible MSA. There are overlapping phenotypes between MSA-parkinsonian type and Parkinson's disease, progressive supranuclear palsy, and dementia with Lewy bodies, and between MSA-cerebellar type and sporadic adult-onset ataxia resulting in a significant diagnostic delay and misdiagnosis of MSA during life. Objectives In light of an ongoing effort to revise the current consensus criteria for MSA, the Movement Disorders Society Multiple System Atrophy Study Group performed a systematic review of original articles published before August 2019. Methods We included articles that studied at least 10 patients with MSA as well as participants with another disorder or control group for comparison purposes. MSA was defined by neuropathological confirmation, or as clinically probable, or clinically probable plus possible according to consensus diagnostic criteria. Results We discuss the pitfalls and benefits of each diagnostic test and provide specific recommendations on how to evaluate patients in whom MSA is suspected. Conclusions This systematic review of relevant studies indicates that imaging and autonomic function tests significantly contribute to increasing the accuracy of a diagnosis of MSA.
Collapse
Affiliation(s)
- Maria Teresa Pellecchia
- Center for Neurodegenerative Diseases, Department of Medicine, Neuroscience Section, University of Salerno Fisciano Italy
| | - Iva Stankovic
- Neurology Clinic, Clinical Center of Serbia School of Medicine, University of Belgrade Belgrade Serbia
| | | | - Florian Krismer
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Wassilios G Meissner
- French Reference Center for MSA, Department of Neurology University Hospital Bordeaux, Bordeaux and Institute of Neurodegenerative Disorders, University Bordeaux, Centre National de la Recherche Scientifique Unite Mixte de Recherche Bordeaux Bordeaux France
| | - Jose-Alberto Palma
- Dysautonomia Center, Langone Medical Center New York University School of Medicine New York New York USA
| | - Jalesh N Panicker
- Institute of Neurology, University College London London United Kingdom.,Department of Uro-Neurology The National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Klaus Seppi
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Gregor K Wenning
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | | |
Collapse
|
29
|
Pyatigorskaya N, Sanz-Morère CB, Gaurav R, Biondetti E, Valabregue R, Santin M, Yahia-Cherif L, Lehéricy S. Iron Imaging as a Diagnostic Tool for Parkinson's Disease: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:366. [PMID: 32547468 PMCID: PMC7270360 DOI: 10.3389/fneur.2020.00366] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Parkinson's disease (PD) is a progressive neurodegenerative disease whose main neuropathological feature is the loss of dopaminergic neurons of the substantia nigra (SN). There is also an increase in iron content in the SN in postmortem and imaging studies using iron-sensitive MRI techniques. However, MRI results are variable across studies. Objectives: We performed a systematic meta-analysis of SN iron imaging studies in PD to better understand the role of iron-sensitive MRI quantification to distinguish patients from healthy controls. We also studied the factors that may influence iron quantification and analyzed the correlations between demographic and clinical data and iron load. Methods: We searched PubMed and ScienceDirect databases (from January 1994 to December 2019) for studies that analyzed iron load in the SN of PD patients using T2*, R2*, susceptibility weighting imaging (SWI), or quantitative susceptibility mapping (QSM) and compared the values with healthy controls. Details for each study regarding participants, imaging methods, and results were extracted. The effect size and confidence interval (CI) of 95% were calculated for each study as well as the pooled weighted effect size for each marker over studies. Hence, the correlations between technical and clinical metrics with iron load were analyzed. Results: Forty-six articles fulfilled the inclusion criteria including 27 for T2*/R2* measures, 10 for SWI, and 17 for QSM (3,135 patients and 1,675 controls). Eight of the articles analyzed both R2* and QSM. A notable effect size was found in the SN in PD for R2* increase (effect size: 0.84, 95% CI: 0.60 to 1.08), for SWI measurements (1.14, 95% CI: 0.54 to 1.73), and for QSM increase (1.13, 95% CI: 0.86 to 1.39). Correlations between imaging measures and Unified Parkinson's Disease Rating Scale (UPDRS) scores were mostly observed for QSM. Conclusions: The consistent increase in MRI measures of iron content in PD across the literature using R2*, SWI, or QSM techniques confirmed that these measurements provided reliable markers of iron content in PD. Several of these measurements correlated with the severity of motor symptoms. Lastly, QSM appeared more robust and reproducible than R2* and more suited to multicenter studies.
Collapse
Affiliation(s)
- Nadya Pyatigorskaya
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de neuroradiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Clara B Sanz-Morère
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de neuroradiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rahul Gaurav
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Emma Biondetti
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Romain Valabregue
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Mathieu Santin
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Lydia Yahia-Cherif
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Stéphane Lehéricy
- Institut du Cerveau et de la Moelle épinière (ICM), Centre de NeuroImagerie de Recherche (CENIR), ICM, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de neuroradiologie, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
30
|
Arribarat G, Péran P. Quantitative MRI markers in Parkinson's disease and parkinsonian syndromes. Curr Opin Neurol 2020; 33:222-229. [DOI: 10.1097/wco.0000000000000796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Li SJ, Ren YD, Li J, Cao B, Ma C, Qin SS, Li XR. The role of iron in Parkinson's disease monkeys assessed by susceptibility weighted imaging and inductively coupled plasma mass spectrometry. Life Sci 2019; 240:117091. [PMID: 31760102 DOI: 10.1016/j.lfs.2019.117091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023]
Abstract
Mounting evidences indicated that elevated iron levels in the substantia nigra (SN) have been concerned as the underlying mechanisms of neurodegenerative diseases, including Parkinson's disease (PD). The present study used the 1-Methyl-4-phenyl-1, 2, 3, 6 -tetrahydropyridine (MPTP)-treated cynomolgus monkeys for PD to evaluate the usability of SWI for assessing iron deposition in the cerebral nuclei of PD. The results showed that susceptibility-weighted imaging (SWI) phase values of the ipsilateral (MPTP-lesion side) SN of MPTP-treated monkeys were lower than those in the contralateral SN of MPTP-treated monkeys and the same side of Control monkeys, suggesting that iron deposition were elevated in the affected side SN of MPTP-treated monkeys. Whereas MPTP has not effects on the SWI phase values in other detected brain regions of monkeys, including red nucleus (RN), putamen (PUT) and caudate nucleus (CA). Furthermore, ICP-MS results showed that MPTP increased the iron levels in MPTP injection side, but no in the ipsilateral striatum. Additionally, MPTP treatment did not affect the calcium and manganese levels in the detected brain regions of monkeys. However, Pearson correlation analysis results indicated that there were not relationship between SWI phase values in MPTP-lesion side of SN with the behavioral score, tyrosine hydroxylase (TH)-positive cells number and iron levels in the MPTP-lesion side of midbrain. Taken together, the results confirm the involvement of SN iron accumulations in the MPTP-treated monkey models for PD, and indirectly verify the usability of SWI for the measurement of iron deposition in the cerebral nuclei of PD.
Collapse
Affiliation(s)
- Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021, Guangxi Province, China
| | - Yan-De Ren
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China.
| | - Jin Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning 530021, Guangxi Province, China
| | - Bin Cao
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Chi Ma
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Shan-Shan Qin
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xiang-Rong Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning 530021, Guangxi Province, China.
| |
Collapse
|
32
|
Bergsland N, Tavazzi E, Schweser F, Jakimovski D, Hagemeier J, Dwyer MG, Zivadinov R. Targeting Iron Dyshomeostasis for Treatment of Neurodegenerative Disorders. CNS Drugs 2019; 33:1073-1086. [PMID: 31556017 PMCID: PMC6854324 DOI: 10.1007/s40263-019-00668-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While iron has an important role in the normal functioning of the brain owing to its involvement in several physiological processes, dyshomeostasis has been found in many neurodegenerative disorders, as evidenced by both histopathological and imaging studies. Although the exact causes have remained elusive, the fact that altered iron levels have been found in disparate diseases suggests that iron may contribute to their development and/or progression. As such, the processes involved in iron dyshomeostasis may represent novel therapeutic targets. There are, however, many questions about the exact interplay between neurodegeneration and altered iron homeostasis. Some insight can be gained by considering the parallels with respect to what occurs in healthy aging, which is also characterized by increased iron throughout many regions in the brain along with progressive neurodegeneration. Nevertheless, the exact mechanisms of iron-mediated damage are likely disease specific to a certain degree, given that iron plays a crucial role in many disparate biological processes, which are not always affected in the same way across different neurodegenerative disorders. Moreover, it is not even entirely clear yet whether iron actually has a causative role in all of the diseases where altered iron levels have been noted. For example, there is strong evidence of iron dyshomeostasis leading to neurodegeneration in Parkinson's disease, but there is still some question as to whether changes in iron levels are merely an epiphenomenon in multiple sclerosis. Recent advances in neuroimaging now offer the possibility to detect and monitor iron levels in vivo, which allows for an improved understanding of both the temporal and spatial dynamics of iron changes and associated neurodegeneration compared to post-mortem studies. In this regard, iron-based imaging will likely play an important role in the development of therapeutic approaches aimed at addressing altered iron dynamics in neurodegenerative diseases. Currently, the bulk of such therapies have focused on chelating excess iron. Although there is some evidence that these treatment options may yield some benefit, they are not without their own limitations. They are generally effective at reducing brain iron levels, as assessed by imaging, but clinical benefits are more modest. New drugs that specifically target iron-related pathological processes may offer the possibility to prevent, or at the least, slow down irreversible neurodegeneration, which represents an unmet therapeutic target.
Collapse
Affiliation(s)
- Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA.
| | - Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
33
|
Lee MJ, Kim TH, Kim SJ, Kim BK, Mun CW, Lee JH. Quantitative Validation of a Visual Rating Scale for Defining High-Iron Putamen in Patients With Multiple System Atrophy. Front Neurol 2019; 10:1014. [PMID: 31616365 PMCID: PMC6763953 DOI: 10.3389/fneur.2019.01014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives: To validate a visual rating scale reflecting sub-regional patterns of putaminal hypointensity in susceptibility-weighted imaging of patients with multiple system atrophy (MSA). Methods: Using a visual rating scale (from G0 to G3), 2 examiners independently rated putaminal hypointensities of 37 MSA patients and 21 control subjects. To investigate the correlation with the scales, R2* values and the volume of the entire putamen were measured. Results: MSA patients with parkinsonian variant had significantly higher scores than those with cerebellar variant. Visual rating scores in MSA were correlated with R2* values [General estimating equation (GEE), Wald chi-square = 25.89, corrected p < 0.001] and volume (Wald chi-square = 75.44, corrected p < 0.001). They correlated with UPDRS motor scores. Binary logistic regression analyses revealed that the visual rating scale was a significant predictor for discriminating MSA patients from controls [multivariate model adjusted for age and sex, odds ratio 52.722 (corrected p = 0.009)]. Pairwise comparison between areas under the curve (AUCs) revealed that the visual rating scale demonstrated higher accuracy than R2* values [difference between AUCs; univariate model = 0.247 (corrected p < 0.001); multivariate model = 0.186 (corrected p = 0.003)]. There were no significant differences in clinical characteristics between the high-iron group, defined as putamen with visual rating scale ≥ G2 and R2* values ≥ third quartile, and the remaining patients. Conclusion: The visual rating scale, which reflects quantitative iron content and atrophy of the putamen as well as motor severities, could be useful for the discrimination and evaluation of patients with MSA.
Collapse
Affiliation(s)
- Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Tae-Hyung Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| | - Seung Joo Kim
- Department of Neurology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Baik-Kyun Kim
- Department of Neurology, Chungbuk National University Hospital, Cheongju-si, South Korea
| | - Chi-Woong Mun
- Department of Biomedical Engineering, Inje University, Gimhae-si, South Korea
| | - Jae-Hyeok Lee
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan-si, South Korea
| |
Collapse
|
34
|
Levin J, Maaß S, Schuberth M, Giese A, Oertel WH, Poewe W, Trenkwalder C, Wenning GK, Mansmann U, Südmeyer M, Eggert K, Mollenhauer B, Lipp A, Löhle M, Classen J, Münchau A, Kassubek J, Gandor F, Berg D, Egert-Schwender S, Eberhardt C, Paul F, Bötzel K, Ertl-Wagner B, Huppertz HJ, Ricard I, Höglinger GU. Safety and efficacy of epigallocatechin gallate in multiple system atrophy (PROMESA): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2019; 18:724-735. [PMID: 31278067 DOI: 10.1016/s1474-4422(19)30141-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Multiple system atrophy is a rare neurodegenerative disease characterised by aggregation of α-synuclein in oligodendrocytes and neurons. The polyphenol epigallocatechin gallate inhibits α-synuclein aggregation and reduces associated toxicity. We aimed to establish if epigallocatechin gallate could safely slow disease progression in patients with multiple system atrophy. METHODS We did a randomised, double-blind, parallel group, placebo-controlled clinical trial at 12 specialist centres in Germany. Eligible participants were older than 30 years; met consensus criteria for possible or probable multiple system atrophy and could ambulate independently (ie, were at Hoehn and Yahr stages 1-3); and were on stable anti-Parkinson's, anti-dysautonomia, anti-dementia, and anti-depressant regimens (if necessary) for at least 1 month. Participants were randomly assigned (1:1) to epigallocatechin gallate or placebo (mannitol) via a web-generated permuted blockwise randomisation list (block size=2) that was stratified by disease subtype (parkinsonism-predominant disease vs cerebellar-ataxia-predominant disease). All participants and study personnel were masked to treatment assignment. Participants were given one hard gelatin capsule (containing either 400 mg epigallocatechin gallate or mannitol) orally once daily for 4 weeks, then one capsule twice daily for 4 weeks, and then one capsule three times daily for 40 weeks. After 48 weeks, all patients underwent a 4-week wash-out period. The primary endpoint was change in motor examination score of the Unified Multiple System Atrophy Rating Scale (UMSARS) from baseline to 52 weeks. Efficacy analyses were done in all people who received at least one dose of study medication. Safety was analysed in all people who received at least one dose of the study medication to which they had been randomly assigned. This trial is registered with ClinicalTrials.gov (NCT02008721) and EudraCT (2012-000928-18), and is completed. FINDINGS Between April 23, 2014, and Sept 3, 2015, 127 participants were screened and 92 were randomly assigned-47 to epigallocatechin gallate and 45 to placebo. Of these, 67 completed treatment and 64 completed the study (altough one of these patients had a major protocol violation). There was no evidence of a difference in the mean change from baseline to week 52 in motor examination scores on UMSARS between the epigallocatechin gallate (5·66 [SE 1·01]) and placebo (6·60 [0·99]) groups (mean difference -0·94 [SE 1·41; 95% CI -3·71 to 1·83]; p=0·51). Four patients in the epigallocatechin gallate group and two in the placebo group died. Two patients in the epigallocatechin gallate group had to stop treatment because of hepatotoxicity. INTERPRETATION 48 weeks of epigallocatechin gallate treatment did not modify disease progression in patients with multiple system atrophy. Epigallocatechin gallate was overall well tolerated but was associated with hepatotoxic effects in some patients, and thus doses of more than 1200 mg should not be used. FUNDING ParkinsonFonds Deutschland, German Parkinson Society, German Neurology Foundation, Lüneburg Foundation, Bischof Dr Karl Golser Foundation, and Dr Arthur Arnstein Foundation.
Collapse
Affiliation(s)
- Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Sylvia Maaß
- German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany; Department of Neurology, Technical University Munich, Munich, Germany
| | - Madeleine Schuberth
- Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
| | - Werner Poewe
- Department of Neurobiology, Medizinische Universität Innsbruck, Innsbruck, Austria
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany; Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Gregor K Wenning
- Department of Neurobiology, Medizinische Universität Innsbruck, Innsbruck, Austria
| | - Ulrich Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karla Eggert
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Axel Lipp
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Löhle
- Department of Neurology, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases, Rostock, Germany; Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Florin Gandor
- Movement Disorders Hospital, Beelitz-Heilstätten, Germany
| | - Daniela Berg
- Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Cornelia Eberhardt
- Pharmacy Department, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrueck Center for Molecular Medicine, NeuroCure Experimental and Clinical Research Center, Berlin, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Radiology, The Hopsital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Ingrid Ricard
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases, Munich, Germany; Department of Neurology, Technical University Munich, Munich, Germany; Department of Neurology, Hanover Medical School, Hanover, Germany.
| |
Collapse
|
35
|
Xu J, Zhang M. Use of Magnetic Resonance Imaging and Artificial Intelligence in Studies of Diagnosis of Parkinson's Disease. ACS Chem Neurosci 2019; 10:2658-2667. [PMID: 31083923 DOI: 10.1021/acschemneuro.9b00207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder. It has a delitescent onset and a slow progress. The clinical manifestations of PD in patients are highly heterogeneous. Thus, PD diagnosis process is complex and mainly depends on the professional knowledge and experience of the physician. Magnetic resonance imaging (MRI) could detect the small changes in the brain of PD patients, and quantitative analysis of brain MRI may improve the clinical diagnosis efficiency. However, due to the complexity of clinical courses in PD and the high dimensionality in multimodal MRI data, traditional mathematical analysis could not effectively extract the huge information in them. Up to now, the accuracy of PD diagnosis in large sample size is still unsatisfying. As artificial intelligence (AI) is becoming more mature, varieties of statistical models and machine learning (ML) algorithms have been used for quantitative imaging data analysis to explore a diagnostic result. This review aims to state an overview of existing research recently that used statistical ML/AI methods to perform quantitative analysis of MR image data for the study of PD diagnosis. First we review the recent research in three subareas: diagnosis, differential diagnosis, and subtyping of PD. Then we described the overall workflow from MR image to classification result. Finally, we summarized a critical assessment of the current research and provide some recommendations for likely future research developments and trends.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Radiology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31000, China
| |
Collapse
|
36
|
T2*-weighted MRI values correlate with motor and cognitive dysfunction in Parkinson's disease. Neurobiol Aging 2019; 80:91-98. [PMID: 31103636 DOI: 10.1016/j.neurobiolaging.2019.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/20/2022]
Abstract
Brain iron load is one of the main neuropathologic hallmarks of Parkinson's disease (PD). Previous studies indicated that iron in the substantia nigra (SN) is related to disease duration and motor impairment. We explore, through a cross-sectional study, the association between brain iron distribution, evaluated by T2*-weighted magnetic resonance imaging (T2*), and clinical features in a cohort of patients with PD. Thirty-two patients with PD, compared with 10 control subjects, were evaluated for motor and cognitive features (attention and working memory, executive functions, language, memory, and visuospatial function). They underwent a magnetic resonance imaging protocol including T2* analysis of specific brain regions of interest to measure iron load compared with healthy control subjects. We found that iron content of the SN correlated positively with both disease duration and Unified Parkinson's Disease Rating Scale III off score. Montreal Cognitive Assessment, Spatial Span, and Graded Naming Test scores were inversely associated with iron load of the SN, whereas Wechsler Adult Intelligence Scale-IV Similarities score showed an inverse relationship with iron content in all the regions of interest examined. Our findings suggest a relationship between topographic brain iron distribution and cognitive domain impairment.
Collapse
|
37
|
Lee JH, Lee MS. Brain Iron Accumulation in Atypical Parkinsonian Syndromes: in vivo MRI Evidences for Distinctive Patterns. Front Neurol 2019; 10:74. [PMID: 30809185 PMCID: PMC6379317 DOI: 10.3389/fneur.2019.00074] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
Recent data suggest mechanistic links among perturbed iron homeostasis, oxidative stress, and misfolded protein aggregation in neurodegenerative diseases. Iron overload and toxicity toward dopaminergic neurons have been established as playing a role in the pathogenesis of Parkinson's disease (PD). Brain iron accumulation has also been documented in atypical parkinsonian syndromes (APS), mainly comprising multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). Iron-sensitive magnetic resonance imaging (MRI) has been applied to identify iron-related signal changes for the diagnosis and differentiation of these disorders. Topographic patterns of widespread iron deposition in deep brain nuclei have been described as differing between patients with MSA and PSP and those with PD. A disease-specific increase of iron occurs in the brain regions mainly affected by underlying disease pathologies. However, whether iron changes are a primary pathogenic factor or an epiphenomenon of neuronal degeneration has not been fully elucidated. Moreover, the clinical implications of iron-related pathology in APS remain unclear. In this review study, we collected data from qualitative and quantitative MRI studies on brain iron accumulation in APS to identify disease-related patterns and the potential role of iron-sensitive MRI.
Collapse
Affiliation(s)
- Jae-Hyeok Lee
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea
| | - Myung-Sik Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Sethi SK, Kisch SJ, Ghassaban K, Rajput A, Rajput A, Babyn PS, Liu S, Szkup P, Mark Haacke E. Iron quantification in Parkinson's disease using an age-based threshold on susceptibility maps: The advantage of local versus entire structure iron content measurements. Magn Reson Imaging 2019; 55:145-152. [DOI: 10.1016/j.mri.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/29/2018] [Accepted: 10/06/2018] [Indexed: 01/09/2023]
|
39
|
Risacher SL, Saykin AJ. Neuroimaging in aging and neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:191-227. [PMID: 31753134 DOI: 10.1016/b978-0-12-804766-8.00012-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroimaging biomarkers for neurologic diseases are important tools, both for understanding pathology associated with cognitive and clinical symptoms and for differential diagnosis. This chapter explores neuroimaging measures, including structural and functional measures from magnetic resonance imaging (MRI) and molecular measures primarily from positron emission tomography (PET), in healthy aging adults and in a number of neurologic diseases. The spectrum covers neuroimaging measures from normal aging to a variety of dementias: late-onset Alzheimer's disease [AD; including mild cognitive impairment (MCI)], familial and nonfamilial early-onset AD, atypical AD syndromes, posterior cortical atrophy (PCA), logopenic aphasia (lvPPA), cerebral amyloid angiopathy (CAA), vascular dementia (VaD), sporadic and familial behavioral-variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA), frontotemporal dementia with motor neuron disease (FTD-MND), frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), Parkinson's disease (PD) with and without dementia, and multiple systems atrophy (MSA). We also include a discussion of the appropriate use criteria (AUC) for amyloid imaging and conclude with a discussion of differential diagnosis of neurologic dementia disorders in the context of neuroimaging.
Collapse
Affiliation(s)
- Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
40
|
Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 2018; 129:55-93. [DOI: 10.1080/00207454.2018.1486837] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Asmat Ullah Khan
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, The University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation and Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Hunan University, Changsha, China
| | - Rida Zainab
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| |
Collapse
|
41
|
Abstract
Qualitative and quantitative structural magnetic resonance imaging offer objective measures of the underlying neurodegeneration in atypical parkinsonism. Regional changes in tissue volume, signal changes and increased deposition of iron as assessed with different structural MRI techniques are surrogate markers of underlying neurodegeneration and may reflect cell loss, microglial proliferation and astroglial activation. Structural MRI has been explored as a tool to enhance diagnostic accuracy in differentiating atypical parkinsonian disorders (APDs). Moreover, the longitudinal assessment of serial structural MRI-derived parameters offers the opportunity for robust inferences regarding the progression of APDs. This review summarizes recent research findings as (1) a diagnostic tool for APDs as well as (2) as a tool to assess longitudinal changes of serial MRI-derived parameters in the different APDs.
Collapse
|
42
|
Pritchard C, Silk A. Patient’s occupation, electric & head trauma in a cohort of 88 multiple system atrophy patients compared with the general population: a hypothesis stimulating pilot study. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/jnsk.2018.08.00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Yan F, He N, Lin H, Li R. Iron deposition quantification: Applications in the brain and liver. J Magn Reson Imaging 2018; 48:301-317. [PMID: 29897645 DOI: 10.1002/jmri.26161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023] Open
Abstract
Iron has long been implicated in many neurological and other organ diseases. It is known that over and above the normal increases in iron with age, in certain diseases there is an excessive iron accumulation in the brain and liver. MRI is a noninvasive means by which to image the various structures in the brain in three dimensions and quantify iron over the volume of the object of interest. The quantification of iron can provide information about the severity of iron-related diseases as well as quantify changes in iron for patient follow-up and treatment monitoring. This article provides an overview of current MRI-based methods for iron quantification, specifically for the brain and liver, including: signal intensity ratio, R2 , R2*, R2', phase, susceptibility weighted imaging and quantitative susceptibility mapping (QSM). Although there are numerous approaches to measuring iron, R2 and R2* are currently preferred methods in imaging the liver and QSM has become the preferred approach for imaging iron in the brain. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018. J. MAGN. RESON. IMAGING 2018;48:301-317.
Collapse
Affiliation(s)
- Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Lin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Quantifying iron content in magnetic resonance imaging. Neuroimage 2018; 187:77-92. [PMID: 29702183 DOI: 10.1016/j.neuroimage.2018.04.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 01/19/2023] Open
Abstract
Measuring iron content has practical clinical indications in the study of diseases such as Parkinson's disease, Huntington's disease, ferritinopathies and multiple sclerosis as well as in the quantification of iron content in microbleeds and oxygen saturation in veins. In this work, we review the basic concepts behind imaging iron using T2, T2*, T2', phase and quantitative susceptibility mapping in the human brain, liver and heart, followed by the applications of in vivo iron quantification in neurodegenerative diseases, iron tagged cells and ultra-small superparamagnetic iron oxide (USPIO) nanoparticles.
Collapse
|
45
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
46
|
Kaindlstorfer C, Jellinger KA, Eschlböck S, Stefanova N, Weiss G, Wenning GK. The Relevance of Iron in the Pathogenesis of Multiple System Atrophy: A Viewpoint. J Alzheimers Dis 2018; 61:1253-1273. [PMID: 29376857 PMCID: PMC5798525 DOI: 10.3233/jad-170601] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/16/2022]
Abstract
Iron is essential for cellular development and maintenance of multiple physiological processes in the central nervous system. The disturbance of its homeostasis leads to abnormal iron deposition in the brain and causes neurotoxicity via generation of free radicals and oxidative stress. Iron toxicity has been established in the pathogenesis of Parkinson's disease; however, its contribution to multiple system atrophy (MSA) remains elusive. MSA is characterized by cytoplasmic inclusions of misfolded α-synuclein (α-SYN) in oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). Remarkably, the oligodendrocytes possess high amounts of iron, which together with GCI pathology make a contribution toward MSA pathogenesis likely. Consistent with this observation, the GCI density is associated with neurodegeneration in central autonomic networks as well as olivopontocerebellar and striatonigral pathways. Iron converts native α-SYN into a β-sheet conformation and promotes its aggregation either directly or via increasing levels of oxidative stress. Interestingly, α-SYN possesses ferrireductase activity and α-SYN expression underlies iron mediated translational control via RNA stem loop structures. Despite a correlation between progressive putaminal atrophy and iron accumulation as well as clinical decline, it remains unclear whether pathologic iron accumulation in MSA is a secondary event in the cascade of neuronal degeneration rather than a primary cause. This review summarizes the current knowledge of iron in MSA and gives evidence for perturbed iron homeostasis as a potential pathogenic factor in MSA-associated neurodegeneration.
Collapse
Affiliation(s)
| | | | - Sabine Eschlböck
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
47
|
Jellinger KA. Potential clinical utility of multiple system atrophy biomarkers. Expert Rev Neurother 2017; 17:1189-1208. [DOI: 10.1080/14737175.2017.1392239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Abstract
CLINICAL/METHODICAL ISSUE Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. STANDARD RADIOLOGICAL METHODS In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. ACHIEVEMENTS In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. PRACTICAL RECOMMENDATIONS Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions.
Collapse
Affiliation(s)
- W Reith
- Klinik für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum des Saarlandes, Kirrberger Straße 1, 66424, Homburg/Saar, Deutschland.
| | - S Roumia
- Klinik für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum des Saarlandes, Kirrberger Straße 1, 66424, Homburg/Saar, Deutschland
| | - P Dietrich
- Klinik für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum des Saarlandes, Kirrberger Straße 1, 66424, Homburg/Saar, Deutschland
| |
Collapse
|
49
|
Sjöström H, Granberg T, Westman E, Svenningsson P. Quantitative susceptibility mapping differentiates between parkinsonian disorders. Parkinsonism Relat Disord 2017; 44:51-57. [PMID: 28886909 DOI: 10.1016/j.parkreldis.2017.08.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/06/2017] [Accepted: 08/25/2017] [Indexed: 01/26/2023]
Abstract
INTRODUCTION It is often challenging to clinically distinguish between Parkinson's disease (PD), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Quantitative susceptibility mapping (QSM) is an accurate indirect method for estimating brain iron levels in vivo. This method has yet to be applied in atypical parkinsonism. We aimed to investigate differences in brain iron accumulation parkinsonian disorders and healthy controls using QSM. METHODS 15 patients with PSP, 11 patients with MSA, 62 patients with PD and 14 healthy controls were included in the study and their phase and magnitude data from susceptibility-weighted magnetic resonance imaging were retrospectively analyzed with an in-house pipeline to create susceptibility maps. Two-way ANCOVA were used to assess group differences. Pairwise comparisons within the ANCOVA were corrected for multiple comparisons. RESULTS Red nucleus susceptibility was higher in PSP compared with PD (p < 0.001), MSA (p < 0.001) and controls (p < 0.001), which separated PSP from these groups with areas under receiver operating characteristic curve of 0.97, 0.75 and 0.98 respectively. PSP showed higher globus pallidus susceptibility compared with PD (p < 0.001), MSA (p = 0.006) and controls (p < 0.001). Putamen susceptibility was higher in MSA than in PD (p = 0.022) and controls (p = 0.026). Substantia nigra susceptibility was increased in PD compared to controls (p = 0.030). CONCLUSION We show that all studied parkinsonian disorders have increased susceptibility subcortically, reflecting distinct topographical patterns of abnormal brain iron accumulation. QSM, particularly of the red nucleus, is a promising biomarker in differentiating parkinsonian disorders, and would be interesting to study longitudinally for monitoring disease progression and treatment effects.
Collapse
Affiliation(s)
- Henrik Sjöström
- Department of Clinical Neuroscience, K8, CMM L8:01, Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Neurology, R54, Karolinska University Hospital, 141 86 Stockholm, Sweden.
| | - Tobias Granberg
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, C1-46, Karolinska University Hospital, 141 86 Stockholm, Sweden.
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, NOVUM, Blickagången 6, 14157 Huddinge, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - Per Svenningsson
- Department of Clinical Neuroscience, K8, CMM L8:01, Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Neurology, R54, Karolinska University Hospital, 141 86 Stockholm, Sweden.
| |
Collapse
|
50
|
Yao Q, Zhu D, Li F, Xiao C, Lin X, Huang Q, Shi J. Altered Functional and Causal Connectivity of Cerebello-Cortical Circuits between Multiple System Atrophy (Parkinsonian Type) and Parkinson's Disease. Front Aging Neurosci 2017; 9:266. [PMID: 28848423 PMCID: PMC5554370 DOI: 10.3389/fnagi.2017.00266] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/26/2017] [Indexed: 01/28/2023] Open
Abstract
Lesions of the cerebellum lead to motor and non-motor deficits by influencing cerebral cortex activity via cerebello-cortical circuits. It remains unknown whether the cerebello-cortical “disconnection” underlies motor and non-motor impairments both in the parkinsonian variant of multiple system atrophy (MSA-P) and Parkinson’s disease (PD). In this study, we investigated both the functional and effective connectivity of the cerebello-cortical circuits from resting-state functional magnetic resonance imaging (rs-fMRI) data of three groups (26 MSA-P patients, 31 PD patients, and 30 controls). Correlation analysis was performed between the causal connectivity and clinical scores. PD patients showed a weakened cerebellar dentate nucleus (DN) functional coupling in the posterior cingulate cortex (PCC) and inferior parietal lobe compared with MSA-P or controls. MSA-P patients exhibited significantly enhanced effective connectivity from the DN to PCC compared with PD patients or controls, as well as declined causal connectivity from the left precentral gyrus to right DN compared with the controls, and this value is significantly correlated with the motor symptom scores. Our findings demonstrated a crucial role for the cerebello-cortical networks in both MSA-P and PD patients in addition to striatal-thalamo-cortical (STC) networks and indicated that different patterns of cerebello-cortical loop degeneration are involved in the development of the diseases.
Collapse
Affiliation(s)
- Qun Yao
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Donglin Zhu
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Feng Li
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Chaoyong Xiao
- Department of Radiology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Xingjian Lin
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Qingling Huang
- Department of Radiology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Jingping Shi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| |
Collapse
|