1
|
Rollins CK, Ortinau CM, Stopp C, Friedman KG, Tworetzky W, Gagoski B, Velasco-Annis C, Afacan O, Vasung L, Beaute JI, Rofeberg V, Estroff JA, Grant PE, Soul JS, Yang E, Wypij D, Gholipour A, Warfield SK, Newburger JW. Regional Brain Growth Trajectories in Fetuses with Congenital Heart Disease. Ann Neurol 2020; 89:143-157. [PMID: 33084086 DOI: 10.1002/ana.25940] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Congenital heart disease (CHD) is associated with abnormal brain development in utero. We applied innovative fetal magnetic resonance imaging (MRI) techniques to determine whether reduced fetal cerebral substrate delivery impacts the brain globally, or in a region-specific pattern. Our novel design included two control groups, one with and the other without a family history of CHD, to explore the contribution of shared genes and/or fetal environment to brain development. METHODS From 2014 to 2018, we enrolled 179 pregnant women into 4 groups: "HLHS/TGA" fetuses with hypoplastic left heart syndrome (HLHS) or transposition of the great arteries (TGA), diagnoses with lowest fetal cerebral substrate delivery; "CHD-other," with other CHD diagnoses; "CHD-related," healthy with a CHD family history; and "optimal control," healthy without a family history. Two MRIs were obtained between 18 and 40 weeks gestation. Random effect regression models assessed group differences in brain volumes and relationships to hemodynamic variables. RESULTS HLHS/TGA (n = 24), CHD-other (50), and CHD-related (34) groups each had generally smaller brain volumes than the optimal controls (71). Compared with CHD-related, the HLHS/TGA group had smaller subplate (-13.3% [standard error = 4.3%], p < 0.01) and intermediate (-13.7% [4.3%], p < 0.01) zones, with a similar trend in ventricular zone (-7.1% [1.9%], p = 0.07). These volumetric reductions were associated with lower cerebral substrate delivery. INTERPRETATION Fetuses with CHD, especially those with lowest cerebral substrate delivery, show a region-specific pattern of small brain volumes and impaired brain growth before 32 weeks gestation. The brains of fetuses with CHD were more similar to those of CHD-related than optimal controls, suggesting genetic or environmental factors also contribute. ANN NEUROL 2021;89:143-157.
Collapse
Affiliation(s)
- Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Departments of Neurology, Harvard Medical School, Boston, MA, USA
| | - Cynthia M Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Christian Stopp
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Kevin G Friedman
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Maternal Fetal Care Center, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Wayne Tworetzky
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Maternal Fetal Care Center, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Borjan Gagoski
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lana Vasung
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jeanette I Beaute
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Valerie Rofeberg
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Judy A Estroff
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA.,Maternal Fetal Care Center, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - P Ellen Grant
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Janet S Soul
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Departments of Neurology, Harvard Medical School, Boston, MA, USA.,Maternal Fetal Care Center, Boston Children's Hospital, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - David Wypij
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Brain microstructural development in neonates with critical congenital heart disease: An atlas-based diffusion tensor imaging study. NEUROIMAGE-CLINICAL 2019; 21:101672. [PMID: 30677732 PMCID: PMC6350221 DOI: 10.1016/j.nicl.2019.101672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 11/29/2022]
Abstract
Background Brain microstructural maturation progresses rapidly in the third trimester of gestation and first weeks of life, but typical microstructural development may be influenced by the presence of critical congenital heart disease (CHD). Objective The aim of this study was to investigate the pattern of white matter (WM) microstructural development in neonates with different types of critical CHD. The secondary aim was to examine whether there is an association between WM microstructural maturity and neonatal ischemic brain injury. Methods For this prospective, longitudinal cohort study, 74 term born neonates underwent diffusion tensor imaging (DTI) before (N = 56) and after (N = 71) cardiac surgery performed <30 days of life for transposition of the great arteries (TGA), single ventricle physiology with aortic arch obstruction (SVP-AO), left- (LVOTO) or right ventricle outflow tract obstruction (RVOTO). Microstructural integrity was investigated by fractional anisotropy (FA) and by mean diffusivity (MD) in 16 white matter (WM) structures in three WM regions with correction for postmenstrual age. Ischemic brain injury was defined as moderate-severe white matter injury or stroke. Results Before cardiac surgery, the posterior parts of the corona radiata and internal capsule showed significantly higher FA and lower MD compared to the anterior parts. Centrally-located WM structures demonstrated higher FA compared to peripherally-located structures. Neonates with TGA had higher FA in projection-, association- and commissural WM before surgery, when compared to other CHD groups. Neonates with LVOTO showed lower preoperative MD in these regions, and neonates with SVP-AO higher MD. Differences in FA/MD between CHD groups were most clear in centrally located WM structures. Between CHD groups, no differences in postoperative FA/MD or in change from pre- to postoperative FA/MD were seen. Neonatal ischemic brain injury was not associated with pre- or postoperative FA/MD. Conclusions Collectively, these findings revealed brain microstructural WM development to follow the same organized pattern in critical CHD as reported in healthy and preterm neonates, from posterior-to-anterior and central-to-peripheral. Neonates with TGA and LVOTO showed the most mature WM microstructure before surgery and SVP-AO the least mature. Degree of WM microstructural immaturity was not associated with ischemic brain injury. Preoperative white matter integrity related to critical CHD type. Largest difference across CHD types in most mature white matter structures. Pattern of white matter development not related to critical CHD type. White matter maturity not related to higher risk neonatal ischemic brain injury.
Collapse
|
3
|
Liamlahi R, Latal B. Neurodevelopmental outcome of children with congenital heart disease. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:329-345. [PMID: 31324319 DOI: 10.1016/b978-0-444-64029-1.00016-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Congenital heart disease (CHD) constitutes the most common congenital malformation, with moderate or severe CHD occurring in around 6 in 1000 live births. Due to advances in medical care, survival rates have increased significantly. Thus, the majority of children with CHD survive until adolescence and adulthood. Children with CHD requiring cardiopulmonary bypass surgery are at risk for neurodevelopmental impairments in various domains, including mild impairments in cognitive and neuromotor functions, difficulties with social interaction, inattention, emotional symptoms, and impaired executive function. The prevalence for these impairments ranges from 20% to 60% depending on age and domain ("high prevalence-low severity"). Domains are often affected simultaneously, leading to school problems with the need for learning support and special interventions. The etiology of neurodevelopmental impairments is complex, consisting of a combination of delayed intrauterine brain development and newly occurring perioperative brain injuries. Mechanisms include altered intrauterine hemodynamic flow as well as neonatal hypoxia and reduced cerebral blood flow. The surgical procedure and postoperative phase add to this cascade of factors interfering with normal brain development. Early identification of children at high risk through structured follow-up programs is mandated to provide individually tailored early interventions and counseling to improve developmental health.
Collapse
Affiliation(s)
- Rabia Liamlahi
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Claessens NHP, Kelly CJ, Counsell SJ, Benders MJNL. Neuroimaging, cardiovascular physiology, and functional outcomes in infants with congenital heart disease. Dev Med Child Neurol 2017; 59:894-902. [PMID: 28542743 DOI: 10.1111/dmcn.13461] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2017] [Indexed: 01/12/2023]
Abstract
This review integrates data on brain dysmaturation and acquired brain injury using fetal and neonatal magnetic resonance imaging (MRI), including the contribution of cardiovascular physiology to differences in brain development, and the relationship between brain abnormalities and subsequent neurological impairments in infants with congenital heart disease (CHD). The antenatal and neonatal period are critical for optimal brain development; the developing brain is particularly vulnerable to haemodynamic disturbances during this time. Altered cerebral perfusion and decreased cerebral oxygen delivery in the antenatal period can affect functional and structural brain development, while postnatal haemodynamic fluctuations may cause additional injury. In critical CHD, brain dysmaturation and acquired brain injury result from a combination of underlying cardiovascular pathology and surgery performed in the neonatal period. MRI findings in infants with CHD can be used to evaluate potential clinical risk factors for brain abnormalities, and aid prediction of functional outcomes at an early stage. In addition, information on timing of brain dysmaturation and acquired brain injury in CHD has the potential to be used when developing strategies to optimize neurodevelopment.
Collapse
Affiliation(s)
- Nathalie H P Claessens
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Christopher J Kelly
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Mebius MJ, Kooi EMW, Bilardo CM, Bos AF. Brain Injury and Neurodevelopmental Outcome in Congenital Heart Disease: A Systematic Review. Pediatrics 2017; 140:peds.2016-4055. [PMID: 28607205 DOI: 10.1542/peds.2016-4055] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
CONTEXT Brain injury during prenatal and preoperative postnatal life might play a major role in neurodevelopmental impairment in infants with congenital heart disease (CHD) who require corrective or palliative surgery during infancy. A systematic review of cerebral findings during this period in relation to neurodevelopmental outcome (NDO), however, is lacking. OBJECTIVE To assess the association between prenatal and postnatal preoperative cerebral findings and NDO in infants with CHD who require corrective or palliative surgery during infancy. DATA SOURCES PubMed, Embase, reference lists. STUDY SELECTION We conducted 3 different searches for English literature between 2000 and 2016; 1 for prenatal cerebral findings, 1 for postnatal preoperative cerebral findings, and 1 for the association between brain injury and NDO. DATA EXTRACTION Two reviewers independently screened sources and extracted data on cerebral findings and neurodevelopmental outcome. Quality of studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. RESULTS Abnormal cerebral findings are common during the prenatal and postnatal preoperative periods. Prenatally, a delay of cerebral development was most common; postnatally, white matter injury, periventricular leukomalacia, and stroke were frequently observed. Abnormal Doppler measurements, brain immaturity, cerebral oxygenation, and abnormal EEG or amplitude-integrated EEG were all associated with NDO. LIMITATIONS Observational studies, different types of CHD with different pathophysiological effects, and different reference values. CONCLUSIONS Prenatal and postnatal preoperative abnormal cerebral findings might play an important role in neurodevelopmental impairment in infants with CHD. Increased awareness of the vulnerability of the young developing brain of an infant with CHD among caregivers is essential.
Collapse
Affiliation(s)
- Mirthe J Mebius
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, Netherlands; and
| | - Elisabeth M W Kooi
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, Netherlands; and
| | - Catherina M Bilardo
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Arend F Bos
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, Netherlands; and
| |
Collapse
|
6
|
Hagmann C, Singer J, Latal B, Knirsch W, Makki M. Regional Microstructural and Volumetric Magnetic Resonance Imaging (MRI) Abnormalities in the Corpus Callosum of Neonates With Congenital Heart Defect Undergoing Cardiac Surgery. J Child Neurol 2016; 31:300-8. [PMID: 26129977 DOI: 10.1177/0883073815591214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/11/2015] [Indexed: 11/17/2022]
Abstract
The purpose of the study is to investigate the structural development of the corpus callosum in term neonates with congenital heart defect before and after surgery using diffusion tensor imaging and 3-dimensional T1-weighted magnetic resonance imaging (MRI). We compared parallel and radial diffusions, apparent diffusion coefficient (ADC), fractional anisotropy, and volume of 5 substructures of the corpus callosum: genu, rostral body, body, isthmus, and splenium. Compared to healthy controls, we found a significantly lower volume of the splenium and total corpus callosum and a higher radial diffusion and lower fractional anisotropy in the splenium of patients presurgery; a lower volume in all substructures in the postsurgery group; higher radial diffusion in the rostral body, body, and splenium; and a higher apparent diffusion coefficient in the splenium of postsurgery patients. Similar fractional anisotropy changes in congenital heart defect patients were reported in preterm infants. Our findings in apparent diffusion coefficient in the splenium of these patients (pre and postsurgery) are comparable to findings in preterm neonates with psychomotor delay. Delayed maturation of the isthmus was also reported in preterm infants.
Collapse
Affiliation(s)
- Cornelia Hagmann
- Department of Neonatology, University Hospital, Zurich, Switzerland
| | - Jitka Singer
- Department of Neonatology, University Hospital, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital, Zurich, Switzerland
| | - Walter Knirsch
- Pediatric Cardiology, University Children's Hospital, Zurich, Switzerland
| | - Malek Makki
- MRI Research Centre, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
7
|
von Rhein M, Buchmann A, Hagmann C, Dave H, Bernet V, Scheer I, Knirsch W, Latal B, Bürki C, Dave H, Prêtre R, Hagmann C, Knirsch W, Kretschmar O, Kellenberger C, Scheer I, Latal B, Liamlahi R, von Rhein M, Plecko BR, Sennhauser FH. Severe Congenital Heart Defects Are Associated with Global Reduction of Neonatal Brain Volumes. J Pediatr 2015; 167:1259-63.e1. [PMID: 26233604 DOI: 10.1016/j.jpeds.2015.07.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/12/2015] [Accepted: 07/02/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine neonatal global and regional brain volumes in infants with congenital heart disease (CHD) in comparison with healthy controls and to determine brain growth. STUDY DESIGN Prospective cohort study in infants undergoing open-heart surgery for complex CHD. Global and regional volumetric measurements on preoperative cerebral magnetic resonance imaging were manually segmented in children without overt brain lesions. RESULTS Preoperative brain volumetry of 19 patients demonstrates reduction in total and regional brain volumes, without any specific regional predilection compared with 19 healthy control infants (total brain volume reduction: 21%, regional brain volume reduction 8%-28%, all P < .001). CONCLUSIONS Infants with CHD undergoing bypass surgery have smaller brain volumes prior to surgery without a specific regional predilection. This suggests a fetal origin of reduced brain growth.
Collapse
Affiliation(s)
- Michael von Rhein
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Developmental Pediatrics, SPZ, Kantonsspital Winterthur, Winterthur, Switzerland; Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Andreas Buchmann
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Cornelia Hagmann
- Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Hitendu Dave
- Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Vera Bernet
- Children's Research Center, University Children's Hospital, Zurich, Switzerland; Department of Neonatology and Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ianina Scheer
- Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland
| | - Walter Knirsch
- Children's Research Center, University Children's Hospital, Zurich, Switzerland; Cardiology, University Children's Hospital, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li Y, Yin S, Fang J, Hua Y, Wang C, Mu D, Zhou K. Neurodevelopmental delay with critical congenital heart disease is mainly from prenatal injury not infant cardiac surgery: current evidence based on a meta-analysis of functional magnetic resonance imaging. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2015; 45:639-648. [PMID: 24913334 DOI: 10.1002/uog.13436] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/11/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE No consensus has been reached regarding whether brain injury related to congenital heart disease (CHD) is caused by infant cardiac surgery and/or prenatal injury resulting from the CHD. We performed this meta-analysis to identify the likely cause of neurodevelopmental delay in CHD patients. METHODS We carried out a literature search without language restriction in December 2013, retrieving records from PubMed, EMBASE, the Cochrane Library and the World Health Organization trials center, to identify studies applying functional magnetic resonance imaging (fMRI) evaluation of brain function before surgery and, in some cases, after surgery (both immediate term and short term postoperatively). The preoperative and postoperative fMRI results were extracted, and meta-analysis was performed using Revman 5.1.1 and STATA 11.0, according to the guidelines from the Cochrane review and MOOSE groups. RESULTS The electronic search yielded 937 citations. Full text was retrieved for 15 articles and eight articles (nine studies) were eligible for inclusion: six studies (n = 312 cases) with fMRI analysis before surgery and three (n = 36 cases) with complete perioperative fMRI analysis. The overall average diffusivity of CHD cases was significantly higher than that of controls, with a summarized standard (std) mean difference of 1.39 (95% CI, 0.70-2.08), and the fractional anisotropy was lower in CHD cases, with a summarized mean difference of -1.43 (95% CI, -1.95 to -0.91). N-acetylaspartate (NAA)/choline (Cho) for the whole brain was significantly lower in CHD cases compared with healthy ones, while lactate/Cho was significantly higher in CHD cases. Immediate term postoperatively, significant changes in NAA/creatine and NAA/Cho, relative to preoperative values, were found. However, the difference did not persist at the short-term follow-up. CONCLUSION This meta-analysis suggests that the delay in neurological development in newborns with CHD is due mainly to prenatal injury, and cardiac surgery might lead to mild brain injuries postoperatively, but fMRI shows recovery within a short period.
Collapse
Affiliation(s)
- Y Li
- Department of Pediatric Cardiovascular Disease, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - S Yin
- West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - J Fang
- West China Stomatology School, Sichuan University, Chengdu, Sichuan, China
| | - Y Hua
- Department of Pediatric Cardiovascular Disease, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - C Wang
- Department of Pediatric Cardiovascular Disease, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - D Mu
- Department of Pediatric Cardiovascular Disease, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - K Zhou
- Department of Pediatric Cardiovascular Disease, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Abstract
Children with congenital heart disease (CHD) have multiple factors contributing toward their risk of later neurodevelopmental difficulties. With earlier diagnosis and improved survival rates, the management of CHD now includes the recognition of neurodevelopmental risks and optimisation of neurodevelopmental outcomes is emphasised. Neuroimaging studies have shown early differences in brain development for children with CHD, who then are vulnerable to additional brain injury in the perinatal period. For some children, complications and co-morbidities may further increase the risk of brain injury. Synthesis of multiple factors is necessary to estimate neurodevelopmental prognosis for an individual child. Long-term neurodevelopmental follow-up of children with CHD is warranted for early identification of and intervention for difficulties.
Collapse
|