1
|
Uchikawa H, Uekawa K, Hasegawa Y. Perivascular macrophages in cerebrovascular diseases. Exp Neurol 2024; 374:114680. [PMID: 38185314 DOI: 10.1016/j.expneurol.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cerebrovascular diseases are a major cause of stroke and dementia, both requiring long-term care. These diseases involve multiple pathophysiologies, with mitochondrial dysfunction being a crucial contributor to the initiation of inflammation, apoptosis, and oxidative stress, resulting in injuries to neurovascular units that include neuronal cell death, endothelial cell death, glial activation, and blood-brain barrier disruption. To maintain brain homeostasis against these pathogenic conditions, brain immune cells, including border-associated macrophages and microglia, play significant roles as brain innate immunity cells in the pathophysiology of cerebrovascular injury. Although microglia have long been recognized as significant contributors to neuroinflammation, attention has recently shifted to border-associated macrophages, such as perivascular macrophages (PVMs), which have been studied based on their crucial roles in the brain. These cells are strategically positioned around the walls of brain vessels, where they mainly perform critical functions, such as perivascular drainage, cerebrovascular flexibility, phagocytic activity, antigen presentation, activation of inflammatory responses, and preservation of blood-brain barrier integrity. Although PVMs act as scavenger and surveillant cells under normal conditions, these cells exert harmful effects under pathological conditions. PVMs detect mitochondrial dysfunction in injured cells and implement pathological changes to regulate brain homeostasis. Therefore, PVMs are promising as they play a significant role in mitochondrial dysfunction and, in turn, disrupt the homeostatic condition. Herein, we summarize the significant roles of PVMs in cerebrovascular diseases, especially ischemic and hemorrhagic stroke and dementia, mainly in correlation with inflammation. A better understanding of the biology and pathobiology of PVMs may lead to new insights on and therapeutic strategies for cerebrovascular diseases.
Collapse
Affiliation(s)
- Hiroki Uchikawa
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA; Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Ken Uekawa
- Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Yu Hasegawa
- Department of Pharmaceutical Science, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan.
| |
Collapse
|
2
|
Sugita K, Anan M, Matsuta H, Shimomura T, Fudaba H, Hata N, Fujiki M. Quantitative GABA magnetic resonance spectroscopy as a measure of motor learning function in the motor cortex after subarachnoid hemorrhage. Front Neurol 2023; 14:1173285. [PMID: 37900594 PMCID: PMC10603245 DOI: 10.3389/fneur.2023.1173285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
The neural mechanisms underlying gross and fine motor dysfunction after subarachnoid hemorrhage (SAH) remain unknown. The γ-aminobutyric acid (GABA) deficit hypothesis proposes that reduced neuronal GABA concentrations and the subsequent lack of GABA-mediated inhibition cause motor impairment after SAH. This study aimed to explore the correlation between GABA levels and a behavioral measure of motor performance in patients with SAH. Motor cortical GABA levels were assessed in 40 patients with SAH and 10 age-matched healthy controls using proton magnetic resonance spectroscopy. The GABA and N-acetylasparate (NAA) ratio was measured in the normal gray matter within the primary motor cortex. The relationship between GABA concentration and hand-motor performance was also evaluated. Results showed significantly lower GABA levels in patients with SAH's left motor cortex than in controls (GABA/NAA ratio: 0.282 ± 0.085 vs. 0.341 ± 0.031, respectively; p = 0.041). Reaction times (RTs), a behavioral measure of motor performance potentially dependent on GABAergic synaptic transmission, were significantly longer in patients than in controls (936.8 ± 303.8 vs. 440.2 ± 67.3 ms, respectively; p < 0.001). Moreover, motor cortical GABA levels and RTs exhibited a significant positive linear correlation among patients (r = 0.572, rs = 0.327, p = 0.0001). Therefore, a decrease in GABA levels in the primary motor cortex after SAH may lead to impaired cortical inhibition of neuronal function and indicates that GABA-mediated synaptic transmission in the motor cortex is critical for RT.
Collapse
|
3
|
Chen Y, Galea I, Macdonald RL, Wong GKC, Zhang JH. Rethinking the initial changes in subarachnoid haemorrhage: Focusing on real-time metabolism during early brain injury. EBioMedicine 2022; 83:104223. [PMID: 35973388 PMCID: PMC9396538 DOI: 10.1016/j.ebiom.2022.104223] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/17/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Over the last two decades, neurological researchers have uncovered many pathophysiological mechanisms associated with subarachnoid haemorrhage (SAH), with early brain injury and delayed cerebral ischaemia both contributing to morbidity and mortality. The current dilemma in SAH management inspired us to rethink the nature of the insult in SAH: sudden bleeding into the subarachnoid space and hypoxia due to disturbed cerebral circulation and increased intracranial pressure, generating exogenous stimuli and subsequent pathophysiological processes. Exogenous stimuli are defined as factors which the brain tissue is not normally exposed to when in the healthy state. Intersections of these initial pathogenic factors lead to secondary brain injury with related metabolic changes after SAH. Herein, we summarized the current understanding of efforts to monitor and analyse SAH-related metabolic changes to identify those precise pathophysiological processes and potential therapeutic strategies; in particular, we highlight the restoration of normal cerebrospinal fluid circulation and the normalization of brain-blood interface physiology to alleviate early brain injury and delayed neurological deterioration after SAH.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ian Galea
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - R Loch Macdonald
- Community Neurosciences Institutes, Community Regional Medical Center, Fresno, CA 93701, USA
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - John H Zhang
- Neuroscience Research Center, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
4
|
Zhang Z, Zhang A, Liu Y, Hu X, Fang Y, Wang X, Luo Y, Lenahan C, Chen S. New Mechanisms and Targets of Subarachnoid Hemorrhage: A Focus on Mitochondria. Curr Neuropharmacol 2022; 20:1278-1296. [PMID: 34720082 PMCID: PMC9881073 DOI: 10.2174/1570159x19666211101103646] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) accounts for 5-10% of all strokes and is a subtype of hemorrhagic stroke that places a heavy burden on health care. Despite great progress in surgical clipping and endovascular treatment for ruptured aneurysms, cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) threaten the long-term outcomes of patients with SAH. Moreover, there are limited drugs available to reduce the risk of DCI and adverse outcomes in SAH patients. New insight suggests that early brain injury (EBI), which occurs within 72 h after the onset of SAH, may lay the foundation for further DCI development and poor outcomes. The mechanisms of EBI mainly include excitotoxicity, oxidative stress, neuroinflammation, blood-brain barrier (BBB) destruction, and cellular death. Mitochondria are a double-membrane organelle, and they play an important role in energy production, cell growth, differentiation, apoptosis, and survival. Mitochondrial dysfunction, which can lead to mitochondrial membrane potential (Δψm) collapse, overproduction of reactive oxygen species (ROS), release of apoptogenic proteins, disorders of mitochondrial dynamics, and activation of mitochondria-related inflammation, is considered a novel mechanism of EBI related to DCI as well as post-SAH outcomes. In addition, mitophagy is activated after SAH. In this review, we discuss the latest perspectives on the role of mitochondria in EBI and DCI after SAH. We emphasize the potential of mitochondria as therapeutic targets and summarize the promising therapeutic strategies targeting mitochondria for SAH.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital, Taizhou, Zhejiang Province, China;
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,Address correspondence to this author at the Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Tel: +86-571-87784815; Fax: +86-571-87784755; E-mail:
| |
Collapse
|
5
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Bobeff EJ, Bukowiecka-Matusiak M, Stawiski K, Wiśniewski K, Burzynska-Pedziwiatr I, Kordzińska M, Kowalski K, Sendys P, Piotrowski M, Szczesna D, Stefańczyk L, Wozniak LA, Jaskólski DJ. Plasma Amino Acids May Improve Prediction Accuracy of Cerebral Vasospasm after Aneurysmal Subarachnoid Haemorrhage. J Clin Med 2022; 11:jcm11020380. [PMID: 35054073 PMCID: PMC8779950 DOI: 10.3390/jcm11020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Aneurysmal subarachnoid haemorrhages (aSAH) account for 5% of strokes and continues to place a great burden on patients and their families. Cerebral vasospasm (CVS) is one of the main causes of death after aSAH, and is usually diagnosed between day 3 and 14 after bleeding. Its pathogenesis remains poorly understood. To verify whether plasma concentration of amino acids have prognostic value in predicting CVS, we analysed data from 35 patients after aSAH (median age 55 years, IQR 39-62; 20 females, 57.1%), and 37 healthy volunteers (median age 50 years, IQR 38-56; 19 females, 51.4%). Fasting peripheral blood samples were collected on postoperative day one and seven. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis was performed. The results showed that plasma from patients after aSAH featured a distinctive amino acids concentration which was presented in both principal component analysis and direct comparison. No significant differences were noted between postoperative day one and seven. A total of 18 patients from the study group (51.4%) developed CVS. Hydroxyproline (AUC = 0.7042, 95%CI 0.5259-0.8826, p = 0.0248) and phenylalanine (AUC = 0.6944, 95%CI 0.5119-0.877, p = 0.0368) presented significant CVS prediction potential. Combining the Hunt-Hess Scale and plasma levels of hydroxyproline and phenylalanine provided the model with the best predictive performance and the lowest leave-one-out cross-validation of performance error. Our results suggest that plasma amino acids may improve sensitivity and specificity of Hunt-Hess scale in predicting CVS.
Collapse
Affiliation(s)
- Ernest Jan Bobeff
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
- Correspondence: ; Tel.: +48-42-677-6770; Fax: +48-42-677-6781
| | - Malgorzata Bukowiecka-Matusiak
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15 Street, 92-215 Lodz, Poland;
| | - Karol Wiśniewski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| | - Izabela Burzynska-Pedziwiatr
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Magdalena Kordzińska
- Department of Radiology, Barlicki Memorial Teaching Hospital, Medical University of Lodz, Kopcinskiego 22 Street, 90-153 Lodz, Poland; (M.K.); (L.S.)
| | - Konrad Kowalski
- Laboratorium Diagnostyczne Masdiag, ul. Żeromskiego 33, 01-882 Warszawa, Poland; (K.K.); (P.S.)
| | - Przemyslaw Sendys
- Laboratorium Diagnostyczne Masdiag, ul. Żeromskiego 33, 01-882 Warszawa, Poland; (K.K.); (P.S.)
| | - Michał Piotrowski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| | - Dorota Szczesna
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Ludomir Stefańczyk
- Department of Radiology, Barlicki Memorial Teaching Hospital, Medical University of Lodz, Kopcinskiego 22 Street, 90-153 Lodz, Poland; (M.K.); (L.S.)
| | - Lucyna Alicja Wozniak
- Department of Structural Biology, Medical University of Lodz, 90-419 Lodz, Poland; (M.B.-M.); (I.B.-P.); (D.S.); (L.A.W.)
| | - Dariusz Jan Jaskólski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (K.W.); (M.P.); (D.J.J.)
| |
Collapse
|
7
|
Williamson JB, Lamb DG, Porges EC, Bottari S, Woods AJ, Datta S, Langer K, Cohen RA. Cerebral Metabolite Concentrations Are Associated With Cortical and Subcortical Volumes and Cognition in Older Adults. Front Aging Neurosci 2021; 12:587104. [PMID: 33613261 PMCID: PMC7886995 DOI: 10.3389/fnagi.2020.587104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023] Open
Abstract
Background Cerebral metabolites are associated with different physiological processes in brain aging. Cortical and limbic structures play important roles in cognitive aging; however, the relationship between these structures and age remains unclear with respect to physiological underpinnings. Regional differences in metabolite levels may be related to different structural and cognitive changes in aging. Methods Magnetic resonance imaging and spectroscopy were obtained from 117 cognitively healthy older adults. Limbic and other key structural volumes were measured. Concentrations of N-acetylaspartate (NAA) and choline-containing compounds (Cho) were measured in frontal and parietal regions. Neuropsychological testing was performed including measures of crystallized and fluid intelligence and memory. Results NAA in the frontal voxel was associated with limbic and cortical volumes, whereas Cho in parietal cortex was negatively associated with hippocampal and other regional volumes. Hippocampal volume was associated with forgetting, independent of age. Further, parietal Cho and hippocampal volume contributed independent variance to age corrected discrepancy between fluid and crystallized abilities. Conclusion These findings suggest that physiological changes with age in the frontal and parietal cortices may be linked to structural changes in other connected brain regions. These changes are differentially associated with cognitive performance, suggesting potentially divergent mechanisms.
Collapse
Affiliation(s)
- John B Williamson
- Center for Cognitive Aging and Memory, Clinical Translational Research Program, College of Medicine, University of Florida, Gainesville, FL, United States.,Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Damon G Lamb
- Center for Cognitive Aging and Memory, Clinical Translational Research Program, College of Medicine, University of Florida, Gainesville, FL, United States.,Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Eric C Porges
- Center for Cognitive Aging and Memory, Clinical Translational Research Program, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Sarah Bottari
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Clinical Translational Research Program, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Somnath Datta
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Kailey Langer
- Center for Cognitive Aging and Memory, Clinical Translational Research Program, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, Clinical Translational Research Program, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| |
Collapse
|
8
|
Spencer P, Jiang Y, Liu N, Han J, Li Y, Vodovoz S, Dumont AS, Wang X. Update: Microdialysis for Monitoring Cerebral Metabolic Dysfunction after Subarachnoid Hemorrhage. J Clin Med 2020; 10:jcm10010100. [PMID: 33396652 PMCID: PMC7794715 DOI: 10.3390/jcm10010100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 01/07/2023] Open
Abstract
Cerebral metabolic dysfunction has been shown to extensively mediate the pathophysiology of brain injury after subarachnoid hemorrhage (SAH). The characterization of the alterations of metabolites in the brain can help elucidate pathophysiological changes occurring throughout SAH and the relationship between secondary brain injury and cerebral energy dysfunction after SAH. Cerebral microdialysis (CMD) is a tool that can measure concentrations of multiple bioenergetics metabolites in brain interstitial fluid. This review aims to provide an update on the implication of CMD on the measurement of metabolic dysfunction in the brain after SAH. A literature review was conducted through a general PubMed search with the terms “Subarachnoid Hemorrhage AND Microdialysis” as well as a more targeted search using MeSh with the search terms “Subarachnoid hemorrhage AND Microdialysis AND Metabolism.” Both experimental and clinical papers were reviewed. CMD is a suitable tool that has been used for monitoring cerebral metabolic changes in various types of brain injury. Clinically, CMD data have shown the dramatic changes in cerebral metabolism after SAH, including glucose depletion, enhanced glycolysis, and suppressed oxidative phosphorylation. Experimental studies using CMD have demonstrated a similar pattern of cerebral metabolic dysfunction after SAH. The combination of CMD and other monitoring tools has also shown value in further dissecting and distinguishing alterations in different metabolic pathways after brain injury. Despite the lack of a standard procedure as well as the presence of limitations regarding CMD application and data interpretation for both clinical and experimental studies, emerging investigations have suggested that CMD is an effective way to monitor the changes of cerebral metabolic dysfunction after SAH in real-time, and alternatively, the combination of CMD and other monitoring tools might be able to further understand the relationship between cerebral metabolic dysfunction and brain injury after SAH, determine the severity of brain injury and predict the pathological progression and outcomes after SAH. More translational preclinical investigations and clinical validation may help to optimize CMD as a powerful tool in critical care and personalized medicine for patients with SAH.
Collapse
Affiliation(s)
| | - Yinghua Jiang
- Correspondence: (Y.J.); (X.W.); Tel.: +504-988-9117 (Y.J.); +504-988-2646 (X.W.)
| | | | | | | | | | | | - Xiaoying Wang
- Correspondence: (Y.J.); (X.W.); Tel.: +504-988-9117 (Y.J.); +504-988-2646 (X.W.)
| |
Collapse
|
9
|
Magnetic Resonance Imaging in Aneurysmal Subarachnoid Hemorrhage: Current Evidence and Future Directions. Neurocrit Care 2019; 29:241-252. [PMID: 29633155 DOI: 10.1007/s12028-018-0534-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) is associated with an unacceptably high mortality and chronic disability in survivors, underscoring a need to validate new approaches for treatment and prognosis. The use of advanced imaging, magnetic resonance imaging (MRI) in particular, could help address this gap given its versatile capacity to quantitatively evaluate and map changes in brain anatomy, physiology and functional activation. Yet there is uncertainty about the real value of brain MRI in the clinical setting of aSAH. METHODS In this review, we discuss current and emerging MRI research in aSAH. PubMed was searched from inception to June 2017, and additional studies were then chosen on the basis of relevance to the topics covered in this review. RESULTS Available studies suggest that brain MRI is a feasible, safe, and valuable testing modality. MRI detects brain abnormalities associated with neurologic examination, outcomes, and aneurysm treatment and thus has the potential to increase knowledge of aSAH pathophysiology as well as to guide management and outcome prediction. Newer pulse sequences have the potential to reveal structural and physiological changes that could also improve management of aSAH. CONCLUSION Research is needed to confirm the value of MRI-based biomarkers in clinical practice and as endpoints in clinical trials, with the goal of improving outcome for patients with aSAH.
Collapse
|
10
|
Haque ME, Gabr RE, George SD, Zhao X, Boren SB, Zhang X, Ting SM, Sun G, Hasan KM, Savitz S, Aronowski J. Serial Metabolic Evaluation of Perihematomal Tissues in the Intracerebral Hemorrhage Pig Model. Front Neurosci 2019; 13:888. [PMID: 31496934 PMCID: PMC6712426 DOI: 10.3389/fnins.2019.00888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose Perihematomal edema (PHE) occurs in patients with intracerebral hemorrhage (ICH) and is often used as surrogate of secondary brain injury. PHE resolves over time, but little is known about the functional integrity of the tissues that recover from edema. In a pig ICH model, we aimed to assess metabolic integrity of perihematoma tissues by using non-invasive magnetic resonance spectroscopy (MRS). Materials and Methods Fourteen male Yorkshire pigs with an average age of 8 weeks were intracerebrally injected with autologous blood to produce ICH. Proton MRS data were obtained at 1, 7, and 14 days after ICH using a whole-body 3.0T MRI system. Point-resolved spectroscopy (PRESS)-localized 2D chemical shift imaging (CSI) was acquired. The concentration of N-Acetylaspartate (NAA), Choline (Cho), and Creatine (Cr) were measured within the area of PHE, tissues adjacent to the injury with no or negligible edema (ATNE), and contralesional brain tissue. A linear mixed model was used to analyze the evolution of metabolites in perihematomal tissues, with p-value < 0.05 indicating statistical significance. Results The perihematoma volume gradually decreased from 2.38 ± 1.23 ml to 0.41 ± 0.780 ml (p < 0.001) over 2 weeks. Significant (p < 0.001) reductions in NAA, Cr, and Cho concentrations were found in the PHE and ATNE regions compared to the contralesional hemisphere at day 1 and 7 after ICH. All three metabolites were significantly (p < 0.001) restored in the PHE tissue on day 14, but remained persistently low in the ATNE area, and unaltered in the contralesional voxel. Conclusion This study highlights the potential of MRS to probe salvageable tissues within the perihematoma in the sub-acute phase of ICH. Altered metabolites within the PHE and ATNE regions in addition to edema and hematoma volumes were explored as possible markers for tissue recovery. Perihematomal tissue with PHE demonstrated a more reversible injury compared to the tissue adjacent to the injury without edema, suggesting a potentially beneficial role of edema.
Collapse
Affiliation(s)
- Muhammad E Haque
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Refaat E Gabr
- Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sarah D George
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiurong Zhao
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Seth B Boren
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xu Zhang
- Biostatistics, Epidemiology, and Research Design Component, Center for Clinical and Translational Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shun-Ming Ting
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gunghua Sun
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Khader M Hasan
- Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sean Savitz
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jaroslaw Aronowski
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
11
|
Abstract
Advanced neuroimaging techniques are increasingly being implemented in clinical practice as complementary tools to conventional imaging because they can provide crucial functional information about the pathophysiology of a variety of disorders. Therefore, it is important to understand the basic principles underlying them and their role in diagnosis and management. In this review, we will primarily focus on the basic principles and clinical applications of perfusion imaging, diffusion imaging, magnetic resonance spectroscopy, functional MRI, and dual-energy computerized tomography. Our goal is to provide the reader with a basic understanding of these imaging techniques and when they should be used in clinical practice.
Collapse
|
12
|
Li YC, Wang R, Xu MM, Jing XR, A JY, Sun RB, Na SJ, Liu T, Ding XS, Sun CY, Ge WH. Aneurysmal Subarachnoid Hemorrhage Onset Alters Pyruvate Metabolism in Poor-Grade Patients and Clinical Outcome Depends on More: A Cerebrospinal Fluid Metabolomic Study. ACS Chem Neurosci 2019; 10:1660-1667. [PMID: 30521753 DOI: 10.1021/acschemneuro.8b00581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cerebral metabolism alterations influence cerebrospinal fluid (CSF) composition and are sensitive to brain injury. In subarachnoid hemorrhage (SAH) patients, Fisher scale, Hunt-Hess scale, and World Federation of Neurological Societies (WFNS) grading scale evaluating SAH severity are inadequate to predict long-term outcome; therefore, in an effort to determine metabolite pattern disparity and discover corresponding biomarkers, we designed an untargeted CSF metabolomic study covering a broad range of metabolites of SAH patients with different severity and outcome. The present study demonstrated the SAH altered the cerebrospinal fluid metabolome involving carbohydrate, lipid, and amino acid metabolism. Pyruvate metabolism was enhanced in SAH patients with Hunt-Hess scale above III, and the CSF pyruvate level was significantly associated with WFNS grading scale above III. There is no significant variation among CSF metabolome in SAH patients with merely different amounts and distribution of bleeding. SAH patients with unfavorable outcome present upregulated CSF amino acids level and enhanced lipid biosynthesis. The present study provides a novel possibility of early identification of patients who might possess unfavorable outcome and further clarification of the underlying pathophysiology.
Collapse
Affiliation(s)
- Yi-Chen Li
- Department of Pharmacy, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Rong Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Man-Man Xu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
- Department of Neurology, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Xiang-Ru Jing
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
- Nanjing Yuequn Hospital, 158 South Jiefang Road, Nanjing, China 210007
| | - Ji-Ye A
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China 210009
| | - Run-Bin Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China 210009
| | - Shi-Jie Na
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Tao Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Xuan-Sheng Ding
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 210009
| | - Cui-Yun Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
- Department of Rehabilitation, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| | - Wei-Hong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China 210008
| |
Collapse
|
13
|
Hough KP, Trevor JL, Strenkowski JG, Wang Y, Chacko BK, Tousif S, Chanda D, Steele C, Antony VB, Dokland T, Ouyang X, Zhang J, Duncan SR, Thannickal VJ, Darley-Usmar VM, Deshane JS. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol 2018; 18:54-64. [PMID: 29986209 PMCID: PMC6031096 DOI: 10.1016/j.redox.2018.06.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation involving both innate and adaptive immune cells is implicated in the pathogenesis of asthma. Intercellular communication is essential for driving and resolving inflammatory responses in asthma. Emerging studies suggest that extracellular vesicles (EVs) including exosomes facilitate this process. In this report, we have used a range of approaches to show that EVs contain markers of mitochondria derived from donor cells which are capable of sustaining a membrane potential. Further, we propose that these participate in intercellular communication within the airways of human subjects with asthma. Bronchoalveolar lavage fluid of both healthy volunteers and asthmatics contain EVs with encapsulated mitochondria; however, the % HLA-DR+ EVs containing mitochondria and the levels of mitochondrial DNA within EVs were significantly higher in asthmatics. Furthermore, mitochondria are present in exosomes derived from the pro-inflammatory HLA-DR+ subsets of airway myeloid-derived regulatory cells (MDRCs), which are known regulators of T cell responses in asthma. Exosomes tagged with MitoTracker Green, or derived from MDRCs transduced with CellLight Mitochondrial GFP were found in recipient peripheral T cells using a co-culture system, supporting direct exosome-mediated cell-cell transfer. Importantly, exosomally transferred mitochondria co-localize with the mitochondrial network and generate reactive oxygen species within recipient T cells. These findings support a potential novel mechanism of cell-cell communication involving exosomal transfer of mitochondria and the bioenergetic and/or redox regulation of target cells.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer L Trevor
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John G Strenkowski
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Wang
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Balu K Chacko
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sultan Tousif
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Diptiman Chanda
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chad Steele
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veena B Antony
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiaosen Ouyang
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven R Duncan
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor M Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
14
|
Adami D, Berkefeld J, Platz J, Konczalla J, Pfeilschifter W, Weidauer S, Wagner M. Complication rate of intraarterial treatment of severe cerebral vasospasm after subarachnoid hemorrhage with nimodipine and percutaneous transluminal balloon angioplasty: Worth the risk? J Neuroradiol 2018; 46:15-24. [PMID: 29733918 DOI: 10.1016/j.neurad.2018.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE Delayed cerebral ischemia (DCI) is a complication of aneurysmal subarachnoid hemorrhage (SAH). Arterial cerebral vasospasm (CVS) is discussed as the main pathomechanism for DCI. Due to positive effects of per os nimodipine, intraarterial nimodipine application is used in patients with DCI. Further, percutaneous transluminal balloon angioplasty (PTA) is applied in focal high-grade spasm of intracranial arteries. However, clinical benefits of those techniques are unconfirmed in randomized trials so far, and complications might occur. We analyzed the occurrence of new infarcts in patients with severe CVS treated intra-arterially to assess benefits and risks of those techniques in a large single-center collective. MATERIALS AND METHODS All imaging and clinical data of 88 patients with CVS after SAH and 188 procedures of intraarterial nimodipine infusion and additional PTA in selected cases (18 patients, 20 PTA procedures) treated at our institution were reviewed. In the event of new infarcts after endovascular treatment of CVS, infarct patterns were analyzed to determine the most probable etiology. RESULTS Fifty-three percent of patients developed new cerebral infarction after intraarterial nimodipine and additional PTA in selected cases. Hereunder 47% were caused by persisting CVS. In 6% of patients, 3% of procedures respectively, new infarcts occurred due to complications of the intraarterial treatment including thromboembolism and arterial dissection. Of those, 3% of patients, 2% of procedures respectively, were assigned to thrombembolic complications of digital substraction angiography for intraarterial nimodipine. 17% of all patients treated with PTA (3/18=17%) showed infarction as a complication of PTA (15% of all PTA procedures). In 1% of patients, etiology of new infarction remained unclear. CONCLUSION Ischemic complications occur in about 6% of patients treated intraarterially for CVS, 3% of procedures respectively. Further, to date a benefit for patients treated with this therapy could not be proven. Therefore, intraarterial treatment of CVS should be performed only in carefully selected cases.
Collapse
Affiliation(s)
- Daniela Adami
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528 Frankfurt, Germany
| | - Joachim Berkefeld
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528 Frankfurt, Germany
| | - Johannes Platz
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528 Frankfurt, Germany
| | - Jürgen Konczalla
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528 Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Department of Neurology, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528 Frankfurt, Germany
| | - Stefan Weidauer
- Neurology, Sankt Katharinen-Krankenhaus GmbH, Seckbacher Landstraße 65, 60389 Frankfurt, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528 Frankfurt, Germany.
| |
Collapse
|
15
|
Electroencephalographic Response to Sodium Nitrite May Predict Delayed Cerebral Ischemia After Severe Subarachnoid Hemorrhage. Crit Care Med 2017; 44:e1067-e1073. [PMID: 27441898 PMCID: PMC5068187 DOI: 10.1097/ccm.0000000000001950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Supplemental Digital Content is available in the text. Objectives: Aneurysmal subarachnoid hemorrhage often leads to death and poor clinical outcome. Injury occurring during the first 72 hours is termed “early brain injury,” with disruption of the nitric oxide pathway playing an important pathophysiologic role in its development. Quantitative electroencephalographic variables, such as α/δ frequency ratio, are surrogate markers of cerebral ischemia. This study assessed the quantitative electroencephalographic response to a cerebral nitric oxide donor (intravenous sodium nitrite) to explore whether this correlates with the eventual development of delayed cerebral ischemia. Design: Unblinded pilot study testing response to drug intervention. Setting: Neuroscience ICU, John Radcliffe Hospital, Oxford, United Kingdom. Patients: Fourteen World Federation of Neurosurgeons grades 3, 4, and 5 patients (mean age, 52.8 yr [range, 41–69 yr]; 11 women). Interventions: IV sodium nitrite (10 μg/kg/min) for 1 hour. Measurements and Main Results: Continuous electroencephalographic recording for 2 hours. The alpha/delta frequency ratio was measured before and during IV sodium nitrite infusion. Seven of 14 patients developed delayed cerebral ischemia. There was a +30% to +118% (range) increase in the alpha/delta frequency ratio in patients who did not develop delayed cerebral ischemia (p < 0.0001) but an overall decrease in the alpha/delta frequency ratio in those patients who did develop delayed cerebral ischemia (range, +11% to –31%) (p = 0.006, multivariate analysis accounting for major confounds). Conclusions: Administration of sodium nitrite after severe subarachnoid hemorrhage differentially influences quantitative electroencephalographic variables depending on the patient’s susceptibility to development of delayed cerebral ischemia. With further validation in a larger sample size, this response may be developed as a tool for risk stratification after aneurysmal subarachnoid hemorrhage.
Collapse
|