1
|
Mirmosayyeb O, Yazdan Panah M, Vaheb S, Ghoshouni H, Mahmoudi F, Kord R, Kord A, Zabeti A, Shaygannejad V. Association between diffusion tensor imaging measurements and cognitive performances in people with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2025; 94:106261. [PMID: 39798200 DOI: 10.1016/j.msard.2025.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Alterations in structural connectivity of brain networks have been linked to complex cognitive functions in people with multiple sclerosis (PwMS). However, a definitive consensus on the optimal diffusion tensor imaging (DTI) markers as indicators of cognitive performance remains incomplete and inconclusive. This systematic review and meta-analysis aimed to explore the evidence on the correlation between DTI metrics and cognitive functions in PwMS. METHODS A comprehensive literature search was conducted across PubMed/MEDLINE, Embase, Scopus, and the Web of Science up to March 2024 to identify studies reporting the correlation between DTI metrics and cognitive functions. Cognitive function was assessed using the Symbol Digit Modalities Test (SDMT), California Verbal Learning Test (CVLT), and Brief Visuospatial Memory Test-Revised (BVMT-R). The pooled correlation coefficients were estimated using R software version 4.4.0 with the random effect model. RESULTS Out of 1952 studies, 38 studies on 2055 PwMS fulfilled the inclusion criteria. The meta-analysis indicated that the SDMT exhibited the greatest correlation with corpus callosum fractional anisotropy (FA) (r = 0.54, 95 % CI: 0.4 to 0.66, p-value < 0.001, I2 = 34.1 %, p-heterogeneity = 0.19) and mean diffusivity (MD) (r = -0.48, 95 % CI: 0.61 to -0.33, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.77), white matter FA (r = 0.39, 95 % CI: 0.24 to 0.52, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.1), and fornix FA (r = 0.35, 95 % CI: 0.12 to 0.54, p-value = 0.003, I2 = 50.7 %, p-heterogeneity = 0.18) and MD (r = -0.35, 95 % CI: 0.49 to -0.19, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.5). CONCLUSION DTI measurements, including corpus callosum FA and MD, white matter FA, and fornix FA and MD, represent the indicators of cognitive performance in PwMS. Nonetheless, these findings warrant cautious interpretation due to the restricted kinds of cognitive tests and methodological variability across studies.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Mohammad Yazdan Panah
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhad Mahmoudi
- Department of Neurology, University of Miami, Miami, FL 33136, USA
| | - Reza Kord
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Ali Kord
- Division of Interventional Radiology, Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
| | - Aram Zabeti
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Kular L, Needhamsen M, Adzemovic MZ, Kramarova T, Gomez-Cabrero D, Ewing E, Piket E, Tegnér J, Beck S, Piehl F, Brundin L, Jagodic M. Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis. Clin Epigenetics 2019; 11:86. [PMID: 31146783 PMCID: PMC6543588 DOI: 10.1186/s13148-019-0678-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
Background Due to limited access to brain tissue, the precise mechanisms underlying neuro-axonal dysfunction in neurological disorders such as multiple sclerosis (MS) are largely unknown. In that context, profiling DNA methylation, which is a stable and cell type-specific regulatory epigenetic mark of genome activity, offers a unique opportunity to characterize the molecular mechanisms underpinning brain pathology in situ. We examined DNA methylation patterns of neuronal nuclei isolated from post-mortem brain tissue to infer processes that occur in neurons of MS patients. Results We isolated subcortical neuronal nuclei from post-mortem white matter tissue of MS patients and non-neurological controls using flow cytometry. We examined bulk DNA methylation changes (total n = 29) and further disentangled true DNA methylation (5mC) from neuron-specific DNA hydroxymethylation (5hmC) (n = 17), using Illumina Infinium 450K arrays. We performed neuronal sub-type deconvolution using glutamate and GABA methylation profiles to further reduce neuronal sample heterogeneity. In total, we identified 2811 and 1534 significant (genome-wide adjusted P value < 0.05) differentially methylated and hydroxymethylated positions between MS patients and controls. We found striking hypo-5mC and hyper-5hmC changes occurring mainly within gene bodies, which correlated with reduced transcriptional activity, assessed using published RNAseq data from bulk brain tissue of MS patients and controls. Pathway analyses of the two cohorts implicated dysregulation of genes involved in axonal guidance and synaptic plasticity, with meta-analysis confirming CREB signalling as the most highly enriched pathway underlying these processes. We functionally investigated DNA methylation changes of CREB signalling-related genes by immunohistofluoresence of phosphorylated CREB in neurons from brain sections of a subcohort of MS patients and controls (n = 15). Notably, DNA methylation changes associated with a reduction of CREB activity in white matter neurons of MS patients compared to controls. Conclusions Our data demonstrate that investigating 5mC and 5hmC modifications separately allows the discovery of a substantial fraction of changes occurring in neurons, which can escape traditional bisulfite-based DNA methylation analysis. Collectively, our findings indicate that neurons of MS patients acquire sustained hypo-5mC and hyper-5hmC, which may impair CREB-mediated neuro-axonal integrity, in turn relating to clinical symptoms. Electronic supplementary material The online version of this article (10.1186/s13148-019-0678-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Milena Z Adzemovic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana Kramarova
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Gomez-Cabrero
- Department of Medicine, Unit of Computational Medicine, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden.,Mucosal and Salivary Biology Division, King's College London Dental Institute, London, SE1 9RT, UK.,Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eliane Piket
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Tegnér
- Department of Medicine, Unit of Computational Medicine, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden.,Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, London, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Manca R, Stabile MR, Bevilacqua F, Cadorin C, Piccione F, Sharrack B, Venneri A. Cognitive speed and white matter integrity in secondary progressive multiple sclerosis. Mult Scler Relat Disord 2019; 30:198-207. [DOI: 10.1016/j.msard.2019.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/23/2019] [Accepted: 02/15/2019] [Indexed: 01/28/2023]
|
4
|
Mulholland AD, Vitorino R, Hojjat SP, Ma AY, Zhang L, Lee L, Carroll TJ, Cantrell CG, Figley CR, Aviv RI. Spatial Correlation of Pathology and Perfusion Changes within the Cortex and White Matter in Multiple Sclerosis. AJNR Am J Neuroradiol 2017; 39:91-96. [PMID: 29097413 DOI: 10.3174/ajnr.a5410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE The spatial correlation between WM and cortical GM disease in multiple sclerosis is controversial and has not been previously assessed with perfusion MR imaging. We sought to determine the nature of association between lobar WM, cortical GM, volume and perfusion. MATERIALS AND METHODS Nineteen individuals with secondary-progressive multiple sclerosis, 19 with relapsing-remitting multiple sclerosis, and 19 age-matched healthy controls were recruited. Quantitative MR perfusion imaging was used to derive CBF, CBV, and MTT within cortical GM, WM, and T2-hyperintense lesions. A 2-step multivariate linear regression (corrected for age, disease duration, and Expanded Disability Status Scale) was used to assess correlations between perfusion and volume measures in global and lobar normal-appearing WM, cortical GM, and T2-hyperintense lesions. The Bonferroni adjustment was applied as appropriate. RESULTS Global cortical GM and WM volume was significantly reduced for each group comparison, except cortical GM volume of those with relapsing-remitting multiple sclerosis versus controls. Global and lobar cortical GM CBF and CBV were reduced in secondary-progressive multiple sclerosis compared with other groups but not for relapsing-remitting multiple sclerosis versus controls. Global and lobar WM CBF and CBV were not significantly different across groups. The distribution of lobar cortical GM and WM volume reduction was disparate, except for the occipital lobes in patients with secondary-progressive multiple sclerosis versus those with relapsing-remitting multiple sclerosis. Moderate associations were identified between lobar cortical GM and lobar normal-appearing WM volume in controls and in the left temporal lobe in relapsing-remitting multiple sclerosis. No significant associations occurred between cortical GM and WM perfusion or volume. Strong correlations were observed between cortical-GM perfusion, normal appearing WM and lesional perfusion, with respect to each global and lobar region within HC, and RRMS and SPMS patients (R2 ≤ 0.96, P < .006 and R2 ≤ 0.738, P < .006). CONCLUSIONS The weak correlation between lobar WM and cortical GM volume loss and perfusion reduction suggests the independent pathophysiology of WM and cortical GM disease.
Collapse
Affiliation(s)
- A D Mulholland
- From the Department of Physical Sciences (A.D.M., R.V., S.-P.H., A.Y.M., L.Z.), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - R Vitorino
- From the Department of Physical Sciences (A.D.M., R.V., S.-P.H., A.Y.M., L.Z.), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - S-P Hojjat
- From the Department of Physical Sciences (A.D.M., R.V., S.-P.H., A.Y.M., L.Z.), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - A Y Ma
- From the Department of Physical Sciences (A.D.M., R.V., S.-P.H., A.Y.M., L.Z.), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - L Zhang
- From the Department of Physical Sciences (A.D.M., R.V., S.-P.H., A.Y.M., L.Z.), Sunnybrook Research Institute, Toronto, Ontario, Canada.,Departments of Medical Imaging (L.Z., R.I.A.)
| | - L Lee
- Neurology (L.L.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - T J Carroll
- Department of Biomedical Engineering and Radiology (T.J.C.), University of Chicago, Chicago, Illinois
| | - C G Cantrell
- Department of Biomedical Engineering (C.G.C.), Northwestern University, Chicago, Illinois
| | - C R Figley
- Department of Radiology and Biomedical Engineering (C.R.F.), University of Manitoba, Winnipeg, Manitoba, Canada
| | - R I Aviv
- Departments of Medical Imaging (L.Z., R.I.A.) .,Department of Medical Imaging (R.I.A.), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Faizy TD, Thaler C, Ceyrowski T, Broocks G, Treffler N, Sedlacik J, Stürner K, Stellmann JP, Heesen C, Fiehler J, Siemonsen S. Reliability of cortical lesion detection on double inversion recovery MRI applying the MAGNIMS-Criteria in multiple sclerosis patients within a 16-months period. PLoS One 2017; 12:e0172923. [PMID: 28235075 PMCID: PMC5325582 DOI: 10.1371/journal.pone.0172923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/10/2017] [Indexed: 01/27/2023] Open
Abstract
PURPOSE In patients with multiple sclerosis (MS), Double Inversion Recovery (DIR) magnetic resonance imaging (MRI) can be used to identify cortical lesions (CL). We sought to evaluate the reliability of CL detection on DIR longitudinally at multiple subsequent time-points applying the MAGNIMs scoring criteria for CLs. METHODS 26 MS patients received a 3T-MRI (Siemens, Skyra) with DIR at 12 time-points (TP) within a 16 months period. Scans were assessed in random order by two different raters. Both raters separately marked all CLs on each scan and total lesion numbers were obtained for each scan-TP and patient. After a retrospective re-evaluation, the number of consensus CLs (conL) was defined as the total number of CLs, which both raters finally agreed on. CLs volumes, relative signal intensities and CLs localizations were determined. Both ratings (conL vs. non-consensus scoring) were compared for further analysis. RESULTS A total number of n = 334 CLs were identified by both raters in 26 MS patients with a first agreement of both raters on 160 out of 334 of the CLs found (κ = 0.48). After the retrospective re-evaluation, consensus agreement increased to 233 out of 334 CL (κ = 0.69). 93.8% of conL were visible in at least 2 consecutive TP. 74.7% of the conL were visible in all 12 consecutive TP. ConL had greater mean lesion volumes and higher mean signal intensities compared to lesions that were only detected by one of the raters (p<0.05). A higher number of CLs in the frontal, parietal, temporal and occipital lobe were identified by both raters than the number of those only identified by one of the raters (p<0.05). CONCLUSIONS After a first assessment, slightly less than a half of the CL were considered as reliably detectable on longitudinal DIR images. A retrospective re-evaluation notably increased the consensus agreement. However, this finding is narrowed, considering the fact that retrospective evaluation steps might not be practicable in clinical routine. Lesions that were not reliably identifiable by both raters seem to be characterized by lower signal intensity and smaller size, or located in distinct anatomical brain regions.
Collapse
Affiliation(s)
- Tobias Djamsched Faizy
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Ceyrowski
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natascha Treffler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Sedlacik
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klarissa Stürner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Neuroimmunology and Clinical MS Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Patrick Stellmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Neuroimmunology and Clinical MS Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Heesen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Neuroimmunology and Clinical MS Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Siemonsen
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Neuroimmunology and Clinical MS Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Meijer K, Cercignani M, Muhlert N, Sethi V, Chard D, Geurts J, Ciccarelli O. Patterns of white matter damage are non-random and associated with cognitive function in secondary progressive multiple sclerosis. Neuroimage Clin 2016; 12:123-31. [PMID: 27408797 PMCID: PMC4932616 DOI: 10.1016/j.nicl.2016.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/15/2016] [Accepted: 06/11/2016] [Indexed: 01/12/2023]
Abstract
In multiple sclerosis (MS), white matter damage is thought to contribute to cognitive dysfunction, which is especially prominent in secondary progressive MS (SPMS). While studies in healthy subjects have revealed patterns of correlated fractional anisotropy (FA) across white matter tracts, little is known about the underlying patterns of white matter damage in MS. In the present study, we aimed to map the SPMS-related covariance patterns of microstructural white matter changes, and investigated whether or not these patterns were associated with cognitive dysfunction. Diffusion MRI was acquired from 30 SPMS patients and 32 healthy controls (HC). A tensor model was fitted and FA maps were processed using tract-based spatial statistics (TBSS) in order to obtain a skeletonised map for each subject. The skeletonised FA maps of patients only were decomposed into 18 spatially independent components (ICs) using independent component analysis. Comprehensive cognitive assessment was conducted to evaluate five cognitive domains. Correlations between cognitive performance and (1) severity of FA abnormalities of the extracted ICs (i.e. z-scores relative to FA values of HC) and (2) IC load (i.e. FA covariance of a particular IC) were examined. SPMS patients showed lower FA values of all examined patterns of correlated FA (i.e. spatially independent components) than HC (p < 0.01). Tracts visually assigned to the supratentorial commissural class were most severely damaged (z = - 3.54; p < 0.001). Reduced FA was significantly correlated with reduced IC load (i.e. FA covariance) (r = 0.441; p < 0.05). Lower mean FA and component load of the supratentorial projection tracts and limbic association tracts classes were associated with worse cognitive function, including executive function, working memory and verbal memory. Despite the presence of white matter damage, it was possible to reveal patterns of FA covariance across SPMS patients. This could indicate that white matter tracts belonging to the same cluster, and thus with similar characteristics, tend to follow similar trends during neurodegeneration. Furthermore, these underlying FA patterns might help to explain cognitive dysfunction in SPMS.
Collapse
Affiliation(s)
- K.A. Meijer
- Department of Anatomy and Neurosciences, VU Medical Centre, Amsterdam, The Netherlands
- NMR Research Unit, Queen Square MS Centre, University College London Institute of Neurology, London, United Kingdom
| | - M. Cercignani
- Clinical Imaging Centre, Brighton and Sussex Medical School, Brighton, United Kingdom
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - N. Muhlert
- School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
| | - V. Sethi
- NMR Research Unit, Queen Square MS Centre, University College London Institute of Neurology, London, United Kingdom
- School of Psychology and Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - D. Chard
- NMR Research Unit, Queen Square MS Centre, University College London Institute of Neurology, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - J.J.G. Geurts
- Department of Anatomy and Neurosciences, VU Medical Centre, Amsterdam, The Netherlands
| | - O. Ciccarelli
- NMR Research Unit, Queen Square MS Centre, University College London Institute of Neurology, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
7
|
Tobin WO, Popescu BF, Lowe V, Pirko I, Parisi JE, Kantarci K, Fields JA, Bruns MB, Boeve BF, Lucchinetti CF. Multiple sclerosis masquerading as Alzheimer-type dementia: Clinical, radiological and pathological findings. Mult Scler 2015; 22:698-704. [PMID: 26447065 DOI: 10.1177/1352458515604382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/22/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVES We report a comprehensive clinical, radiological, neuropsychometric and pathological evaluation of a woman with a clinical diagnosis of AD dementia (ADem), but whose autopsy demonstrated widespread demyelination, without Alzheimer disease (AD) pathology. METHODS AND RESULTS Initial neuropsychometric evaluation suggested amnestic mild cognitive impairment (aMCI). Serial magnetic resonance images (MRI) images demonstrated the rate of increase in her ventricular volume was comparable to that of 46 subjects with aMCI who progressed to ADem, without accumulating white matter disease. Myelin immunohistochemistry at autopsy demonstrated extensive cortical subpial demyelination. Subpial lesions involved the upper cortical layers, and often extended through the entire width of the cortex. CONCLUSIONS Multiple sclerosis (MS) can cause severe cortical dysfunction and mimic ADem. Cortical demyelination is not well detected by standard imaging modalities and may not be detected on autopsy without myelin immunohistochemistry.
Collapse
Affiliation(s)
- W O Tobin
- Division of Neurology, Mayo Clinic, USA
| | - B F Popescu
- Department Anatomy and Cell Biology, University of Saskatchewan, Canada
| | - V Lowe
- Division of Radiology, Mayo Clinic, USA
| | - I Pirko
- Division of Neurology, Mayo Clinic, USA
| | - J E Parisi
- Division of Anatomical Pathology, Mayo Clinic, USA
| | | | - J A Fields
- Division of Psychology, Mayo Clinic, USA
| | - M B Bruns
- Division of Neurology, Mayo Clinic, USA
| | - B F Boeve
- Division of Neurology, Mayo Clinic, USA
| | | |
Collapse
|