1
|
Yang Z, Zheng C, Zhang F, Lin B, Cao M, Tian X, Zhang J, Zhang X, Shen J. Magnetic resonance imaging of enhanced nerve repair with mesenchymal stem cells combined with microenvironment immunomodulation in neurotmesis. Muscle Nerve 2020; 61:815-825. [PMID: 32170960 DOI: 10.1002/mus.26862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The immuno-microenvironment of injured nerves adversely affects mesenchymal stem cell (MSC) therapy for neurotmesis. Magnetic resonance imaging (MRI) can be used noninvasively to monitor nerve degeneration and regeneration. The aim of this study was to investigate nerve repair after MSC transplantation combined with microenvironment immunomodulation in neurotmesis by using multiparametric MRI. METHODS Rats with sciatic nerve transection and surgical coaptation were treated with MSCs combined with immunomodulation or MSCs alone. Serial multiparametric MRI examinations were performed over an 8-week period after surgery. RESULTS Nerves treated with MSCs combined with immunomodulation showed better functional recovery, rapid recovery of nerve T2, fractional anisotropy and radial diffusivity values, and more rapid restoration of the fiber tracks than nerves treated with MSCs alone. DISCUSSION Transplantation of MSCs in combination with immunomodulation can exert a synergistic repair effect on neurotmesis, which can be monitored by multiparametric MRI.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chushan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Binglin Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minghui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuwei Tian
- Department of Radiology, The First People's Hospital of Kashgar, Kashgar, China
| | - Jingzhong Zhang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Magnetic Resonance Imaging as a Biomarker in Rodent Peripheral Nerve Injury Models Reveals an Age-Related Impairment of Nerve Regeneration. Sci Rep 2019; 9:13508. [PMID: 31534149 PMCID: PMC6751200 DOI: 10.1038/s41598-019-49850-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/24/2019] [Indexed: 12/12/2022] Open
Abstract
Assessment of myelin integrity in peripheral nerve injuries and pathologies has largely been limited to post-mortem analysis owing to the difficulty in obtaining biopsies without affecting nerve function. This is further encumbered by the small size of the tissue and its location. Therefore, the development of robust, non-invasive methods is highly attractive. In this study, we used magnetic resonance imaging (MRI) techniques, including magnetization transfer ratio (MTR), to longitudinally and non-invasively characterize both the sciatic nerve crush and lysolecithin (LCP) demyelination models of peripheral nerve injury in rodents. Electrophysiological, gene expression and histological assessments complemented the extensive MRI analyses in young and aged animals. In the nerve crush model, MTR analysis indicated a slower recovery in regions distal to the site of injury in aged animals, as well as incomplete recovery at six weeks post-crush when analyzing across the entire nerve surface. Similar regional impairments were also found in the LCP demyelination model. This research underlines the power of MTR for the study of peripheral nerve injury in small tissues such as the sciatic nerve of rodents and contributes new knowledge to the effect of aging on recovery after injury. A particular advantage of the approach is the translational potential to human neuropathies.
Collapse
|
3
|
Wanner R, Abaei A, Rasche V, Knöll B. Three-Dimensional In vivo Magnetic Resonance Imaging (MRI) of Mouse Facial Nerve Regeneration. Front Neurol 2019; 10:310. [PMID: 31001195 PMCID: PMC6454117 DOI: 10.3389/fneur.2019.00310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/11/2019] [Indexed: 01/28/2023] Open
Abstract
MRI (magnetic resonance imaging) is an indispensable tool in the diagnosis of centrals nervous system (CNS) disorders such as spinal cord injury and multiple sclerosis (MS). In contrast, diagnosis of peripheral nerve injuries largely depends on clinical and electrophysiological parameters. Thus, currently MRI is not regularly used which in part is due to small nerve calibers and isointensity with surrounding tissue such as muscles. In this study we performed translational MRI research in mice to establish a novel MRI protocol visualizing intact and injured peripheral nerves in a non-invasive manner without contrast agents. With this protocol we were able to image even very small nerves and nerve branches such as the mouse facial nerve (diameter 100–300 μm) at highest spatial resolution. Analysis was performed in the same animal in a longitudinal study spanning 3 weeks after injury. Nerve injury caused hyperintense signal in T2-weighted images and an increase in nerve size of the proximal and distal nerve stumps were observed. Further hyperintense signal was observed in a bulb-like structure in the lesion site, which correlated histologically with the production of fibrotic tissue and immune cell infiltration. The longitudinal MR representation of the facial nerve lesions correlated well with physiological recovery of nerve function by quantifying whisker movement. In summary, we provide a novel protocol in rodents allowing for non-invasive, non-contrast agent enhanced, high-resolution MR imaging of small peripheral nerves longitudinally over several weeks. This protocol might further help to establish MRI as an important diagnostic and post-surgery follow-up tool to monitor peripheral nerve injuries in humans.
Collapse
Affiliation(s)
- Renate Wanner
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal MRI, Medical Faculty, Ulm University, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, Medical Faculty, Ulm University, Ulm, Germany.,Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
4
|
Chen MW, Zhang X, Lu LJ, Zhang F, Duan XH, Zheng CS, Chen YY, Shen J. Monitoring of macrophage recruitment enhanced by Toll-like receptor 4 activation with MR imaging in nerve injury. Muscle Nerve 2018; 58:123-132. [PMID: 29424947 DOI: 10.1002/mus.26097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Macrophage recruitment is critical for nerve regeneration after an injury. The aim of this study was to investigate whether ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle-based MRI could be used to monitor the enhanced macrophage recruitment by Toll-like receptor 4 (TLR4) activation in nerve injury. METHODS Rats received intraperitoneal injections of either lipopolysaccharide (LPS) or phosphate buffered saline (PBS) or no injection (controls) after a sciatic nerve crush injury. After intravenous injection of the USPIOs (LPS and PBS groups) or PBS (control group), MRI was performed and correlated with histological findings. RESULTS LPS group showed more remarkable hypointense signals on T2*-weighted imaging and lower T2 values in the crushed nerves than PBS group. The hypointense signal areas were associated with an enhanced recruitment of iron-loaded macrophages to the injured nerves. DISCUSSION USPIO-enhanced MRI can be used to monitor the enhanced macrophage recruitment by means of TLR4 signal pathway activation in nerve injury. Muscle Nerve, 2018.
Collapse
Affiliation(s)
- Mei-Wei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Lie-Jing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Chu-Shan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Yue-Yao Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| |
Collapse
|
5
|
Zheng CS, Zhang X, Chen YY, Zhang F, Duan XH, Chen MW, Lu LJ, Shen J. Assessment of the synergic effect of immunomodulation on nerve repair using multiparametric magnetic resonance imaging. Muscle Nerve 2018; 57:E38-E45. [PMID: 28445921 DOI: 10.1002/mus.25674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/05/2017] [Accepted: 04/23/2017] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The immune system plays a pivotal role in nerve injury. The aim of this study was to determine the role of multiparametric magnetic resonance imaging (MRI) in evaluation of the synergic effect of immunomodulation on nerve regeneration in neurotmesis. METHODS Rats with sciatic nerve neurotmesis and surgical repair underwent serial multiparametric MR examinations over an 8-week period after subepineurial microinjection of lipopolysaccharide (LPS) and subsequent subcutaneous injection of FK506 or subepineurial microinjection of LPS or phosphate-buffered saline (PBS) alone. RESULTS Nerves treated with immunomodulation showed more prominent regeneration than those treated with LPS or PBS alone and more rapid restoration toward normal T2, fractional anisotropy (FA), and radial diffusivity (RD) values than nerves injected with LPS or PBS. DISCUSSION Nerves treated with immunomodulation exert synergic beneficial effects on nerve regeneration that can be predicted by T2 measurements and FA and RD values. Muscle Nerve 57: E38-E45, 2018.
Collapse
Affiliation(s)
- Chu-Shan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Yue-Yao Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Mei-Wei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Lie-Jing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| |
Collapse
|
6
|
Hill BJ, Padgett KR, Kalra V, Marcillo A, Bowen B, Pattany P, Dietrich D, Quencer R. Gadolinium DTPA Enhancement Characteristics of the Rat Sciatic Nerve after Crush Injury at 4.7T. AJNR Am J Neuroradiol 2017; 39:177-183. [PMID: 29097415 DOI: 10.3174/ajnr.a5437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/24/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Traumatic peripheral nerve injury is common and results in loss of function and/or neuropathic pain. MR neurography is a well-established technique for evaluating peripheral nerve anatomy and pathology. However, the Gd-DTPA enhancement characteristics of acutely injured peripheral nerves have not been fully examined. This study was performed to determine whether acutely crushed rat sciatic nerves demonstrate Gd-DTPA enhancement and, if so, to evaluate whether enhancement is affected by crush severity. MATERIALS AND METHODS In 26 rats, the sciatic nerve was crushed with either surgical forceps (6- to 20-N compressive force) or a microvascular/microaneurysm clip (0.1-0.6 N). Animals were longitudinally imaged at 4.7T for up to 30 days after injury. T1WI, T2WI, and T1WI with Gd-DTPA were performed. RESULTS Forceps crush injury caused robust enhancement between days 3 and 21, while clip crush injury resulted in minimal-to-no enhancement. Enhancement after forceps injury peaked at 7 days and was seen a few millimeters proximal to, in the region of, and several centimeters distal to the site of crush injury. Enhancement after forceps injury was statistically significant compared with clip injury between days 3 and 7 (P < .04). CONCLUSIONS Gd-DTPA enhancement of peripheral nerves may only occur above a certain crush-severity threshold. This phenomenon may explain the intermittent observation of Gd-DTPA enhancement of peripheral nerves after traumatic injury. The observation of enhancement may be useful in judging the severity of injury after nerve trauma.
Collapse
Affiliation(s)
- B J Hill
- From the Departments of Radiology (B.J.H., K.R.P., B.B., P.P., R.Q.)
| | - K R Padgett
- From the Departments of Radiology (B.J.H., K.R.P., B.B., P.P., R.Q.) .,Radiation Oncology (K.R.P.).,Biomedical Engineering (K.R.P.)
| | - V Kalra
- Miller School of Medicine (V.K.), University of Miami, Miami, Florida
| | - A Marcillo
- Miami Project to Cure Paralysis (A.M., D.D.)
| | - B Bowen
- From the Departments of Radiology (B.J.H., K.R.P., B.B., P.P., R.Q.)
| | - P Pattany
- From the Departments of Radiology (B.J.H., K.R.P., B.B., P.P., R.Q.)
| | - D Dietrich
- Miami Project to Cure Paralysis (A.M., D.D.)
| | - R Quencer
- From the Departments of Radiology (B.J.H., K.R.P., B.B., P.P., R.Q.)
| |
Collapse
|
7
|
TLR4 Deficiency Impairs Oligodendrocyte Formation in the Injured Spinal Cord. J Neurosci 2017; 36:6352-64. [PMID: 27277810 DOI: 10.1523/jneurosci.0353-16.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/05/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Acute oligodendrocyte (OL) death after traumatic spinal cord injury (SCI) is followed by robust neuron-glial antigen 2 (NG2)-positive OL progenitor proliferation and differentiation into new OLs. Inflammatory mediators are prevalent during both phases and can influence the fate of NG2 cells and OLs. Specifically, toll-like receptor (TLR) 4 signaling induces OL genesis in the naive spinal cord, and lack of TLR4 signaling impairs white matter sparing and functional recovery after SCI. Therefore, we hypothesized that TLR4 signaling may regulate oligodendrogenesis after SCI. C3H/HeJ (TLR4-deficient) and control (C3H/HeOuJ) mice received a moderate midthoracic spinal contusion. TLR4-deficient mice showed worse functional recovery and reduced OL numbers compared with controls at 24 h after injury through chronic time points. Acute OL loss was accompanied by reduced ferritin expression, which is regulated by TLR4 and needed for effective iron storage. TLR4-deficient injured spinal cords also displayed features consistent with reduced OL genesis, including reduced NG2 expression, fewer BrdU-positive OLs, altered BMP4 signaling and inhibitor of differentiation 4 (ID4) expression, and delayed myelin phagocytosis. Expression of several factors, including IGF-1, FGF2, IL-1β, and PDGF-A, was altered in TLR4-deficient injured spinal cords compared with wild types. Together, these data show that TLR4 signaling after SCI is important for OL lineage cell sparing and replacement, as well as in regulating cytokine and growth factor expression. These results highlight new roles for TLR4 in endogenous SCI repair and emphasize that altering the function of a single immune-related receptor can dramatically change the reparative responses of multiple cellular constituents in the injured CNS milieu. SIGNIFICANCE STATEMENT Myelinating cells of the CNS [oligodendrocytes (OLs)] are killed for several weeks after traumatic spinal cord injury (SCI), but they are replaced by resident progenitor cells. How the concurrent inflammatory signaling affects this endogenous reparative response is unclear. Here, we provide evidence that immune receptor toll-like receptor 4 (TLR4) supports OL lineage cell sparing, long-term OL and OL progenitor replacement, and chronic functional recovery. We show that TLR4 signaling is essential for acute iron storage, regulating cytokine and growth factor expression, and efficient myelin debris clearance, all of which influence OL replacement. Importantly, the current study reveals that a single immune receptor is essential for repair responses after SCI, and the potential mechanisms of this beneficial effect likely change over time after injury.
Collapse
|
8
|
Church JS, Milich LM, Lerch JK, Popovich PG, McTigue DM. E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord. Glia 2017; 65:883-899. [PMID: 28251686 DOI: 10.1002/glia.23132] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/26/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are present throughout the adult brain and spinal cord and can replace oligodendrocytes lost to injury, aging, or disease. Their differentiation, however, is inhibited by myelin debris, making clearance of this debris an important step for cellular repair following demyelination. In models of peripheral nerve injury, TLR4 activation by lipopolysaccharide (LPS) promotes macrophage phagocytosis of debris. Here we tested whether the novel synthetic TLR4 agonist E6020, a Lipid A mimetic, promotes myelin debris clearance and remyelination in spinal cord white matter following lysolecithin-induced demyelination. In vitro, E6020 induced TLR4-dependent cytokine expression (TNFα, IL1β, IL-6) and NF-κB signaling, albeit at ∼10-fold reduced potency compared to LPS. Microinjection of E6020 into the intact rat spinal cord gray/white matter border induced macrophage activation, OPC proliferation, and robust oligodendrogenesis, similar to what we described previously using an intraspinal LPS microinjection model. Finally, a single co-injection of E6020 with lysolecithin into spinal cord white matter increased axon sparing, accelerated myelin debris clearance, enhanced Schwann cell infiltration into demyelinated lesions, and increased the number of remyelinated axons. In vitro assays confirmed that direct stimulation of macrophages by E6020 stimulates myelin phagocytosis. These data implicate TLR4 signaling in promoting repair after CNS demyelination, likely by stimulating phagocytic activity of macrophages, sparing axons, recruiting myelinating cells, and promoting remyelination. This work furthers our understanding of immune-myelin interactions and identifies a novel synthetic TLR4 agonist as a potential therapeutic avenue for white matter demyelinating conditions such as spinal cord injury and multiple sclerosis.
Collapse
Affiliation(s)
- Jamie S Church
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Lindsay M Milich
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Jessica K Lerch
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Dana M McTigue
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Chen YY, Zhang X, Lin XF, Zhang F, Duan XH, Zheng CS, Chen MW, Wang DY, Zeng WK, Shen J. DTI metrics can be used as biomarkers to determine the therapeutic effect of stem cells in acute peripheral nerve injury. J Magn Reson Imaging 2017; 45:855-862. [PMID: 27448779 DOI: 10.1002/jmri.25395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To determine the role of diffusion tensor imaging (DTI) metrics as biomarkers for the therapeutic effects of mesenchymal stem cells (MSCs) in acute peripheral nerve injury. MATERIALS AND METHODS Forty-four adult rats received subepineurial microinjection of MSCs (n = 22) or phosphate buffered saline (PBS, n = 22) 1 week after the sciatic nerve trunk crush injury. Sequential fat-suppressed T2-weighted imaging, T2 measurement, DTI and sciatic nerve functional assessment were performed at a 3.0 Tesla MR unit over an 8-week follow-up, with histological assessments performed at regular intervals. The sciatic nerve function index, T2 value, and DTI metrics, including fractional anisotropy (FA), axial diffusivity, radial diffusivity (RD), and mean diffusivity values of the distal stumps of crushed nerves were measured and compared between the two groups. RESULTS Nerves treated with MSCs showed better functional recovery and exhibited more pronounced nerve regeneration compared with nerves treated with PBS. T2 values in nerves treated with MSCs or PBS showed a similar change pattern (P = 0.174), while FA and RD values in nerves treated with MSCs showed more rapid return (one week earlier) to baseline level than nerves treated with PBS (P = 0.045; 0.035). Nerves treated with MSCs had higher FA and lower RD values than nerves treated with PBS during the period from 2 to 3 weeks after surgery (P ≤ 0.0001, 0.004; P = 0.004, 0.006). CONCLUSION FA and RD values derived from DTI might be used as sensitive biomarkers for detecting the therapeutic effect of stem cells in acute peripheral nerve crush injuries. LEVEL OF EVIDENCE 2 J. Magn. Reson. Imaging 2017;45:855-862.
Collapse
Affiliation(s)
- Yue-Yao Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Feng Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chu-Shan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mei-Wei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dong-Ye Wang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei-Ke Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|