1
|
Stein T, Kellner E, Mueller-Peltzer K, Elsheikh S, Reisert M, Hosp JA, Bamberg F, Urbach H, Rau A. Assessing bolus peak position in CT perfusion: High variance persisting despite age-dependency in a large cohort. Eur J Radiol 2024; 177:111595. [PMID: 38970994 DOI: 10.1016/j.ejrad.2024.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE CT perfusion (CTP) is a valuable tool in suspected acute ischemic stroke. A substantial variability of the delay between contrast injection and bolus arrival in the brain is conceivable. We investigated the distribution of the peak positions of the concentration time curves measured in an artery (arterial input function, AIF) and - in cases with ischemia - also measured in the penumbra. METHODS We report on 2624 perfusion scans (52 % female, mean age 72.2 ± 14.4 years) with stroke present in 1636 cases. From the attenuation time curves of the AIF and the penumbra, we calculated the respective bolus peak positions and investigated the distribution of the peak positions. Further, we analyzed the bolus peak positions for associations with age. RESULTS The bolus peaked significantly later in older patients, both in the AIF and in the penumbra (all p < 0.001). In the whole cohort, we found a significant association of age with the bolus peak position of the AIF (ρ = 0.334; p < 0.001). In patients with stroke, age was also associated to the peak position of the AIF (ρ = 0.305; p < 0.001), and the penumbra (ρ = 0.246, p < 0.001). However, a substantial range of peak positions of the AIF and penumbra was noted across all age ranges. CONCLUSIONS This study revealed a strong age-dependency of the contrast bolus arrival in both healthy and ischemic tissue. This variability makes non-uniform sampling schemes, which have been suggested to reduce radiation dose, problematic, as they might not always optimally capture the bolus in all cases.
Collapse
Affiliation(s)
- Thomas Stein
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Mueller-Peltzer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Samer Elsheikh
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas A Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Yearley AG, Goedmakers CMW, Panahi A, Doucette J, Rana A, Ranganathan K, Smith TR. FDA-approved machine learning algorithms in neuroradiology: A systematic review of the current evidence for approval. Artif Intell Med 2023; 143:102607. [PMID: 37673576 DOI: 10.1016/j.artmed.2023.102607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Over the past decade, machine learning (ML) and artificial intelligence (AI) have become increasingly prevalent in the medical field. In the United States, the Food and Drug Administration (FDA) is responsible for regulating AI algorithms as "medical devices" to ensure patient safety. However, recent work has shown that the FDA approval process may be deficient. In this study, we evaluate the evidence supporting FDA-approved neuroalgorithms, the subset of machine learning algorithms with applications in the central nervous system (CNS), through a systematic review of the primary literature. Articles covering the 53 FDA-approved algorithms with applications in the CNS published in PubMed, EMBASE, Google Scholar and Scopus between database inception and January 25, 2022 were queried. Initial searches identified 1505 studies, of which 92 articles met the criteria for extraction and inclusion. Studies were identified for 26 of the 53 neuroalgorithms, of which 10 algorithms had only a single peer-reviewed publication. Performance metrics were available for 15 algorithms, external validation studies were available for 24 algorithms, and studies exploring the use of algorithms in clinical practice were available for 7 algorithms. Papers studying the clinical utility of these algorithms focused on three domains: workflow efficiency, cost savings, and clinical outcomes. Our analysis suggests that there is a meaningful gap between the FDA approval of machine learning algorithms and their clinical utilization. There appears to be room for process improvement by implementation of the following recommendations: the provision of compelling evidence that algorithms perform as intended, mandating minimum sample sizes, reporting of a predefined set of performance metrics for all algorithms and clinical application of algorithms prior to widespread use. This work will serve as a baseline for future research into the ideal regulatory framework for AI applications worldwide.
Collapse
Affiliation(s)
- Alexander G Yearley
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Caroline M W Goedmakers
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Armon Panahi
- The George Washington University School of Medicine and Health Sciences, 2300 I St NW, Washington, DC 20052, USA
| | - Joanne Doucette
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA 02115, USA
| | - Aakanksha Rana
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Kavitha Ranganathan
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Timothy R Smith
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|
3
|
Deak Z, Schuettoff L, Lohse AK, Fabritius M, Reidler P, Forbrig R, Kunz W, Dimitriadis K, Ricke J, Sabel B. Reduction in Radiation Exposure of CT Perfusion by Optimized Imaging Timing Using Temporal Information of the Preceding CT Angiography of the Carotid Artery in the Stroke Protocol. Diagnostics (Basel) 2022; 12:diagnostics12112853. [PMID: 36428913 PMCID: PMC9689781 DOI: 10.3390/diagnostics12112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
(1) Background: CT perfusion (CTP) is a fast, robust and widely available but dose-exposing imaging technique for infarct core and penumbra detection. Carotid CT angiography (CTA) can precede CTP in the stroke protocol. Temporal information of the bolus tracking series of CTA could allow for better timing and a decreased number of scans in CTP, resulting in less radiation exposure, if the shortening of CTP does not alter the calculated infarct core and penumbra or the resulting perfusion maps, which are essential for further treatment decisions. (2) Methods: 66 consecutive patients with ischemic stroke proven by follow-up imaging or endovascular intervention were included in this retrospective study approved by the local ethics committee. In each case, six simulated, stepwise shortened CTP examinations were compared with the original data regarding the perfusion maps, infarct core, penumbra and endovascular treatment decision. (3) Results: In simulated CTPs with 26, 28 and 30 scans, the infarct core, penumbra and PRR values were equivalent, and the resulting clinical decision was identical to the original CTP. (4) Conclusions: The temporal information of the bolus tracking series of the carotid CTA can allow for better timing and a lower radiation exposure by eliminating unnecessary scans in CTP.
Collapse
Affiliation(s)
- Zsuzsanna Deak
- Imaging Urania, Laurenzerberg 2, 1010 Vienna, Austria
- Correspondence:
| | - Lara Schuettoff
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Ann-Kathrin Lohse
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Matthias Fabritius
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Paul Reidler
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Robert Forbrig
- Department of Neuroradiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Wolfgang Kunz
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Konstantin Dimitriadis
- Department of Neurology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Bastian Sabel
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
4
|
Fang H, He G, Cheng Y, Liang F, Zhu Y. Advances in cerebral perfusion imaging techniques in acute ischemic stroke. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1202-1211. [PMID: 36218215 DOI: 10.1002/jcu.23277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
The application of cerebral perfusion imaging has demonstrated significant assessment benefits and an ability to establish an appropriate triage of patients with acute ischemic stroke (AIS) and large artery occlusion (LAO) in the extended time window. Computed tomography perfusion (CTP) and magnetic resonance imaging (MRI) are routinely used to determine the ischemic core, as well as the tissue at risk, to aid in therapeutic decision-making. However, the time required to transport patients to imaging extends the door-to-reperfusion time. C-arm cone-beam CT (CBCT) is a novel tomography technology that combines 2D radiography and 3D CT imaging based on the digital subtraction angiography platform. In comparison with CT or MRI perfusion techniques, CBCT combined with catheterized angiogram or therapy can serve as a "one-stop-shop" for the diagnosis and treatment of AIS, and greatly reduce the door to reperfusion time. Here, we review the current evidence on the efficacy and theoretical basis of CBCT, as well as other perfusion techniques, with the purpose to assist clinicians to establish an effective and repaid workflow for patients with AIS and LAO in clinical practice.
Collapse
Affiliation(s)
- Hui Fang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangchen He
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yingsheng Cheng
- Department of Interventional Radiology, Tongji Hospital Affiliated of Tongji University, Shanghai, China
| | - Fuyou Liang
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
5
|
Zeng D, Zeng C, Zeng Z, Li S, Deng Z, Chen S, Bian Z, Ma J. Basis and current state of computed tomography perfusion imaging: a review. Phys Med Biol 2022; 67. [PMID: 35926503 DOI: 10.1088/1361-6560/ac8717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
Abstract
Computed tomography perfusion (CTP) is a functional imaging that allows for providing capillary-level hemodynamics information of the desired tissue in clinics. In this paper, we aim to offer insight into CTP imaging which covers the basics and current state of CTP imaging, then summarize the technical applications in the CTP imaging as well as the future technological potential. At first, we focus on the fundamentals of CTP imaging including systematically summarized CTP image acquisition and hemodynamic parameter map estimation techniques. A short assessment is presented to outline the clinical applications with CTP imaging, and then a review of radiation dose effect of the CTP imaging on the different applications is presented. We present a categorized methodology review on known and potential solvable challenges of radiation dose reduction in CTP imaging. To evaluate the quality of CTP images, we list various standardized performance metrics. Moreover, we present a review on the determination of infarct and penumbra. Finally, we reveal the popularity and future trend of CTP imaging.
Collapse
Affiliation(s)
- Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Cuidie Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhixiong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhen Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sijin Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| |
Collapse
|
6
|
Filice S, Pavarani A, Cerasti D. Real-time assessment of individual optimal CT perfusion acquisition time in patients with ischemic stroke. J Neuroimaging 2022; 32:604-610. [PMID: 35579598 DOI: 10.1111/jon.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aims to investigate the feasibility of a "real-time" estimate of the optimal CT perfusion (CTP) acquisition time (Top ) in ischemic stroke patients. METHODS The arterial input function, the venous output function (VOF), and the time-attenuation curves of ischemic core and ischemic penumbra of 51 patients with acute ischemic stroke in anterior circulation were obtained. The curves were analyzed to determine for each patient the Top value; additionally, several time parameters were derived from each waveform. The relationship between each of these parameters and Top was investigated. RESULTS We found a strong linear correlation between each time parameter derived from VOF curve and Top , suggesting that the VOF waveform is rescaled from patient to patient without significant change in shape. CONCLUSIONS The linear correlation between Top and the VOF time to peak is well suited to implement a new technique to automatically customize the patient's CTP acquisition time. The method does not require an additional dose of contrast medium and does not increase the overall study time, so its use would be desirable to decrease the average radiation dose.
Collapse
Affiliation(s)
- Silvano Filice
- Medical Physics Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Antonio Pavarani
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Davide Cerasti
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| |
Collapse
|
7
|
Karwacki GM, Vögele S, Blackham KA. Dose reduction in perfusion CT in stroke patients by lowering scan frequency does not affect automatically calculated infarct core volumes. J Neuroradiol 2019; 46:351-358. [PMID: 31034899 DOI: 10.1016/j.neurad.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND PURPOSE CT Perfusion technique (CTP) is a quantitative, easily performed, accepted and reliable method for detection of ischemic brain changes. Based on calculated parameters, the size of ischemic penumbra and irreversibly damaged infarct core can be determined which helps guide treatment decisions. However, due to the dynamic nature of the CTP study, it is dose intensive. This study determines the consequences of retrospectively reducing the number of scans in the dynamic acquisition by half on the volume of the automatically calculated infarct core (non-viable tissue) and penumbra (tissue at risk) volumes. Our hypothesis was that equivalent volumetric information could be obtained at a substantial dose savings. MATERIALS AND METHODS Fifty one consecutive patients with occlusion of M1 and/or M2 segment of the middle cerebral artery and ischemic stroke proven by follow-up MRI were included. CTP scans were first analyzed in a standard fashion and automatically generated volumes measured in milliliters were recorded in a database. A second analysis was conducted after removing every second data acquisition from the sequential CTP scans. Automatic volume measurements were repeated, recorded and compared to the initial values obtained using the full dataset. RESULTS The two CTP protocols were statistically equivalent pertaining to automatic infarct core volume calculation but a case-by-case analysis revealed substantial overestimation in some cases. CONCLUSION Reduction of radiation exposure in CTP without objective loss of accuracy of automatically calculated infarct core volume is feasible but might lead to clinically relevant infarct core overestimation in individual cases.
Collapse
Affiliation(s)
- Grzegorz Marek Karwacki
- University Hospital Basel, University of Basel, clinic of radiology and nuclear medicine, Basel, Switzerland.
| | - Stephan Vögele
- University Hospital Basel, University of Basel, clinic of radiology and nuclear medicine, Basel, Switzerland
| | - Kristine Ann Blackham
- University Hospital Basel, University of Basel, clinic of radiology and nuclear medicine, Basel, Switzerland
| |
Collapse
|
8
|
Using an orbit shield during volume perfusion CT: is it useful protection or an obstacle? Clin Radiol 2018; 73:834.e1-834.e8. [DOI: 10.1016/j.crad.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/01/2018] [Indexed: 11/22/2022]
|
9
|
Messaris GAT, Georgakopoulos DN, Zampakis P, Kalogeropoulou CP, Petsas TG, Panayiotakis GS. Patient dose in brain perfusion imaging using an 80-slice CT system. J Neuroradiol 2018; 46:243-247. [PMID: 30030061 DOI: 10.1016/j.neurad.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 06/04/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Brain CT Perfusion (CTP) is an X-ray imaging technique for the assessment of brain tissue perfusion, which can be used in several different entities. The aim of this study is the evaluation of the radiation dose to patients during a comprehensive brain CT prescription protocol (CPP) consisting of an unenhanced brain CT, a brain CT angiography and a CTP scan. MATERIALS AND METHODS Eighteen patients were studied using an 80-slice CT system, with an iterative reconstruction algorithm. The volume Computed Tomography Dose Index (CTDIvol) and dose length product (DLP) were recorded from the dose report of the system. The calculation of effective dose (ED) was accomplished using the DLP values. RESULTS For the CTP examinations, the CTDIvol ranged from 116.0 to 134.8mGy, with the mean value 119.5mGy. The DLP ranged from 463.9 to 539.2mGy·cm, with the mean value 478mGy·cm. For the CPP, the total ED ranged from 3.31 to 5.07mSv, with the mean value 4.37mSv. CONCLUSIONS These values are lower than the values reported in corresponding studies, including studies utilizing CT systems with more slices.
Collapse
Affiliation(s)
- Gerasimos A T Messaris
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Petros Zampakis
- Department of Radiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Theodoros G Petsas
- Department of Radiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - George S Panayiotakis
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
10
|
Radiation dose reduction in perfusion CT imaging of the brain using a 256-slice CT: 80 mAs versus 160 mAs. Clin Imaging 2018; 50:188-193. [DOI: 10.1016/j.clinimag.2018.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022]
|
11
|
Drocton GT, Luttrull MD, Ajam AA, Nguyen XV. Emerging Trends in Emergent Stroke Neuroimaging. CURRENT RADIOLOGY REPORTS 2018. [DOI: 10.1007/s40134-018-0282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Midgley SM, Stella DL, Campbell BCV, Langenberg F, Einsiedel PF. CT brain perfusion: A static phantom study of contrast-to-noise ratio and radiation dose. J Med Imaging Radiat Oncol 2016; 61:361-366. [DOI: 10.1111/1754-9485.12561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/26/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Stewart M Midgley
- Department of Radiology; Royal Melbourne Hospital and University of Melbourne; Parkville Victoria Australia
- South Australian Medical Imaging; Flinders Medical Centre; Bedford Park South Australia Australia
- School of Physics and Astronomy; Monash University; Clayton Victoria Australia
| | - Damien L Stella
- Department of Radiology; Royal Melbourne Hospital and University of Melbourne; Parkville Victoria Australia
| | - Bruce CV Campbell
- Department of Medicine and Neurology; Royal Melbourne Hospital and University of Melbourne; Parkville Victoria Australia
| | - Francesca Langenberg
- Department of Radiology; Royal Melbourne Hospital and University of Melbourne; Parkville Victoria Australia
| | - Paul F Einsiedel
- Department of Radiology; Royal Melbourne Hospital and University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
13
|
Kasasbeh AS, Christensen S, Straka M, Mishra N, Mlynash M, Bammer R, Albers GW, Lansberg MG. Optimal Computed Tomographic Perfusion Scan Duration for Assessment of Acute Stroke Lesion Volumes. Stroke 2016; 47:2966-2971. [PMID: 27895299 DOI: 10.1161/strokeaha.116.014177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The minimal scan duration needed to obtain reliable lesion volumes with computed tomographic perfusion (CTP) has not been well established in the literature. METHODS We retrospectively assessed the impact of gradual truncation of the scan duration on acute ischemic lesion volume measurements. For each scan, we identified its optimal scan time, defined as the shortest scan duration that yields measurements of the ischemic lesion volumes similar to those obtained with longer scanning, and the relative height of the fitted venous output function at its optimal scan time. RESULTS We analyzed 70 computed tomographic perfusion scans of acute stroke patients. An optimal scan time could not be determined in 11 scans (16%). For the other 59 scans, the median optimal scan time was 32.7 seconds (90th percentile 52.6 seconds; 100th percentile 68.9 seconds), and the median relative height of the fitted venous output function at the optimal scan times was 0.39 (90th percentile 0.02; 100th percentile 0.00). On the basis of a linear model, the optimal scan time was T0 plus 1.6 times the width of the venous output function (P<0.001; R2=0.49). CONCLUSIONS This study shows how the optimal duration of a computed tomographic perfusion scan relates to the arrival time and width of the contrast bolus. This knowledge can be used to optimize computed tomographic perfusion scan protocols and to determine whether a scan is of sufficient duration. Provided a baseline (T0) of 10 seconds, a total scan duration of 60 to 70 seconds, which includes the entire downslope of the venous output function in most patients, is recommended.
Collapse
Affiliation(s)
- Aimen S Kasasbeh
- From the Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA
| | - Søren Christensen
- From the Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA
| | - Matus Straka
- From the Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA
| | - Nishant Mishra
- From the Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA
| | - Michael Mlynash
- From the Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA
| | - Roland Bammer
- From the Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA
| | - Gregory W Albers
- From the Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA
| | - Maarten G Lansberg
- From the Stanford Stroke Center, Stanford University Medical Center, Palo Alto, CA.
| |
Collapse
|
14
|
Nishii T, Kono AK, Tani W, Suehiro E, Negi N, Takahashi S, Sugimura K. Four-dimensional noise reduction using the time series of medical computed tomography datasets with short interval times: a static-phantom study. PeerJ 2016; 4:e1680. [PMID: 26893966 PMCID: PMC4756736 DOI: 10.7717/peerj.1680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/21/2016] [Indexed: 12/04/2022] Open
Abstract
Backgrounds. This study examines the hypothesis that four-dimensional noise reduction (4DNR) with short interval times reduces noise in cardiac computed tomography (CCT) using “padding” phases. Furthermore, the capability of reducing the reduction dose in CCT using this post-processing technique was assessed. Methods. Using base and quarter radiation doses for CCT (456 and 114 mAs/rot with 120 kVp), a static phantom was scanned ten times with retrospective electrocardiogram gating, and 4DNR with short interval times (50 ms) was performed using a post-processing technique. Differences in the computed tomography (CT) attenuation, contrast-to-noise ratio (CNR) and spatial resolution with modulation transfer function in each dose image obtained with and without 4DNR were assessed by conducting a Tukey–Kramer’s test and non-inferiority test. Results. For the base dose, by using 4DNR, the CNR was improved from 1.18 ± 0.15 to 2.08 ± 0.20 (P = 0.001), while the CT attenuation and spatial resolution of the image of 4DNR did not were significantly inferior to those of reference image (P < 0.001). CNRs of the quarter-dose image in 4DNR also improved to 1.28 ± 0.11, and were not inferior to those of the non-4DNR images of the base dose (P < 0.001). Conclusions. 4DNR with short interval times significantly reduced noise. Furthermore, applying this method to CCT would have the potential of reducing the radiation dose by 75%, while maintaining a similar image noise level.
Collapse
Affiliation(s)
- Tatsuya Nishii
- Department of Radiology, Kobe University Graduate School of Medicine , Kobe , Japan
| | - Atsushi K Kono
- Department of Radiology, Kobe University Graduate School of Medicine , Kobe , Japan
| | - Wakiko Tani
- Division of Radiology, Center for Radiology and Radiation Oncology, Kobe University Hospital , Kobe , Japan
| | - Erina Suehiro
- Division of Radiology, Center for Radiology and Radiation Oncology, Kobe University Hospital , Kobe , Japan
| | - Noriyuki Negi
- Division of Radiology, Center for Radiology and Radiation Oncology, Kobe University Hospital , Kobe , Japan
| | - Satoru Takahashi
- Department of Radiology, Kobe University Graduate School of Medicine , Kobe , Japan
| | - Kazuro Sugimura
- Department of Radiology, Kobe University Graduate School of Medicine , Kobe , Japan
| |
Collapse
|
15
|
Image quality, radiation dose and diagnostic accuracy of 70 kVp whole brain volumetric CT perfusion imaging: a preliminary study. Eur Radiol 2016; 26:4184-4193. [DOI: 10.1007/s00330-016-4225-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/02/2016] [Accepted: 01/15/2016] [Indexed: 11/30/2022]
|
16
|
Radiation dose reduction in perfusion CT imaging of the brain: A review of the literature. J Neuroradiol 2016; 43:1-5. [DOI: 10.1016/j.neurad.2015.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022]
|
17
|
Isoattenuating insulinomas at biphasic contrast-enhanced CT: frequency, clinicopathologic features and perfusion characteristics. Eur Radiol 2016; 26:3697-705. [PMID: 26815370 DOI: 10.1007/s00330-016-4216-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVES We aimed to determine the frequency of isoattenuating insulinomas, to investigate their clinicopathological features and to assess their regional pancreatic perfusion characteristics. METHODS Institutional review board approval was obtained, and patient informed consent was waived. From July 2010 to June 2014, 170 patients (66 male, 104 female) with endogenous hyperinsulinemic hypoglycemia underwent biphasic contrast-enhanced CT before surgery, and 129 of those patients also received preoperative whole-pancreas CT perfusion. A total of 181 tumours were proved histopathologically after surgery. Enhancement pattern and regional pancreatic perfusion characteristics were analyzed. Clinical features, tumour size and pathological grading were investigated. RESULTS The frequency of isoattenuating tumours was 24.9 %. Tumour size and WHO grading was not significantly different between isoattenuating and hyperattenuating tumours. Tumour-free regions had identical blood flow (BF) regardless of their location (p = 0.35). Isoattenuating tumour-harbouring regions had lower BF compared with hyperattenuating tumour-harbouring regions; both showed higher BF compared with tumour-free neighbourhood regions (all p < 0.01). For patients with isoattenuating tumours, the overall hospital stay was longer (p < 0.01). CONCLUSIONS A substantial subset of insulinomas were isoattenuating on biphasic CT. CT perfusion showed higher BF in tumour-harbouring regions compared to tumour-free regions, providing a clue for tumour regionalization. KEY POINTS • About a quarter of all insulinomas were isoattenuating on biphasic contrast-enhanced CT. • CT perfusion finds tumour-harbouring regions have higher blood-flow compared to tumour-free regions. • CT perfusion provides important information for tumour regionalization, for isoattenuating tumours.
Collapse
|
18
|
Comparison of Imaging Selection Criteria for Intra-Arterial Thrombectomy in Acute Ischemic Stroke with Advanced CT. Eur Radiol 2015; 26:2974-81. [DOI: 10.1007/s00330-015-4141-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
|
19
|
Vo KD, Yoo AJ, Gupta A, Qiao Y, Vagal AS, Hirsch JA, Yousem DM, Lum C. Multimodal Diagnostic Imaging for Hyperacute Stroke. AJNR Am J Neuroradiol 2015; 36:2206-13. [PMID: 26427831 DOI: 10.3174/ajnr.a4530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In April 2015, the American Roentgen Ray Society and the American Society of Neuroradiology cosponsored a unique program designed to evaluate the state of the art in the imaging work-up of acute stroke. This topic has grown in importance because of the recent randomized controlled trials demonstrating the clear efficacy of endovascular stroke treatment. The authors, who were participants in that symposium, will highlight the points of emphasis in this article.
Collapse
Affiliation(s)
- K D Vo
- From the Mallinckrodt Institute of Radiology (K.D.V.), Washington University School of Medicine, St. Louis, Missouri
| | - A J Yoo
- Division of Neurointervention (A.J.Y.), Texas Stroke Institute, Plano, Texas
| | - A Gupta
- Department of Radiology and Feil Family Brain and Mind Research Institute (A.G.), Weill Cornell Medical College, New York, New York
| | - Y Qiao
- Department of Radiology (Y.Q.), Johns Hopkins School of Medicine, Baltimore, Maryland
| | - A S Vagal
- Department of Radiology (A.S.V.), University of Cincinnati Medical Center, Cincinnati, Ohio
| | - J A Hirsch
- NeuroInterventional Radiology (J.A.H.), Massachusetts General Hospital, Boston, Massachusetts
| | - D M Yousem
- Department of Radiology (D.M.Y.), Johns Hopkins Medical Institution, Baltimore, Maryland
| | - C Lum
- Interventional Neuroradiology (C.L.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontaria, Canada
| |
Collapse
|
20
|
Perfusion CT and acute stroke imaging: Foundations, applications, and literature review. J Neuroradiol 2015; 42:21-9. [DOI: 10.1016/j.neurad.2014.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022]
|