1
|
Sanvito F, Yao J, Nocera G, Shao G, Wang Z, Cho NS, Teraishi A, Raymond C, Patel K, Pouratian N, Everson RG, Yang I, Salamon N, Kim W, Ellingson BM. Volumetric and diffusion MRI longitudinal patterns in brain metastases after laser interstitial thermal therapy. Eur Radiol 2025:10.1007/s00330-025-11587-0. [PMID: 40251440 DOI: 10.1007/s00330-025-11587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 03/06/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE To characterize MRI changes of brain metastases (BM) following laser interstitial thermal therapy (LITT), particularly in lesions exhibiting durable response or early progression. MATERIALS AND METHODS Longitudinal scans from patients with LITT-treated BM were retrospectively analyzed. Treatment response was categorized as durable response, long-term disease control (i.e., stable at 1 year), stable disease < 1 year, or progression < 1 year. Volumetric and diffusion MRI changes after LITT were analyzed for each subregion (contrast-enhancing, central non-enhancing, whole lesion). Volumetric changes were modeled with bi-exponential fits in responding lesions and progressors. RESULTS 295 MRI scans from 47 lesions across 42 patients (57.8 ± 14.3 years old, males:females 21:21) were analyzed. Overall, the post-LITT scan showed a lesion enlargement (p < 0.0001 for all subregions), more pronounced in the contrast-enhancing (CE) component (median = +77%, p < 0.0001), and a reduction in the apparent diffusion coefficient (ADC) (p < 0.001), especially in the central non-CE component (median = -224 × 10-6 mm2/s, p < 0.0001), with no significant differences between responders and progressors. Based on mathematical modeling, the responding lesions shrank to half of the post-LITT size after 79.83 days (median "pseudo-half-life"), and the progressing lesions shrank for a median of 27 days (median time-to-growth) before regrowing. The estimated optimal timepoints for follow-up scans were 23 days and 125 days, yielding accuracy/specificity/sensitivity 0.82/1.0/0.55 in identifying progressing lesions (p < 0.01). CONCLUSION BM typically exhibit an early volume increase with diffusion restriction after LITT. Responders then show bi-exponential shrinkage with gradual diffusion increase. Progression can usually be detected only after 3-4 months, because earlier radiographic patterns may overlap with responding lesions. KEY POINTS Question Laser interstitial thermal therapy (LITT) is an emerging local treatment for brain metastases, but the radiographic patterns following this treatment have not been thoroughly described. Findings Responding lesions showed a typical radiographic pattern with early volumetric enlargement and diffusion restriction (not exclusive of responders), followed by a bi-exponential shrinkage and diffusion elevation. Clinical relevance Being aware of the typical radiographic changes in brain metastases responding to LITT is informative for the interpretation of follow-up images. Early volumetric and diffusion changes (< 3-4 months) do not appear to be reliable markers to predict treatment success.
Collapse
Affiliation(s)
- Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Gianluca Nocera
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Università Vita-Salute San Raffaele, Milano, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milano, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Guowen Shao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Zexi Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas S Cho
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashley Teraishi
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kunal Patel
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Richard G Everson
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiation Oncology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Isaac Yang
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiation Oncology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Head and Neck Surgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Won Kim
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Zhong C, Yang K, Wang N, Yang L, Yang Z, Xu L, Wang J, Zhang L. Advancements in Surgical Therapies for Drug-Resistant Epilepsy: A Paradigm Shift towards Precision Care. Neurol Ther 2025; 14:467-490. [PMID: 39928287 PMCID: PMC11906941 DOI: 10.1007/s40120-025-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Epilepsy, a prevalent neurological disorder characterized by recurrent seizures, affects millions worldwide, with a significant proportion resistant to pharmacological treatments. Surgical interventions have emerged as pivotal in managing drug-resistant epilepsy (DRE), aiming to reduce seizure frequency or achieve seizure freedom. Traditional resective surgeries have evolved with technological advances, enhancing precision and safety. Neurostimulation techniques, such as responsive neurostimulation (RNS) and deep brain stimulation (DBS), now provide personalized, real-time seizure management, offering alternatives to traditional surgery. Minimally invasive ablative methods, such as laser interstitial thermal therapy (LITT) and Magnetic Resonance-guided Focused Ultrasound (MRgFUS), allow for targeted destruction of epileptogenic tissue with reduced risks and faster recovery times. The use of stereo-electroencephalography (SEEG) and robotic assistance has further refined surgical precision, enhancing outcomes. These advancements mark a paradigm shift towards precision medicine in epilepsy care, promising improved seizure management and quality of life for patients globally. This review outlines the latest innovations in epilepsy surgery, emphasizing their mechanisms and clinical implications to improve outcomes for patients with DRE.
Collapse
Affiliation(s)
- Chen Zhong
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Kang Yang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Nianhua Wang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Liang Yang
- Department of Neurosurgery, The 3rd Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhuanyi Yang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lixin Xu
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Jun Wang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Longbo Zhang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China.
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
3
|
Butler M, Carr C, Baker D, Bhatia A, Vale FL, Nguyen K. Robot-assisted MRI-guided laser interstitial thermal therapy for a giant sessile hypothalamic hamartoma in an 8-year-old boy: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2025; 9:CASE24628. [PMID: 40030161 DOI: 10.3171/case24628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/12/2024] [Indexed: 03/06/2025]
Abstract
BACKGROUND Hypothalamic hamartoma (HH) is a nonneoplastic tumor associated with precocious puberty and gelastic seizures, characterized by uncontrolled, inappropriate laughter. Successful treatment can resolve symptoms, but medications are often ineffective, and surgical treatment is complicated by the deep brain location. Laser interstitial thermal therapy (LITT) has been shown to be a safe alternative, but it has been suggested that it may not be suitable for larger lesions due to the increased risk of postoperative perilesional edema. OBSERVATIONS The authors report the case of a giant sessile HH successfully treated with LITT. An 8-year-old male with a history of precocious puberty and refractory gelastic seizures presented for treatment of a giant HH first diagnosed in 2018. The authors performed robot-assisted stereotactic placement of a laser electrode and magnetic resonance imaging-guided ablation of the HH. He had no complications and has had a 90% seizure reduction as of 7 months postoperatively. They identified 4 studies describing LITT for giant HHs in the literature with conflicting results. LESSONS There have been limited reports of LITT for giant HHs. The authors demonstrate that this modality can be a safe, effective option for patients with large lesions. https://thejns.org/doi/10.3171/CASE24628.
Collapse
Affiliation(s)
- Molly Butler
- Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Christopher Carr
- Department of Neurosurgery, Wellstar-Medical College of Georgia Health, Augusta, Georgia
| | - David Baker
- Department of Neurosurgery, Wellstar-Medical College of Georgia Health, Augusta, Georgia
| | - Anah Bhatia
- Department of Neurosurgery, Wellstar-Medical College of Georgia Health, Augusta, Georgia
| | - Fernando L Vale
- Department of Neurosurgery, Wellstar-Medical College of Georgia Health, Augusta, Georgia
| | - Khoi Nguyen
- Department of Neurosurgery, Wellstar-Medical College of Georgia Health, Augusta, Georgia
| |
Collapse
|
4
|
McGrath K, Frain M, Hey G, Rahman M. Complications following laser interstitial thermal therapy: a review. Neurochirurgie 2025; 71:101604. [PMID: 39413572 DOI: 10.1016/j.neuchi.2024.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Laser interstitial thermal therapy (LITT) is being performed more frequently for various lesions within neurosurgery, including epileptic foci, vascular malformations, and tumors. Though this technique generally has an excellent safety profile, it is important to be aware of potential complications. Thermal ablation of tissue leads to disruption of the blood brain barrier as well as an inflammatory response both of which cause the majority of complications from LITT. The most common complications of LITT include cerebral edema, focal neurologic deficits, and intracranial hemorrhage. Few studies have identified factors predicting development of these complications, but many of these are transient and resolve without intervention. Modifications to LITT technique that allows better visualization of patient anatomy along the tract, such as fusing vascular imaging with intraoperative MRI, reduce the risk of complications.
Collapse
Affiliation(s)
- Kyle McGrath
- College of Medicine, University of Florida, Gainesville, FL, United States.
| | - Matthew Frain
- Department of Medical Physics, University of Florida, Gainesville, FL, United States; Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Grace Hey
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States; Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Zhu W, Pan S, Zhang J, Xu J, Zhang R, Zhang Y, Fu Z, Wang Y, Hu C, Xu Z. The role of hyperthermia in the treatment of tumor. Crit Rev Oncol Hematol 2024; 204:104541. [PMID: 39461607 DOI: 10.1016/j.critrevonc.2024.104541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Despite recent advancements in the diagnosis and treatment options for cancer, it remains one of the most serious threats to health. Hyperthermia (HT) has emerged as a highly promising area of research due to its safety and cost-effectiveness. Currently, based on temperature, HT can be categorized into thermal ablation and mild hyperthermia. Thermal ablation involves raising the temperature within the tumor to over 60°C, resulting in direct necrosis in the central region of the tumor. In contrast, mild hyperthermia operates at relatively lower temperatures, typically in the range of 41-45°C, to induce damage to tumor cells. Furthermore, HT also serves as an immune adjuvant strategy in radiotherapy, chemotherapy, and immunotherapy, enhancing the effectiveness of radiotherapy, increasing the uptake of chemotherapy drugs, and reprogramming the tumor microenvironment through the induction of immunogenic cell death, thereby promoting the recruitment of endogenous immune cells. This article reviews the current status and development of hyperthermia, outlines potential mechanisms by which hyperthermia inhibits tumors, describes clinical trial attempts combining hyperthermia with radiotherapy, chemotherapy, and immunotherapy, and discusses the relationship between nanoparticles and hyperthermia.
Collapse
Affiliation(s)
- Weiwei Zhu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Siwei Pan
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jiaqing Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jingli Xu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ruolan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yanqiang Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zhenjie Fu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Yuqi Wang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Can Hu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| | - Zhiyuan Xu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| |
Collapse
|
6
|
Bhatia S, Berke CN, Rivera CA, Cleri NA, Mahavadi A, Merenzon MA, Khalafallah AM, Levy AS, Daggubati LC, Morell AA, Kaye B, Sanchez P, Shah AH, Komotar RJ, Ivan ME. The Impact of Perilesional Heatsink Structures on Ablation Volumes in Laser Interstitial Thermal Therapy for Brain Metastases. Neurosurgery 2024; 95:849-858. [PMID: 38954601 DOI: 10.1227/neu.0000000000002945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/12/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Laser interstitial thermal therapy (LITT) has demonstrated promise in surgical neuro-oncology because of its effectiveness in delivering precise thermal energy to lesions. The extent of ablation (EOA) is a prognostic factor in improving patient outcomes but is often affected by perilesional heatsink structures, which can lead to asymmetric ablations. The purpose of this study was to quantitatively evaluate the impact of various perilesional heatsink structures on the EOA in LITT for brain metastases. METHODS Twenty-seven procedures for 22 unique patients with brain metastases fit the inclusion criteria. Intracranial heatsink structures were identified: sulci, meninges, cerebrospinal fluid (CSF) spaces, and vasculature. Asymmetric ablation was determined by measuring 3 pairs of orthogonal distances from the proximal, midpoint, and distal locations along the laser catheter to the farthest edge of the ablation zone bilaterally. Distances from the same points on the laser catheter to the nearest heatsink were also recorded. The Heatsink Effect Index was created to serve as a proxy for asymmetric ablation. Pearson correlations, t -tests, and analysis of variance were the statistical analyses performed. RESULTS From the midpoint of the catheter, the 27 heatsinks were meninges (40.7%), sulci (22.2%), vasculature (22.2%), and CSF spaces (14.8%). Across all points along the catheter track, there was a significant generalized heatsink effect on asymmetric ablations ( P < .0001). There was a negative correlation observed between asymmetric ablations and EOA from the midpoint of the laser catheter (r = -0.445, P = .020). Compared with sulci, CSF spaces trended toward a greater effect on asymmetric ablation volumes ( P = .069). CONCLUSION This novel quantitative analysis shows that perilesional heatsinks contribute to asymmetric ablations. CSF spaces trended toward higher degrees of asymmetric ablations. Importantly, neurosurgeons may anticipate asymmetric ablations preoperatively if heatsinks are located within 13.3 mm of the laser probe midpoint. These preliminary results may guide surgical decision-making in LITT for metastatic brain lesions.
Collapse
Affiliation(s)
- Shovan Bhatia
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Chandler N Berke
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Cameron A Rivera
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Nathaniel A Cleri
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook , New York , USA
| | - Anil Mahavadi
- Department of Neurological Surgery, University of Alabama Birmingham School of Medicine, Birmingham , Alabama , USA
| | - Martin A Merenzon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Adham M Khalafallah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Adam S Levy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Lekhaj C Daggubati
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Alexis A Morell
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Brandon Kaye
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie , Florida , USA
| | - Pier Sanchez
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami , Florida , USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami , Florida , USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami , Florida , USA
| |
Collapse
|
7
|
Pandey A, Chandla A, Mekonnen M, Hovis GEA, Teton ZE, Patel KS, Everson RG, Wadehra M, Yang I. Safety and Efficacy of Laser Interstitial Thermal Therapy as Upfront Therapy in Primary Glioblastoma and IDH-Mutant Astrocytoma: A Meta-Analysis. Cancers (Basel) 2024; 16:2131. [PMID: 38893250 PMCID: PMC11171930 DOI: 10.3390/cancers16112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Although primary studies have reported the safety and efficacy of LITT as a primary treatment in glioma, they are limited by sample sizes and institutional variation in stereotactic parameters such as temperature and laser power. The current literature has yet to provide pooled statistics on outcomes solely for primary brain tumors according to the 2021 WHO Classification of Tumors of the Central Nervous System (WHO CNS5). In the present study, we identify recent articles on primary CNS neoplasms treated with LITT without prior intervention, focusing on relationships with molecular profile, PFS, and OS. This meta-analysis includes the extraction of data from primary sources across four databases using the Covidence systematic review manager. The pooled data suggest LITT may be a safe primary management option with tumor ablation rates of 94.8% and 84.6% in IDH-wildtype glioblastoma multiforme (GBM) and IDH-mutant astrocytoma, respectively. For IDH-wildtype GBM, the pooled PFS and OS were 5.0 and 9.0 months, respectively. Similar to rates reported in the prior literature, the neurologic and non-neurologic complication rates for IDH-wildtype GBM were 10.3% and 4.8%, respectively. The neurologic and non-neurologic complication rates were somewhat higher in the IDH-mutant astrocytoma cohort at 33% and 8.3%, likely due to a smaller cohort size.
Collapse
Affiliation(s)
- Aryan Pandey
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Anubhav Chandla
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Mahlet Mekonnen
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Gabrielle E. A. Hovis
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Zoe E. Teton
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kunal S. Patel
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Richard G. Everson
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095, USA
- Department of Head and Neck Surgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Gao T, Liang L, Ding H, Wang G. Patient-specific temperature distribution prediction in laser interstitial thermal therapy: single-irradiation data-driven method. Phys Med Biol 2024; 69:105019. [PMID: 38648787 DOI: 10.1088/1361-6560/ad4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Laser interstitial thermal therapy (LITT) is popular for treating brain tumours and epilepsy. The strict control of tissue thermal damage extent is crucial for LITT. Temperature prediction is useful for predicting thermal damage extent. Accurately predictingin vivobrain tissue temperature is challenging due to the temperature dependence and the individual variations in tissue properties. Considering these factors is essential for improving the temperature prediction accuracy.Objective. To present a method for predicting patient-specific tissue temperature distribution within a target lesion area in the brain during LITT.Approach. A magnetic resonance temperature imaging (MRTI) data-driven estimation model was constructed and combined with a modified Pennes bioheat transfer equation (PBHE) to predict patient-specific temperature distribution. In the PBHE for temperature prediction, the individual specificity and temperature dependence of thermal tissue properties and blood perfusion, as well as the individual specificity of optical tissue properties were considered. Only MRTI data during one laser irradiation were required in the method. This enables the prediction of patient-specific temperature distribution and the resulting thermal damage region for subsequent ablations.Main results. Patient-specific temperature prediction was evaluated based on clinical data acquired during LITT in the brain, using intraoperative MRTI data as the reference standard. Our method significantly improved the prediction performance of temperature distribution and thermal damage region. The average root mean square error was decreased by 69.54%, the average intraclass correlation coefficient was increased by 37.5%, the average Dice similarity coefficient was increased by 43.14% for thermal damage region prediction.Significance. The proposed method can predict temperature distribution and thermal damage region at an individual patient level during LITT, providing a promising approach to assist in patient-specific treatment planning for LITT in the brain.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Libin Liang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hui Ding
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guangzhi Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
9
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
10
|
Rifi Z, Harary M, Walshaw PD, Frew AJ, Everson RG, Fallah A, Salamon N, Kim W. Functional magnetic resonance imaging (fMRI) as adjunct for planning laser interstitial thermal therapy (LITT) near eloquent structures. Acta Neurochir (Wien) 2024; 166:66. [PMID: 38316692 PMCID: PMC10844152 DOI: 10.1007/s00701-024-05970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024]
Abstract
LITT is a minimally-invasive laser ablation technique used to treat a wide variety of intracranial lesions. Difficulties performing intraoperative mapping have limited its adoption for lesions in/near eloquent regions. In this institutional case series, we demonstrate the utility of fMRI-adjunct planning for LITT near language or motor areas. Six out of 7 patients proceeded with LITT after fMRI-based tractography determined adequate safety margins for ablation. All underwent successful ablation without new or worsening postoperative symptoms requiring adjuvant corticosteroids, including those with preexisting deficits. fMRI is an easily accessible adjunct which may potentially reduce chances of complications in LITT near eloquent structures.
Collapse
Affiliation(s)
- Ziad Rifi
- David Geffen School of Medicine, University of California, Los Angeles, USA
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Maya Harary
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Patricia D Walshaw
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| | - Andrew J Frew
- Department of Neurosurgery, University of California, Los Angeles, USA
- Department of Radiology, University of California, Los Angeles, USA
| | - Richard G Everson
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Noriko Salamon
- Department of Radiology, University of California, Los Angeles, USA
| | - Won Kim
- Department of Neurosurgery, University of California, Los Angeles, USA.
| |
Collapse
|
11
|
Fan Y, Xu L, Liu S, Li J, Xia J, Qin X, Li Y, Gao T, Tang X. The State-of-the-Art and Perspectives of Laser Ablation for Tumor Treatment. CYBORG AND BIONIC SYSTEMS 2024; 5:0062. [PMID: 38188984 PMCID: PMC10769065 DOI: 10.34133/cbsystems.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/21/2023] [Indexed: 01/09/2024] Open
Abstract
Tumors significantly impact individuals' physical well-being and quality of life. With the ongoing advancements in optical technology, information technology, robotic technology, etc., laser technology is being increasingly utilized in the field of tumor treatment, and laser ablation (LA) of tumors remains a prominent area of research interest. This paper presents an overview of the recent progress in tumor LA therapy, with a focus on the mechanisms and biological effects of LA, commonly used ablation lasers, image-guided LA, and robotic-assisted LA. Further insights and future prospects are discussed in relation to these aspects, and the paper proposed potential future directions for the development of tumor LA techniques.
Collapse
Affiliation(s)
- Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Liancheng Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jialu Xia
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Yafeng Li
- China Electronics Harvest Technology Co. Ltd., China
| | - Tianxin Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Khambhati AN. Utility of Chronic Intracranial Electroencephalography in Responsive Neurostimulation Therapy. Neurosurg Clin N Am 2024; 35:125-133. [PMID: 38000836 DOI: 10.1016/j.nec.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Responsive neurostimulation (RNS) therapy is an effective treatment for reducing seizures in some patients with focal epilepsy. Utilizing a chronically implanted device, RNS involves monitoring brain activity signals for user-defined patterns of seizure activity and delivering electrical stimulation in response. Devices store chronic data including counts of detected activity patterns and brief recordings of intracranial electroencephalography signals. Data platforms for reviewing stored chronic data retrospectively may be used to evaluate therapy performance and to fine-tune detection and stimulation settings. New frontiers in RNS research can leverage raw chronic data to reverse engineer neurostimulation mechanisms and improve therapy effectiveness.
Collapse
Affiliation(s)
- Ankit N Khambhati
- Department of Neurosurgery, Weill Institute for Neurosciences, University of California, San Francisco, Joan and Sanford I. Weill Neurosciences Building, 1651 4th Street, 671C, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Sun R, Zhang W, Bagić A, He B. Deep learning based source imaging provides strong sublobar localization of epileptogenic zone from MEG interictal spikes. Neuroimage 2023; 281:120366. [PMID: 37716593 PMCID: PMC10771628 DOI: 10.1016/j.neuroimage.2023.120366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/07/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
Electromagnetic source imaging (ESI) offers unique capability of imaging brain dynamics for studying brain functions and aiding the clinical management of brain disorders. Challenges exist in ESI due to the ill-posedness of the inverse problem and thus the need of modeling the underlying brain dynamics for regularizations. Advances in generative models provide opportunities for more accurate and realistic source modeling that could offer an alternative approach to ESI for modeling the underlying brain dynamics beyond equivalent physical source models. However, it is not straightforward to explicitly formulate the knowledge arising from these generative models within the conventional ESI framework. Here we investigate a novel source imaging framework based on mesoscale neuronal modeling and deep learning (DL) that can learn the sensor-source mapping relationship directly from MEG data for ESI. Two DL-based ESI models were trained based on data generated by neural mass models and either generic or personalized head models. The robustness of the two DL models was evaluated by systematic computer simulations and clinical validation in a cohort of 29 drug-resistant focal epilepsy patients who underwent intracranial EEG (iEEG) evaluation or surgical resection. Results estimated from pre-operative MEG interictal spikes were quantified using the overlap with resection regions and the distance to the seizure-onset zone (SOZ) defined by iEEG recordings. The DL-based ESI provided robust results when no personalized head geometry is considered, reaching a spatial dispersion of 21.90 ± 19.03 mm, sublobar concordance of 83 %, and sublobar sensitivity and specificity of 66 and 97 % respectively. When using personalized head geometry derived from individual patients' MRI in the training data, personalized DL-based ESI model can further improve the performance and reached a spatial dispersion of 8.19 ± 8.14 mm, sublobar concordance of 93 %, and sublobar sensitivity and specificity of 77 and 99 % respectively. When compared to the SOZ, the localization error of the personalized approach is 15.78 ± 5.54 mm, outperforming the conventional benchmarks. This work demonstrates that combining generative models and deep learning enables an accurate and robust imaging of epileptogenic zone from MEG recordings with strong sublobar precision, suggesting its added value to enhancing MEG source localization and imaging, and to epilepsy source localization and other clinical applications.
Collapse
Affiliation(s)
- Rui Sun
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Wenbo Zhang
- Minnesota Epilepsy Group, John Nasseff Neuroscience Center at United Hospital, Saint Paul, USA
| | - Anto Bagić
- Department of Neurology, University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), University of Pittsburgh Medical School, Pittsburgh, USA
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Brandel MG, Kunwar N, Alattar AA, Kang KM, Forseth KJ, Rennert RC, Shih JJ, Ben-Haim S. A cost analysis of MR-guided laser interstitial thermal therapy for adult refractory epilepsy. Epilepsia 2023; 64:2286-2296. [PMID: 37350343 DOI: 10.1111/epi.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE MR-guided laser interstitial thermal therapy (LITT) is used increasingly for refractory epilepsy. The goal of this investigation is to directly compare cost and short-term adverse outcomes for adult refractory epilepsy treated with temporal lobectomy and LITT, as well as to identify risk factors for increased costs and adverse outcomes. METHODS The National Inpatient Sample (NIS) was queried for patients who received LITT between 2012 and 2019. Patients with adult refractory epilepsy were identified. Multivariable mixed-effects models were used to analyze predictors of cost, length of stay (LOS), and complications. RESULTS LITT was associated with reduced LOS and overall cost relative to temporal lobectomy, with a statistical trend toward lower incidence of postoperative complications. High-volume surgical epilepsy centers had lower LOS overall. Longer LOS was a significant driver of increased cost for LITT, and higher comorbidity was associated with non-routine discharge. SIGNIFICANCE LITT is an affordable alternative to temporal lobectomy for adult refractory epilepsy with an insignificant reduction in inpatient complications. Patients may benefit from expanded access to this treatment modality for both its reduced LOS and lower cost.
Collapse
Affiliation(s)
- Michael G Brandel
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| | - Nikhita Kunwar
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| | - Ali A Alattar
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keiko M Kang
- Department of Neurosurgery, University of Southern California, Los Angeles, California, USA
| | - Kiefer J Forseth
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| | - Robert C Rennert
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Jerry J Shih
- Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Sharona Ben-Haim
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| |
Collapse
|
15
|
Aum DJ, Reynolds RA, McEvoy S, Tomko S, Zempel J, Roland JL, Smyth MD. Surgical outcomes of open and laser interstitial thermal therapy approaches for corpus callosotomy in pediatric epilepsy. Epilepsia 2023; 64:2274-2285. [PMID: 37303192 DOI: 10.1111/epi.17679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Corpus callosotomy (CC) is a palliative surgical intervention for patients with medically refractory epilepsy that has evolved in recent years to include a less-invasive alternative with the use of laser interstitial thermal therapy (LITT). LITT works by heating a stereotactically placed laser fiber to ablative temperatures under real-time magnetic resonance imaging (MRI) thermometry. This study aims to (1) describe the surgical outcomes of CC in a large cohort of children with medically refractory epilepsy, (2) compare anterior and complete CC, and (3) review LITT as a surgical alternative to open craniotomy for CC. METHODS This retrospective cohort study included 103 patients <21 years of age with at least 1 year follow-up at a single institution between 2003 and 2021. Surgical outcomes and the comparative effectiveness of anterior vs complete and open versus LITT surgical approaches were assessed. RESULTS CC was the most common surgical disconnection (65%, n = 67) followed by anterior two-thirds (35%, n = 36), with a portion proceeding to posterior completion (28%, n = 10). The overall surgical complication rate was 6% (n = 6/103). Open craniotomy was the most common approach (87%, n = 90), with LITT used increasingly in recent years (13%, n = 13). Compared to open, LITT had shorter hospital stay (3 days [interquartile range (IQR) 2-5] vs 5 days [IQR 3-7]; p < .05). Modified Engel class I, II, III, and IV outcomes at last follow-up were 19.8% (n = 17/86), 19.8% (n = 17/86), 40.2% (n = 35/86), and 19.8% (n = 17/86). Of the 70 patients with preoperative drop seizures, 75% resolved postoperatively (n = 52/69). SIGNIFICANCE No significant differences in seizure outcome between patients who underwent only anterior CC and complete CC were observed. LITT is a less-invasive surgical alternative to open craniotomy for CC, associated with similar seizure outcomes, lower blood loss, shorter hospital stays, and lower complication rates, but with longer operative times, when compared with the open craniotomy approach.
Collapse
Affiliation(s)
- Diane J Aum
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rebecca A Reynolds
- Division of Pediatric Neurosurgery, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Sean McEvoy
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stuart Tomko
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - John Zempel
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jarod L Roland
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthew D Smyth
- Division of Pediatric Neurosurgery, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| |
Collapse
|
16
|
Choi SW, Duclos S, Camelo-Piragua S, Chaudhary N, Sukovich J, Hall T, Pandey A, Xu Z. Histotripsy Treatment of Murine Brain and Glioma: Temporal Profile of Magnetic Resonance Imaging and Histological Characteristics Post-treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1882-1891. [PMID: 37277304 DOI: 10.1016/j.ultrasmedbio.2023.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Currently, there is a knowledge gap in our understanding of the magnetic resonance imaging (MRI) characteristics of brain tumors treated with histotripsy to evaluate treatment response as well as treatment-related injuries. Our aim was to bridge this gap by investigating and correlating MRI with histological analysis after histotripsy treatment of mouse brain with and without brain tumors and evaluating the evolution of the histotripsy ablation zone on MRI over time. METHODS An eight-element, 1 MHz histotripsy transducer with a focal distance of 32.5 mm was used to treat orthotopic glioma-bearing mice and normal mice. The tumor burden at the time of treatment was ∼5 mm3. T2, T2*, T1 and T1-gadolinium (Gd) MR images and histology of the brain were acquired on days 0, 2 and 7 for tumor-bearing mice and days 0, 2, 7, 14, 21 and 28 post-histotripsy for normal mice. RESULTS T2 and T2* sequences most accurately correlated with histotripsy treatment zone. The treatment-induced blood products, T1 along with T2, revealed blood product evolution from oxygenated, de-oxygenated blood and methemoglobin to hemosiderin. And T1-Gd revealed the state of the blood-brain barrier arising from the tumor or histotripsy ablation. Histotripsy leads to minor localized bleeding, which resolves within the first 7 d as evident on hematoxylin and eosin staining. By day 14, the ablation zone could be distinguished only by the macrophage-laden hemosiderin, which resides around the ablation zone, rendering the treated zone hypo-intense on all MR sequences. CONCLUSION These results provide a library of radiological features on MRI sequences correlated to histology, thus allowing for non-invasive evaluation of histotripsy treatment effects in in vivo experiments.
Collapse
Affiliation(s)
- Sang Won Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Sarah Duclos
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Neeraj Chaudhary
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aditya Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Shimojo Y, Sudo K, Nishimura T, Ozawa T, Tsuruta D, Awazu K. Transient simulation of laser ablation based on Monte Carlo light transport with dynamic optical properties model. Sci Rep 2023; 13:11898. [PMID: 37488156 PMCID: PMC10366136 DOI: 10.1038/s41598-023-39026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Laser ablation is a minimally invasive therapeutic technique to denature tumors through coagulation and/or vaporization. Computational simulations of laser ablation can evaluate treatment outcomes quantitatively and provide numerical indices to determine treatment conditions, thus accelerating the technique's clinical application. These simulations involve calculations of light transport, thermal diffusion, and the extent of thermal damage. The optical properties of tissue, which govern light transport through the tissue, vary during heating, and this affects the treatment outcomes. Nevertheless, the optical properties in conventional simulations of coagulation and vaporization remain constant. Here, we propose a laser ablation simulation based on Monte Carlo light transport with a dynamic optical properties (DOP) model. The proposed simulation is validated by performing optical properties measurements and laser irradiation experiments on porcine liver tissue. The DOP model showed the replicability of the changes in tissue optical properties during heating. Furthermore, the proposed simulation estimated coagulation areas that were comparable to experimental results at low-power irradiation settings and provided more than 2.5 times higher accuracy when calculating coagulation and vaporization areas than simulations using static optical properties at high-power irradiation settings. Our results demonstrate the proposed simulation's applicability to coagulation and vaporization region calculations in tissue for retrospectively evaluating the treatment effects of laser ablation.
Collapse
Affiliation(s)
- Yu Shimojo
- Graduate School of Medicine, Osaka Metropolitan University, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi 5-3-1, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Kazuma Sudo
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Takahiro Nishimura
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
| | - Toshiyuki Ozawa
- Graduate School of Medicine, Osaka Metropolitan University, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Daisuke Tsuruta
- Graduate School of Medicine, Osaka Metropolitan University, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Mendoza-Elias N, Satzer D, Henry J, Nordli DR, Warnke PC. Tailored Hemispherotomy Using Tractography-Guided Laser Interstitial Thermal Therapy. Oper Neurosurg (Hagerstown) 2023; 24:e407-e413. [PMID: 36807222 DOI: 10.1227/ons.0000000000000650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/06/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Medically refractory hemispheric epilepsy is a devastating disease with significant lifetime costs and social burden. Functional hemispherotomy is a highly effective treatment for hemispheric epilepsy but is associated with significant complication rates. Percutaneous hemispherotomy through laser interstitial thermal therapy (LITT) based on morphological MRI has been recently described in a single patient but not replicated in the literature. OBJECTIVE To describe the first 2 cases of tractography-guided interstitial laser hemispherotomy and their short-term outcomes. METHODS Two 11-year-old male patients with medically refractory epilepsy secondary to perinatal large vessel infarcts were referred for hemispherotomy. Both patients underwent multitrajectory LITT to disconnect the remaining pathological hemisphere, using tractography to define targets and assess structural outcomes. RESULTS Both cases had minor complication of small intraventricular/subarachnoid hemorrhage not requiring additional intervention. Both patients remain seizure-free at all follow-up visits. CONCLUSION LITT hemispherotomy can produce seizure freedom with short hospitalization and recovery. Tractography allows surgical planning to be tailored according to individual patient anatomy, which often is distorted in perinatal stroke. Minimally invasive procedures offer the greatest potential for seizure freedom without the risks of an open hemispherotomy.
Collapse
Affiliation(s)
- Nasya Mendoza-Elias
- Department of Neurological Surgery, University of Chicago, Chicago, Illinois, USA
| | - David Satzer
- Department of Neurological Surgery, University of Chicago, Chicago, Illinois, USA
| | - Julia Henry
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Douglas R Nordli
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Arocho-Quinones EV, Lew SM, Handler MH, Tovar-Spinoza Z, Smyth MD, Bollo RJ, Donahue D, Perry MS, Levy M, Gonda D, Mangano FT, Kennedy BC, Storm PB, Price AV, Couture DE, Oluigbo C, Duhaime AC, Barnett GH, Muh CR, Sather MD, Fallah A, Wang AC, Bhatia S, Eastwood D, Tarima S, Graber S, Huckins S, Hafez D, Rumalla K, Bailey L, Shandley S, Roach A, Alexander E, Jenkins W, Tsering D, Price G, Meola A, Evanoff W, Thompson EM, Brandmeir N. Magnetic resonance imaging-guided stereotactic laser ablation therapy for the treatment of pediatric epilepsy: a retrospective multiinstitutional study. J Neurosurg Pediatr 2023:1-14. [PMID: 36883640 PMCID: PMC10193482 DOI: 10.3171/2022.12.peds22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/30/2022] [Indexed: 03/09/2023]
Abstract
OBJECTIVE The authors of this study evaluated the safety and efficacy of stereotactic laser ablation (SLA) for the treatment of drug-resistant epilepsy (DRE) in children. METHODS Seventeen North American centers were enrolled in the study. Data for pediatric patients with DRE who had been treated with SLA between 2008 and 2018 were retrospectively reviewed. RESULTS A total of 225 patients, mean age 12.8 ± 5.8 years, were identified. Target-of-interest (TOI) locations included extratemporal (44.4%), temporal neocortical (8.4%), mesiotemporal (23.1%), hypothalamic (14.2%), and callosal (9.8%). Visualase and NeuroBlate SLA systems were used in 199 and 26 cases, respectively. Procedure goals included ablation (149 cases), disconnection (63), or both (13). The mean follow-up was 27 ± 20.4 months. Improvement in targeted seizure type (TST) was seen in 179 (84.0%) patients. Engel classification was reported for 167 (74.2%) patients; excluding the palliative cases, 74 (49.7%), 35 (23.5%), 10 (6.7%), and 30 (20.1%) patients had Engel class I, II, III, and IV outcomes, respectively. For patients with a follow-up ≥ 12 months, 25 (51.0%), 18 (36.7%), 3 (6.1%), and 3 (6.1%) had Engel class I, II, III, and IV outcomes, respectively. Patients with a history of pre-SLA surgery related to the TOI, a pathology of malformation of cortical development, and 2+ trajectories per TOI were more likely to experience no improvement in seizure frequency and/or to have an unfavorable outcome. A greater number of smaller thermal lesions was associated with greater improvement in TST. Thirty (13.3%) patients experienced 51 short-term complications including malpositioned catheter (3 cases), intracranial hemorrhage (2), transient neurological deficit (19), permanent neurological deficit (3), symptomatic perilesional edema (6), hydrocephalus (1), CSF leakage (1), wound infection (2), unplanned ICU stay (5), and unplanned 30-day readmission (9). The relative incidence of complications was higher in the hypothalamic target location. Target volume, number of laser trajectories, number or size of thermal lesions, or use of perioperative steroids did not have a significant effect on short-term complications. CONCLUSIONS SLA appears to be an effective and well-tolerated treatment option for children with DRE. Large-volume prospective studies are needed to better understand the indications for treatment and demonstrate the long-term efficacy of SLA in this population.
Collapse
Affiliation(s)
- Elsa V. Arocho-Quinones
- Departments of Neurosurgery and
- Department of Neurosurgery, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Sean M. Lew
- Departments of Neurosurgery and
- Department of Neurosurgery, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Michael H. Handler
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, Colorado
| | - Zulma Tovar-Spinoza
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| | - Matthew D. Smyth
- Division of Neurosurgery, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida
| | - Robert J. Bollo
- Department of Neurosurgery, Primary Children’s Hospital, Salt Lake City, Utah
| | | | - M. Scott Perry
- Neurology, Cook Children’s Medical Center, Fort Worth, Texas
| | - Michael Levy
- Department of Neurosurgery, Rady Children’s Hospital San Diego, San Diego, California
| | - David Gonda
- Department of Neurosurgery, Rady Children’s Hospital San Diego, San Diego, California
| | | | - Benjamin C. Kennedy
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Phillip B. Storm
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Angela V. Price
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel E. Couture
- Department of Neurosurgery, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Chima Oluigbo
- Department of Neurosurgery, Children’s National Health System, Washington, DC
| | | | - Gene H. Barnett
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Carrie R. Muh
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Maria Fareri Children’s Hospital, Valhalla, New York
| | - Michael D. Sather
- Department of Neurosurgery, Penn State Health, Hershey, Pennsylvania
| | - Aria Fallah
- Department of Neurosurgery, UCLA Mattel Children’s Hospital, Los Angeles, California
| | - Anthony C. Wang
- Department of Neurosurgery, UCLA Mattel Children’s Hospital, Los Angeles, California
| | - Sanjiv Bhatia
- Department of Neurosurgery, Nicklaus Children’s Hospital, Miami, Florida
| | - Daniel Eastwood
- Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sergey Tarima
- Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sarah Graber
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, Colorado
| | - Sean Huckins
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| | - Daniel Hafez
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri; and
| | - Kavelin Rumalla
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri; and
| | | | | | - Ashton Roach
- Department of Neurosurgery, Cincinnati Children’s Hospital, Cincinnati, Ohio
| | - Erin Alexander
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Wendy Jenkins
- Department of Neurosurgery, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Deki Tsering
- Department of Neurosurgery, Children’s National Health System, Washington, DC
| | - George Price
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Antonio Meola
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Wendi Evanoff
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Eric M. Thompson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | | | - for the Pediatric Stereotactic Laser Ablation Workgroup
- Departments of Neurosurgery and
- Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Neurosurgery, University of Texas at Austin/Dell Medical School, Austin, Texas
- Department of Neurosurgery, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, Colorado
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
- Division of Neurosurgery, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida
- Department of Neurosurgery, Primary Children’s Hospital, Salt Lake City, Utah
- Departments of Neurosurgery and
- Neurology, Cook Children’s Medical Center, Fort Worth, Texas
- Department of Neurosurgery, Rady Children’s Hospital San Diego, San Diego, California
- Department of Neurosurgery, Cincinnati Children’s Hospital, Cincinnati, Ohio
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Neurosurgery, Wake Forest Baptist Health, Winston-Salem, North Carolina
- Department of Neurosurgery, Children’s National Health System, Washington, DC
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Penn State Health, Hershey, Pennsylvania
- Department of Neurosurgery, UCLA Mattel Children’s Hospital, Los Angeles, California
- Department of Neurosurgery, Nicklaus Children’s Hospital, Miami, Florida
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri; and
- Department of Neurosurgery, Maria Fareri Children’s Hospital, Valhalla, New York
| |
Collapse
|
20
|
Real-time automatic temperature regulation during in vivo MRI-guided laser-induced thermotherapy (MR-LITT). Sci Rep 2023; 13:3279. [PMID: 36841878 PMCID: PMC9968334 DOI: 10.1038/s41598-023-29818-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 02/27/2023] Open
Abstract
Precise control of tissue temperature during Laser-Induced Thermotherapy (LITT) procedures has the potential to improve the clinical efficiency and safety of such minimally invasive therapies. We present a method to automatically regulate in vivo the temperature increase during LITT using real-time rapid volumetric Magnetic Resonance thermometry (8 slices acquired every second, with an in-plane resolution of 1.4 mmx1.4 mm and a slice thickness of 3 mm) using the proton-resonance frequency (PRF) shift technique. The laser output power is adjusted every second using a feedback control algorithm (proportional-integral-derivative controller) to force maximal tissue temperature in the targeted region to follow a predefined temperature-time profile. The root-mean-square of the difference between the target temperature and the measured temperature ranged between 0.5 °C and 1.4 °C, for temperature increases between + 5 °C to + 30 °C above body temperature and a long heating duration (up to 15 min), showing excellent accuracy and stability of the method. These results were obtained on a 1.5 T clinical MRI scanner, showing a potential immediate clinical application of such a temperature controller during MR-guided LITT.
Collapse
|
21
|
Shamim D, Nwabueze O, Uysal U. Beyond Resection: Neuromodulation and Minimally Invasive Epilepsy Surgery. Noro Psikiyatr Ars 2022; 59:S81-S90. [PMID: 36578991 PMCID: PMC9767135 DOI: 10.29399/npa.28181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Epilepsy is a common neurological disease impacting both patients and healthcare systems. Approximately one third of patients have drug-resistant epilepsy (DRE) and are candidates for surgical options. However, only a small percentage undergo surgical treatment due to factors such as patient misconception/fear of surgery, healthcare disparities in epilepsy care, complex presurgical evaluation, primary care knowledge gap, and lack of systemic structures to allow effective coordination between referring physician and surgical epilepsy centers. Resective surgical treatments are superior to medication management for DRE patients in terms of seizure outcomes but may be less palatable to patients. There have been major advancements in minimally invasive surgeries (MIS) and neuromodulation techniques that may allay these concerns. Both epilepsy MIS and neuromodulation have shown promising seizure outcomes while minimizing complications. Minimally invasive methods include Laser Interstitial Thermal Therapy (LITT), RadioFrequency Ablation (RFA), Stereotactic RadioSurgery (SRS). Neuromodulation methods, which are more palliative, include Vagus Nerve Stimulation (VNS), Deep Brain Stimulation (DBS), and Responsive Neurostimulation System (RNS). This review will discuss the role of these techniques in varied epilepsy subtypes, their effectiveness in improving seizure control, and adverse outcomes.
Collapse
Affiliation(s)
- Daniah Shamim
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS, USA
| | - Obiefuna Nwabueze
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS, USA
| | - Utku Uysal
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS, USA,Correspondence Address: Utku Uysal, MS University of Kansas School of Medicine 4000 Cambridge Street Mailstop 1065 Kansas City, KS 66160, USA • E-mail:
| |
Collapse
|
22
|
Yudkoff C, Mahtabfar A, Piper K, Judy K. Safety and efficacy of salvage therapy with laser interstitial thermal therapy for malignant meningioma refractory to cesium-131 brachytherapy: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2022; 4:CASE22379. [PMID: 36471578 PMCID: PMC9724005 DOI: 10.3171/case22379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anaplastic meningioma are rare, cancerous tumors of the central nervous system that often require multimodal therapy for tumor control. Both laser interstitial thermal therapy (LITT) and brachytherapy with implanted cesium-131 metallic seeds have demonstrated efficacy in the treatment of recurrent and resistant anaplastic meningioma; however, their safety as a dual therapy has never been reported. OBSERVATIONS In this report, the authors present a case of a 53-year-old female who received LITT in combination with brachytherapy after surgical and radiation treatment options had been exhausted. The authors discuss the unique safety concern of thermal injury with this treatment combination and demonstrate their method for the safe administration of these treatments together. Furthermore, the authors provide a review of the literature on LITT as an emerging therapy for anaplastic meningioma. LESSONS The use of LITT in combination with brachytherapy remains an option for salvage therapy in patients with recurrent meningioma that provides durable local control of tumor.
Collapse
|
23
|
Bilgili A, Tuna IS, Rahman M, Naney TD, Albayram MS. Visualization of the perivenous glymphatic efflux in human brain after laser interstitial thermal therapy. Magn Reson Imaging 2022; 92:96-99. [PMID: 35764218 DOI: 10.1016/j.mri.2022.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
Recent studies have revealed that there is existence of a specific waste clearance pathway in the brain, coined the glymphatic system. This case report demonstrates supportive finding of drainage of Gadolinium and waste products released after Laser Interstitial Thermal Therapy via perivenous routes and a paradural lymphatic system. These findings provide further evidence of interstitial fluid drainage along the perivenous spaces in accordance with a glymphatic system theory.
Collapse
Affiliation(s)
- Ahmet Bilgili
- Department of Biomedical Engineering, University of Florida, USA
| | - Ibrahim S Tuna
- Department of Radiology, College of Medicine, University of Florida, USA.
| | - Maryam Rahman
- Department of Neurosurgery, College of Medicine, University of Florida, USA
| | - Timothy D Naney
- Department of Radiology, College of Medicine, University of Florida, USA
| | - Mehmet S Albayram
- Department of Radiology, College of Medicine, University of Florida, USA
| |
Collapse
|
24
|
Sabahi M, Bordes SJ, Najera E, Mohammadi AM, Barnett GH, Adada B, Borghei-Razavi H. Laser Interstitial Thermal Therapy for Posterior Fossa Lesions: A Systematic Review and Analysis of Multi-Institutional Outcomes. Cancers (Basel) 2022; 14:cancers14020456. [PMID: 35053618 PMCID: PMC8773929 DOI: 10.3390/cancers14020456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Laser interstitial thermal therapy (LITT) has emerged as a treatment option for deep-seated primary and metastatic brain lesions; however, hardly any data exist regarding LITT for lesions of the posterior fossa. Methods: A quantitative systematic review was performed. Article selection was performed by searching MEDLINE (using PubMed), Scopus, and Cochrane electronic bibliographic databases. Inclusion criteria were studies assessing LITT on posterior fossa tumors. Results: 16 studies comprising 150 patients (76.1% female) with a mean age of 56.47 years between 2014 and 2021 were systematically reviewed for treatment outcomes and efficacy. Morbidity and mortality data could be extracted for 131 of the 150 patients. Death attributed to treatment failure, disease progression, recurrence, or postoperative complications occurred in 6.87% (9/131) of the pooled sample. Procedure-related complications, usually including new neurologic deficits, occurred in approximately 14.5% (19/131) of the pooled sample. Neurologic deficits improved with time in most cases, and 78.6% (103/131) of the pooled sample experienced no complications and progression-free survival at the time of last follow-up. Conclusions: LITT for lesions of the posterior fossa continues to show promising data. Future clinical cohort studies are required to further direct treatment recommendations.
Collapse
Affiliation(s)
- Mohammadmahdi Sabahi
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan 65141, Iran;
| | - Stephen J. Bordes
- Department of Surgery, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA;
| | - Edinson Najera
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL 33331, USA; (E.N.); (B.A.)
| | - Alireza M. Mohammadi
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA; (A.M.M.); (G.H.B.)
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gene H. Barnett
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA; (A.M.M.); (G.H.B.)
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Badih Adada
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL 33331, USA; (E.N.); (B.A.)
| | - Hamid Borghei-Razavi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL 33331, USA; (E.N.); (B.A.)
- Correspondence: ; Tel.: +1-(954)-659-5630
| |
Collapse
|
25
|
Pang S, Kapur A, Zhou K, Anastasiadis P, Ballirano N, Kim AJ, Winkles JA, Woodworth GF, Huang H. Nanoparticle-assisted, image-guided laser interstitial thermal therapy for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1826. [PMID: 35735205 PMCID: PMC9540339 DOI: 10.1002/wnan.1826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light-tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Sumiao Pang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anshika Kapur
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Keri Zhou
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Pavlos Anastasiadis
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Nicholas Ballirano
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anthony J. Kim
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Jeffrey A. Winkles
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Graeme F. Woodworth
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Huang‐Chiao Huang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| |
Collapse
|
26
|
Takagi R, Yoshinaka K, Washio T, Koseki Y. A visualization method for a wide range of rising temperature induced by high-intensity focused ultrasound using a tissue-mimicking phantom. Int J Hyperthermia 2021; 39:22-33. [PMID: 34936844 DOI: 10.1080/02656736.2021.2012603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE High-intensity focused ultrasound (HIFU) treatment requires prior evaluation of the HIFU transducer output. A method using micro-capsulated thermochromic liquid crystal (MTLC) to evaluate the temperature distribution in the media during HIFU exposure has been previously developed. However, the color-coded temperature range of commercial MTLC is approximately 10 °C, which is insufficient for temperature measurement for HIFU exposure. We created two layers of tissue-mimicking phantoms with different color-coded temperature ranges, and a new visualization method was developed by utilizing the axisymmetric pressure distribution of a HIFU focus. METHODS A two-layer phantom with two sensitivity ranges was created. The HIFU transducer was set to align the focal point to the boundary between the two layers. Images of the upper and lower layers were flipped along the boundary between the two layers such that they overlapped with each other, assuming the pressure distribution of HIFU to be axisymmetric. RESULTS The experimental and simulation results were compared to evaluate the accuracy of the phantom temperature measurement. The experimental time profile of the temperature and spatial distribution around the HIFU focus matched well with that of the simulation. However, there is room for improvement in the accuracy in the axial direction of HIFU focus. CONCLUSION Users can apply our proposed method in clinical practice to promptly assess the output of the HIFU transducer before treatment.
Collapse
Affiliation(s)
- Ryo Takagi
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kiyoshi Yoshinaka
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Toshikatsu Washio
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshihiko Koseki
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
27
|
Khambhati AN, Shafi A, Rao VR, Chang EF. Long-term brain network reorganization predicts responsive neurostimulation outcomes for focal epilepsy. Sci Transl Med 2021; 13:13/608/eabf6588. [PMID: 34433640 DOI: 10.1126/scitranslmed.abf6588] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/12/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
Responsive neurostimulation (RNS) devices, able to detect imminent seizures and to rapidly deliver electrical stimulation to the brain, are effective in reducing seizures in some patients with focal epilepsy. However, therapeutic response to RNS is often slow, is highly variable, and defies prognostication based on clinical factors. A prevailing view holds that RNS efficacy is primarily mediated by acute seizure termination; yet, stimulations greatly outnumber seizures and occur mostly in the interictal state, suggesting chronic modulation of brain networks that generate seizures. Here, using years-long intracranial neural recordings collected during RNS therapy, we found that patients with the greatest therapeutic benefit undergo progressive, frequency-dependent reorganization of interictal functional connectivity. The extent of this reorganization scales directly with seizure reduction and emerges within the first year of RNS treatment, enabling potential early prediction of therapeutic response. Our findings reveal a mechanism for RNS that involves network plasticity and may inform development of next-generation devices for epilepsy.
Collapse
Affiliation(s)
- Ankit N Khambhati
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alia Shafi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikram R Rao
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA. .,Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA. .,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
28
|
Ahn SS, Cha S. Pre- and Post-Treatment Imaging of Primary Central Nervous System Tumors in the Molecular and Genetic Era. Korean J Radiol 2021; 22:1858-1874. [PMID: 34402244 PMCID: PMC8546137 DOI: 10.3348/kjr.2020.1450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022] Open
Abstract
Recent advances in the molecular and genetic characterization of central nervous system (CNS) tumors have ushered in a new era of tumor classification, diagnosis, and prognostic assessment. In this emerging and rapidly evolving molecular genetic era, imaging plays a critical role in the preoperative diagnosis and surgical planning, molecular marker prediction, targeted treatment planning, and post-therapy assessment of CNS tumors. This review provides an overview of the current imaging methods relevant to the molecular genetic classification of CNS tumors. Specifically, we focused on 1) the correlates between imaging features and specific molecular genetic markers and 2) the post-therapy imaging used for therapeutic assessment.
Collapse
Affiliation(s)
- Sung Soo Ahn
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
29
|
Cobourn KD, Qadir I, Fayed I, Alexander H, Oluigbo CO. Does the Modified Arrhenius Model Reliably Predict Area of Tissue Ablation After Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Pediatric Lesional Epilepsy? Oper Neurosurg (Hagerstown) 2021; 21:265-269. [PMID: 34270761 DOI: 10.1093/ons/opab225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 05/02/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Commercial magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) systems utilize a generalized Arrhenius model to estimate the area of tissue damage based on the power and time of ablation. However, the reliability of these estimates in Vivo remains unclear. OBJECTIVE To determine the accuracy and precision of the thermal damage estimate (TDE) calculated by commercially available MRgLITT systems using the generalized Arrhenius model. METHODS A single-center retrospective review of pediatric patients undergoing MRgLITT for lesional epilepsy was performed. The area of each lesion was measured on both TDE and intraoperative postablation, postcontrast T1 magnetic resonance images using ImageJ. Lesions requiring multiple ablations were excluded. The strength of the correlation between TDE and postlesioning measurements was assessed via linear regression. RESULTS A total of 32 lesions were identified in 19 patients. After exclusion, 13 pairs were available for analysis. Linear regression demonstrated a strong correlation between estimated and actual ablation areas (R2 = .97, P < .00001). The TDE underestimated the area of ablation by an average of 3.92% overall (standard error (SE) = 4.57%), but this varied depending on the type of pathologic tissue involved. TDE accuracy and precision were highest in tubers (n = 3), with average underestimation of 2.33% (SE = 0.33%). TDE underestimated the lesioning of the single hypothalamic hamartoma in our series by 52%. In periventricular nodular heterotopias, TDE overestimated ablation areas by an average of 13% (n = 2). CONCLUSION TDE reliability is variably consistent across tissue types, particularly in smaller or periventricular lesions. Further investigation is needed to understand the accuracy of this emerging minimally invasive technique.
Collapse
Affiliation(s)
- Kelsey D Cobourn
- Division of Neurosurgery, Children's National Medical Center, Washington, District of Columbia, USA.,Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Imazul Qadir
- Division of Neurosurgery, Children's National Medical Center, Washington, District of Columbia, USA.,Howard University College of Medicine, Washington, District of Columbia, USA
| | - Islam Fayed
- Division of Neurosurgery, Children's National Medical Center, Washington, District of Columbia, USA.,Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Hepzibha Alexander
- Division of Neurosurgery, Children's National Medical Center, Washington, District of Columbia, USA
| | - Chima O Oluigbo
- Division of Neurosurgery, Children's National Medical Center, Washington, District of Columbia, USA.,Division of Neurosurgery, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
30
|
Di L, Wang CP, Shah AH, Eichberg DG, Semonche AM, Sanjurjo AD, Luther EM, Jermakowicz WJ, Komotar RJ, Ivan ME. A Cohort Study on Prognostic Factors for Laser Interstitial Thermal Therapy Success in Newly Diagnosed Glioblastoma. Neurosurgery 2021; 89:496-503. [PMID: 34156076 DOI: 10.1093/neuros/nyab193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/03/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) is a promising approach for cytoreduction of deep-seated gliomas. However, parameters contributing to treatment success remain unclear. OBJECTIVE To identify extent of ablation (EOA) and time to chemotherapy (TTC) as predictors of improved overall and progression-free survival (OS, PFS) and suggest laser parameters to achieve optimal EOA. METHODS Demographic, clinical, and survival data were collected retrospectively from 20 patients undergoing LITT for newly diagnosed glioblastoma (nGBM). EOA was calculated through magnetic resonance imaging-based volumetric analysis. Kaplan-Meier and multivariate Cox regression were used to examine the relationship between EOA with OS and PFS accounting for covariates (age, isocitrate dehydrogenase-1 (IDH1) mutation, O6-methylguanine-DNA methyltransferase hypermethylation). The effect of laser thermodynamic parameters (power, energy, time) on EOA was identified through linear regression. RESULTS Median OS and PFS for the entire cohort were 36.2 and 3.5 mo respectively. Patient's with >70% EOA had significantly improved PFS compared to ≤70% EOA (5.2 vs 2.3 mo, P = .01) and trended toward improved OS (36.2 vs 11 mo, P = .07) on univariate and multivariate analysis. Total laser power was a significant predictor for increased EOA when accounting for preoperative lesion volume (P = .001). Chemotherapy within 16 d of surgery significantly predicted improved PFS compared to delaying chemotherapy (9.4 vs 3.1 mo, P = .009). CONCLUSION Increased EOA was a predictor of improved PFS with evidence of a trend toward improved OS in LITT treatment of nGBM. A strategy favoring higher laser power during tumor ablation may achieve optimal EOA. Early transition to chemotherapy after LITT improves PFS.
Collapse
Affiliation(s)
- Long Di
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Christopher P Wang
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Ashish H Shah
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Daniel G Eichberg
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Alexa M Semonche
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Alexander D Sanjurjo
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Evan M Luther
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Walter J Jermakowicz
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Ricardo J Komotar
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA.,Sylvestor Comprehensive Cancer Center, Miami, Florida, USA
| | - Michael E Ivan
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA.,Sylvestor Comprehensive Cancer Center, Miami, Florida, USA
| |
Collapse
|
31
|
Eichberg DG, Menaker SA, Jermakowicz WJ, Shah AH, Luther EM, Jamshidi AM, Semonche AM, Di L, Komotar RJ, Ivan ME. Multiple Iterations of Magnetic Resonance-Guided Laser Interstitial Thermal Ablation of Brain Metastases: Single Surgeon's Experience and Review of the Literature. Oper Neurosurg (Hagerstown) 2021; 19:195-204. [PMID: 31828344 DOI: 10.1093/ons/opz375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Prior treatment with magnetic resonance-guided, laser-induced thermal therapy (LITT) is widely assumed not to be a contraindication for further treatment of brain lesions, including further iterations of LITT. However, the safety and efficacy of repeat LITT treatments have never been formally investigated. OBJECTIVE To evaluate treatment with multiple iterations of LITT. METHODS All patients treated with LITT at least twice at our institution were included in the study. Outcomes and neurological examinations from before and after surgery were retrospectively examined from clinic notes. Perilesonal edema was determined at various timepoints using volumetric data derived from manual tracings of fluid-attenuated inversion recovery (FLAIR) enhancement on magnetic resonance imaging (MRI). Finally, a literature review of prior cases of repeat LITT was performed. RESULTS A total of 9 patients underwent 18 treatments with LITT; all but 1 of whom were treated for metastatic brain lesions. One patient had a transient cerebrospinal fluid leak, whereas a second patient had a superficial wound infection, both of which resolved with standard medical care. The remaining 7 patients tolerated all LITT procedures without complication. Analysis of perilesional edema volume demonstrated a correlation with the amount of energy delivered during LITT. Literature review found 5 published papers describing 9 patients who underwent LITT more than once, the majority of whom tolerated repeat LITT well. CONCLUSION LITT is a safe and promising treatment modality and may be used multiple times without issue. There appears to be an association between the amount of energy delivered during a LITT session and the degree of postoperative perilesional edema.
Collapse
Affiliation(s)
- Daniel G Eichberg
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Simon A Menaker
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Walter J Jermakowicz
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ashish H Shah
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Evan M Luther
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Aria M Jamshidi
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Alexa M Semonche
- Department of Neurological Surgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Long Di
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ricardo J Komotar
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Michael E Ivan
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
32
|
Shan W, Mao X, Wang X, Hogan RE, Wang Q. Potential surgical therapies for drug-resistant focal epilepsy. CNS Neurosci Ther 2021; 27:994-1011. [PMID: 34101365 PMCID: PMC8339538 DOI: 10.1111/cns.13690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Drug-resistant focal epilepsy (DRFE), defined by failure of two antiepileptic drugs, affects 30% of epileptic patients. Epilepsy surgeries are alternative options for this population. Preoperative evaluation is critical to include potential candidates, and to choose the most appropriate procedure to maximize efficacy and simultaneously minimize side effects. Traditional procedures involve open skull surgeries and epileptic focus resection. Alternatively, neuromodulation surgeries use peripheral nerve or deep brain stimulation to reduce the activities of epileptogenic focus. With the advanced improvement of laser-induced thermal therapy (LITT) technique and its utilization in neurosurgery, magnetic resonance-guided LITT (MRgLITT) emerges as a minimal invasive approach for drug-resistant focal epilepsy. In the present review, we first introduce drug-resistant focal epilepsy and summarize the indications, pros and cons of traditional surgical procedures and neuromodulation procedures. And then, focusing on MRgLITT, we thoroughly discuss its history, its technical details, its safety issues, and current evidence on its clinical applications. A case report on MRgLITT is also included to illustrate the preoperational evaluation. We believe that MRgLITT is a promising approach in selected patients with drug-resistant focal epilepsy, although large prospective studies are required to evaluate its efficacy and side effects, as well as to implement a standardized protocol for its application.
Collapse
Affiliation(s)
- Wei Shan
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neuro‐modulationBeijingChina
| | - Xuewei Mao
- Shandong Key Laboratory of Industrial Control TechnologySchool of AutomationQingdao UniversityQingdaoChina
| | - Xiu Wang
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
| | - Robert E. Hogan
- Departments of Neurology and NeurosurgerySchool of MedicineWashington University in St. LouisSt. LouisMOUSA
| | - Qun Wang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neuro‐modulationBeijingChina
| |
Collapse
|
33
|
Corona AM, Di L, Shah AH, Crespo R, Eichberg DG, Lu VM, Luther EM, Komotar RJ, Ivan ME. Current experimental therapies for atypical and malignant meningiomas. J Neurooncol 2021; 153:203-210. [PMID: 33950341 DOI: 10.1007/s11060-021-03759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Atypical (WHO grade II) and malignant meningiomas (WHO Grade III) are a rare subset of primary intracranial tumors. Given their relatively high recurrence rate after surgical resection and radiotherapy, there has been a recent push to explore other adjuvant treatment options for these treatment-refractory tumors. Recent advances in molecular sequencing of tumors have elucidated new pathways and drug targets which are currently being studied. This article provides a thorough overview of novel investigational therapeutics including targeted therapy, immunotherapy, and new technological modalities for atypical and malignant meningiomas. METHODS We performed a comprehensive review of the available literature regarding preclinical and clinical evidence for emerging treatments for high grade meningiomas from 1980 to 2020 including contemporaneous clinical trials. RESULTS There is encouraging preclinical evidence regarding the efficacy of the emerging treatments discussed in this article. Several clinical trials are currently recruiting patients to translate targeted molecular therapy for meningiomas. Several clinical studies have suggested a clinical benefit of combinatorial treatment for these treatment-refractory tumors. CONCLUSION With numerous active clinical trials for high grade meningiomas, a meaningful improvement in the outcomes for these tumors may be on the horizon.
Collapse
Affiliation(s)
- Andres M Corona
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| | - Long Di
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Raphael Crespo
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Daniel G Eichberg
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Victor M Lu
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Evan M Luther
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, 1475 NW 12th Avenue, Miami, FL, 33136, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, 1475 NW 12th Avenue, Miami, FL, 33136, USA
| |
Collapse
|
34
|
Proescholdt MA, Schödel P, Doenitz C, Pukrop T, Höhne J, Schmidt NO, Schebesch KM. The Management of Brain Metastases-Systematic Review of Neurosurgical Aspects. Cancers (Basel) 2021; 13:1616. [PMID: 33807384 PMCID: PMC8036330 DOI: 10.3390/cancers13071616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
The multidisciplinary management of patients with brain metastases (BM) consists of surgical resection, different radiation treatment modalities, cytotoxic chemotherapy, and targeted molecular treatment. This review presents the current state of neurosurgical technology applied to achieve maximal resection with minimal morbidity as a treatment paradigm in patients with BM. In addition, we discuss the contribution of neurosurgical resection on functional outcome, advanced systemic treatment strategies, and enhanced understanding of the tumor biology.
Collapse
Affiliation(s)
- Martin A. Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Petra Schödel
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Christian Doenitz
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Tobias Pukrop
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
- Department of Medical Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Julius Höhne
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Karl-Michael Schebesch
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| |
Collapse
|
35
|
Pehlivan KC, Khanna PC, Elster JD, Paul MR, Levy ML, Crawford JR, Gonda DD. Clinical and Neuroimaging Features of Magnetic Resonance-Guided Stereotactic Laser Ablation for Newly Diagnosed and Recurrent Pediatric Brain Tumors: A Single Institutional Series. World Neurosurg 2021; 150:e378-e387. [PMID: 33722713 DOI: 10.1016/j.wneu.2021.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We describe our single-institutional experience with magnetic resonance-guided stereotactic laser ablation (SLA) for the treatment of newly diagnosed and recurrent pediatric brain tumors. METHODS Eighteen consecutive ablation procedures were performed in 17 patients from March 2016-April 2020. Patient demographics, indications, procedures, neuroimaging features, and outcomes were reviewed retrospectively. RESULTS Seventeen patients (mean age of 11.4 years, 11 boys, 6 girls) underwent SLA with a mean follow-up of 24 months (range: 3-45 months). Tumor histologies included pilocytic astrocytoma (n = 5), ganglioglioma (n = 3), low-grade glioma not otherwise specified (n = 4), glioblastoma (n = 2), meningioma (n = 1), medulloblastoma (n = 1), and metastatic malignant peripheral nerve sheath tumor (n = 1). SLA was first-line therapy in 10 patients. Mean procedure duration including anesthesia time was 328 minutes (range: 244-529 minutes), and mean postoperative length of stay was 1.5 days (range 1-5 days). The complication rate was 29%, which included 3 patients who experienced postoperative motor changes, which resolved within several weeks of surgery, 1 patient with self-limited intraoperative bradycardia and hypotension, and 1 patient who died postoperatively due to intracranial hemorrhage from a distant lesion. Twelve of 17 patients had a neuroimaging response after SLA (4 complete responses, 8 partial responses, 1 stable disease). Percentage of tumor shrinkage from baseline ranged from 33%-100% (mean 75%). Patients with low-grade glioma exhibited the best responses to SLA (range 3%-100% decrease; mean 90%; 36% complete response rate). CONCLUSIONS SLA is a minimally invasive modality for the treatment of newly diagnosed and recurrent low-grade pediatric brain tumors. Low-grade glioma exhibited the best responses. Identification of ideal candidates for SLA, mitigation of perioperative complications, and demonstration of long-term outcomes need to be better defined in a clinical trial setting.
Collapse
Affiliation(s)
- Katherine C Pehlivan
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA; Rady Children's Hospital, San Diego, California, USA
| | - Paritosh C Khanna
- Department of Radiology, University of California San Diego, La Jolla, California, USA; Rady Children's Hospital, San Diego, California, USA
| | - Jennifer D Elster
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA; Rady Children's Hospital, San Diego, California, USA
| | - Megan Rose Paul
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA; Rady Children's Hospital, San Diego, California, USA
| | - Michael L Levy
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA; Rady Children's Hospital, San Diego, California, USA
| | - John R Crawford
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA; Department of Pediatrics, University of California San Diego, La Jolla, California, USA; Rady Children's Hospital, San Diego, California, USA.
| | - David D Gonda
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA; Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
36
|
Roland JL, Akbari SHA, Salehi A, Smyth MD. Corpus callosotomy performed with laser interstitial thermal therapy. J Neurosurg 2021; 134:314-322. [PMID: 31835250 DOI: 10.3171/2019.9.jns191769] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Corpus callosotomy is a palliative procedure that is effective at reducing seizure burden in patients with medically refractory epilepsy. The procedure is traditionally performed via open craniotomy with interhemispheric microdissection to divide the corpus callosum. Concerns for morbidity associated with craniotomy can be a deterrent to patients, families, and referring physicians for surgical treatment of epilepsy. Laser interstitial thermal therapy (LITT) is a less invasive procedure that has been widely adopted in neurosurgery for the treatment of tumors. In this study, the authors investigated LITT as a less invasive approach for corpus callosotomy. METHODS The authors retrospectively reviewed all patients treated for medically refractory epilepsy by corpus callosotomy, either partial or completion, with LITT. Chart records were analyzed to summarize procedural metrics, length of stay, adverse events, seizure outcomes, and time to follow-up. In select cases, resting-state functional MRI was performed to qualitatively support effective functional disconnection of the cerebral hemispheres. RESULTS Ten patients underwent 11 LITT procedures. Five patients received an anterior two-thirds LITT callosotomy as their first procedure. One patient returned after LITT partial callosotomy for completion of callosotomy by LITT. The median hospital stay was 2 days (IQR 1.5-3 days), and the mean follow-up time was 1.0 year (range 1 month to 2.86 years). Functional outcomes are similar to those of open callosotomy, with the greatest effect in patients with a significant component of drop attacks in their seizure semiology. One patient achieved an Engel class II outcome after anterior two-thirds callosotomy resulting in only rare seizures at the 18-month follow-up. Four others were in Engel class III and 5 were Engel class IV. Hemorrhage occurred in 1 patient at the time of removal of the laser fiber, which was placed through the bone flap of a prior open partial callosotomy. CONCLUSIONS LITT appears to be a safe and effective means for performing corpus callosotomy. Additional data are needed to confirm equipoise between open craniotomy and LITT for corpus callosotomy.
Collapse
Affiliation(s)
- Jarod L Roland
- 1Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Syed Hassan A Akbari
- 2Department of Neurological Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Afshin Salehi
- 2Department of Neurological Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Matthew D Smyth
- 2Department of Neurological Surgery, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
37
|
Blackwell J, Kraśny MJ, O'Brien A, Ashkan K, Galligan J, Destrade M, Colgan N. Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices. J Magn Reson Imaging 2020; 55:389-403. [PMID: 33217099 DOI: 10.1002/jmri.27446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging (MRI) has become a popular modality in guiding minimally invasive thermal therapies, due to its advanced, nonionizing, imaging capabilities and its ability to record changes in temperature. A variety of MR thermometry techniques have been developed over the years, and proton resonance frequency (PRF) shift thermometry is the current clinical gold standard to treat a variety of cancers. It is used extensively to guide hyperthermic thermal ablation techniques such as high-intensity focused ultrasound (HIFU) and laser-induced thermal therapy (LITT). Essential attributes of PRF shift thermometry include excellent linearity with temperature, good sensitivity, and independence from tissue type. This noninvasive temperature mapping method gives accurate quantitative measures of the temperature evolution inside biological tissues. In this review, the current status and new developments in the fields of MR-guided HIFU and LITT are presented with an emphasis on breast, prostate, bone, uterine, and brain treatments. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- James Blackwell
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland.,School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Marcin J Kraśny
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Aoife O'Brien
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Keyoumars Ashkan
- Neurosurgical Department, King's College Hospital Foundation Trust, London, UK.,Harley Street Clinic, London Neurosurgery Partnership, London, UK
| | - Josette Galligan
- Department of Medical Physics and Bioengineering, St. James' Hospital, Dublin, Ireland
| | - Michel Destrade
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Niall Colgan
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
38
|
Abstract
The previous decade has seen an expansion in the use of laser interstitial thermal therapy (LITT) for a variety of pathologies. LITT has been used to treat both newly diagnosed and recurrent glioblastoma (GBM), especially in deep-seated, difficult-to-access lesions where open resection is otherwise infeasible or in patients who would not tolerate craniotomy. This review aims to describe the current state of the technology and operative technique, as well as summarize the outcomes data and future research regarding LITT as a treatment of GBM.
Collapse
Affiliation(s)
- Matthew M Grabowski
- Department of Neurosurgery, Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Balint Otvos
- Department of Neurosurgery, Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Alireza M Mohammadi
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine at CWRU, Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, CA-51, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
39
|
Abstract
This article discusses intraoperative imaging techniques used during high-grade glioma surgery. Gliomas can be difficult to differentiate from surrounding tissue during surgery. Intraoperative imaging helps to alleviate problems encountered during glioma surgery, such as brain shift and residual tumor. There are a variety of modalities available all of which aim to give the surgeon more information, address brain shift, identify residual tumor, and increase the extent of surgical resection. The article starts with a brief introduction followed by a review of with the latest advances in intraoperative ultrasound, intraoperative MRI, and intraoperative computed tomography.
Collapse
Affiliation(s)
- Thomas Noh
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Hawaii Pacific Health, John A Burns School of Medicine, Honolulu, Hawaii, USA
| | - Martina Mustroph
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
40
|
Desai VR, Jenson AV, Hoverson E, Desai RM, Boghani Z, Lee MR. Stereotactic laser ablation for subependymal giant cell astrocytomas: personal experience and review of the literature. Childs Nerv Syst 2020; 36:2685-2691. [PMID: 32468241 DOI: 10.1007/s00381-020-04638-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Subependymal giant cell astrocytomas (SEGAs) are rare tumors typically found in tuberous sclerosis patients. They typically grow in the region of the foramen of Monro and can occlude it, leading to hydrocephalus. Currently, gross total resection is the standard of care, with low rates of recurrence but high rates of complication, especially with larger lesions. Laser interstitial thermal therapy (LITT) is a newly emerging treatment modality for a variety of pathologies. Here, we present a case series of SEGAs managed via LITT and endoscopic, stereotactic septostomy. METHODS A retrospective chart review was performed to identify three cases in which SEGAs were treated via LITT and septostomy. Stereotactic ablation was performed via magnetic resonance (MR) thermometry with laser output set to 69% for 2.5 min, with post-ablation scans for visualization of treatment area. RESULTS Average age at surgery was 8.2 years. Pre-operative tumor volumes were 0.43, 1.51, and 3.88 cm3. Post-operative tumor volumes were 0.25, 0.21, and 0.68 cm3. Mean tumor volume reduction was 70%. No complications occurred. CONCLUSION LITT with septostomy should be considered a viable primary or adjunct treatment modality for SEGAs.
Collapse
Affiliation(s)
- Virendra R Desai
- Pediatric Neurosurgery, Dell Children's Medical Center, Department of Neurosurgery, The University of Texas at Austin Dell Medical School, Austin, TX, USA. .,Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital, Scurlock Tower, Suite 944, 6560 Fannin Street, Houston, TX, 77030, USA.
| | - Amanda V Jenson
- Pediatric Neurosurgery, Dell Children's Medical Center, Department of Neurosurgery, The University of Texas at Austin Dell Medical School, Austin, TX, USA.,Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital, Scurlock Tower, Suite 944, 6560 Fannin Street, Houston, TX, 77030, USA
| | - Eric Hoverson
- Pediatric Neurosurgery, Dell Children's Medical Center, Department of Neurosurgery, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Rajendra M Desai
- Department of Radiology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Zain Boghani
- Pediatric Neurosurgery, Dell Children's Medical Center, Department of Neurosurgery, The University of Texas at Austin Dell Medical School, Austin, TX, USA.,Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital, Scurlock Tower, Suite 944, 6560 Fannin Street, Houston, TX, 77030, USA
| | - Mark R Lee
- Pediatric Neurosurgery, Dell Children's Medical Center, Department of Neurosurgery, The University of Texas at Austin Dell Medical School, Austin, TX, USA.,Department of Neurosurgery, The Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
41
|
Wang J, Liu H, Ke J, Hu L, Zhang S, Yang B, Sun S, Guo N, Ma F. Image-guided cochlear access by non-invasive registration: a cadaveric feasibility study. Sci Rep 2020; 10:18318. [PMID: 33110188 PMCID: PMC7591497 DOI: 10.1038/s41598-020-75530-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 11/09/2022] Open
Abstract
Image-guided cochlear implant surgery is expected to reduce volume of mastoidectomy, accelerate recovery, and improve safety. The purpose of this study was to investigate the safety and effectiveness of image-guided cochlear implant surgery by a non-invasive registration method, in a cadaveric study. We developed a visual positioning frame that can utilize the maxillary dentition as a registration tool and completed the tunnels experiment on 5 cadaver specimens (8 cases in total). The accuracy of the entry point and the target point were 0.471 ± 0.276 mm and 0.671 ± 0.268 mm, respectively. The shortest distance from the margin of the tunnel to the facial nerve and the ossicular chain were 0.790 ± 0.709 mm and 1.960 ± 0.630 mm, respectively. All facial nerves, tympanic membranes, and ossicular chains were completely preserved. Using this approach, high accuracy was achieved in this preliminary study, suggesting that the non-invasive registration method can meet the accuracy requirements for cochlear implant surgery. Based on the above accuracy, we speculate that our method can also be applied to neurosurgery, orbitofacial surgery, lateral skull base surgery, and anterior skull base surgery with satisfactory accuracy.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Hongsheng Liu
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Jia Ke
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lei Hu
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Shaoxing Zhang
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Biao Yang
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Shilong Sun
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Na Guo
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Furong Ma
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
42
|
Zuo F, Hu K, Kong J, Zhang Y, Wan J. Surgical Management of Brain Metastases in the Perirolandic Region. Front Oncol 2020; 10:572644. [PMID: 33194673 PMCID: PMC7649351 DOI: 10.3389/fonc.2020.572644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023] Open
Abstract
Brain metastases (BM) are the most frequent intracranial tumors, which may result in significant morbidity and mortality when the lesions involve the perirolandic region. Surgical intervention for BM in the perirolandic region is still under discussion even though prompt relief of mass effect and avoidance of necrosis together with brain edema may not be achieved by radiotherapy. More recently, several researchers attempt to evaluate the benefit of surgery for BM within this pivotal sensorimotor area. Nevertheless, data are sparse and optimal treatment paradigm is not yet widely described. Since the advance in intraoperative neuroimaging and neurophysiology, resection of BM in the perirolandic region has been proven to be safe and efficacious, sparing this eloquent area while retaining reasonably low morbidity rates. Although management of BM becomes much more tailored and multimodal, surgery remains the cornerstone and principles of resection as well as indications for surgery should be well defined. This is the first review concerning the characteristics of BM involving the perirolandic region and the current impact of surgical therapy for the lesions. Future perspectives of advanced neurosurgical techniques are also presented.
Collapse
Affiliation(s)
- Fuxing Zuo
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Hu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxin Kong
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghai Wan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Ginalis EE, Danish SF. Magnetic resonance–guided laser interstitial thermal therapy for brain tumors in geriatric patients. Neurosurg Focus 2020; 49:E12. [DOI: 10.3171/2020.7.focus20462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVEThere is a paucity of studies assessing the use of MR-guided laser interstitial thermal therapy (LITT), specifically in the elderly population. The aim of this study was to evaluate the safety of LITT for brain tumors in geriatric patients.METHODSGeriatric patients (≥ 65 years of age) treated with LITT for intracranial tumors at a single institution between January 2011 and November 2019 were retrospectively identified. The authors grouped patients into two distinct age cohorts: 65–74 years (group 1) and 75 years or older (group 2). Baseline characteristics, operative parameters, postoperative course, and morbidity were recorded for each patient.RESULTSFifty-five geriatric patients underwent 64 distinct LITT procedures for brain tumors. The majority of lesions (40 [62.5%]) treated were recurrent brain metastases or radiation necrosis. The median modified frailty index was 0.1 (low frailty; range 0–0.4) for patients in group 1 and 0.2 (intermediate frailty; range 0–0.4) for patients in group 2 (p > 0.05). The median hospital length of stay (LOS) was 1 day (IQR 1–2 days); there was no significant difference in LOS between the age groups. The hospital stay was significantly longer in patients who presented with a neurological symptom and in those who experienced a postoperative complication. The majority of patients (43 [68.3%] of 63 cases) were fit for discharge to their preoperative accommodation following LITT. The rate of discharge to home was not significantly different between the age groups. Those discharged to rehabilitation facilities were more likely to have presented with a neurological symptom. Nine patients (14.1% of cases) were found to have acute neurological complications following LITT, with nearly all patients showing complete or partial recovery at follow-up. The 30-day postoperative mortality rate was 1.6% (1 case). The complication and 30-day postoperative mortality rates were not significantly different between the two age groups.CONCLUSIONSLITT can be considered a minimally invasive and safe neurosurgical procedure for the treatment of intracranial tumors in geriatric patients. Careful preoperative preparation and postoperative care is essential as LITT is not without risk. Appropriate patient selection for cranial surgery is essential, because neurosurgeons are treating an increasing number of elderly patients, but advanced age alone should not exclude patients from LITT without considering frailty and comorbidities.
Collapse
|
44
|
Mahammedi A, Bachir S, Escott EJ, Barnett GH, Mohammadi AM, Larvie M. Prediction of recurrent glioblastoma after laser interstitial thermal therapy: The role of diffusion imaging. Neurooncol Adv 2020; 1:vdz021. [PMID: 32642657 PMCID: PMC7212867 DOI: 10.1093/noajnl/vdz021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Evaluate the utility of diffusion-weighted imaging (DWI) for the assessment of local recurrence of glioblastoma (GBM) on imaging performed 24 h following MRI-guided laser interstitial thermal therapy (LITT). We hypothesize that microscopic peritumoral infiltration correlates with early subtle variations on DWI images and apparent diffusion coefficient (ADC) maps. Methods Of 64 patients with GBM treated with LITT, 39 had MRI scans within 24 h after undergoing LITT. Patterns on DWI images and ADC maps 24 h following LITT were correlated with areas of future GBM recurrence identified through coregistration of subsequent MRI examinations. In the areas of suspected recurrence within the periphery of post-LITT lesions, signal intensity values on ADC maps were recorded and compared with the remaining peritumoral ring. Results Thirty-nine patients with GBM met the inclusion criteria. For predicting recurrent GBM, areas of decreased DWI signal and increased signal on ADC maps within the expected peritumoral ring of restricted diffusion identified 24 h following LITT showed 86.1% sensitivity, 75.2% specificity, and high correlation (r = 0.53) with future areas of GBM recurrence (P < .01). Areas of future recurrence demonstrated a 37% increase in the ADC value (P < .001), compared with findings in the surrounding treated peritumoral region. A significantly greater area under the receiver operating characteristics curve was determined for ADC values (P < .01). Conclusions DWI obtained 24 h following LITT can help predict the location of GBM recurrence months before the development of abnormal enhancement. This may alter future treatment planning, perhaps suggesting areas that may be targeted for additional therapy.
Collapse
Affiliation(s)
| | - Suha Bachir
- Department of Pediatrics and Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Edward J Escott
- Department of Radiology, University of Kentucky, Lexington, Kentucky
| | - Gene H Barnett
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio.,Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Alireza M Mohammadi
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio.,Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Mykol Larvie
- Department of Radiology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
45
|
Skandalakis GP, Rivera DR, Rizea CD, Bouras A, Raj JGJ, Bozec D, Hadjipanayis CG. Hyperthermia treatment advances for brain tumors. Int J Hyperthermia 2020; 37:3-19. [PMID: 32672123 PMCID: PMC7756245 DOI: 10.1080/02656736.2020.1772512] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia therapy (HT) of cancer is a well-known treatment approach. With the advent of new technologies, HT approaches are now important for the treatment of brain tumors. We review current clinical applications of HT in neuro-oncology and ongoing preclinical research aiming to advance HT approaches to clinical practice. Laser interstitial thermal therapy (LITT) is currently the most widely utilized thermal ablation approach in clinical practice mainly for the treatment of recurrent or deep-seated tumors in the brain. Magnetic hyperthermia therapy (MHT), which relies on the use of magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs), is a new quite promising HT treatment approach for brain tumors. Initial MHT clinical studies in combination with fractionated radiation therapy (RT) in patients have been completed in Europe with encouraging results. Another combination treatment with HT that warrants further investigation is immunotherapy. HT approaches for brain tumors will continue to a play an important role in neuro-oncology.
Collapse
Affiliation(s)
- Georgios P. Skandalakis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel R. Rivera
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline D. Rizea
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joe Gerald Jesu Raj
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dominique Bozec
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Constantinos G. Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
46
|
Arocho-Quinones EV, Lew SM, Handler MH, Tovar-Spinoza Z, Smyth M, Bollo R, Donahue D, Perry MS, Levy ML, Gonda D, Mangano FT, Storm PB, Price AV, Couture DE, Oluigbo C, Duhaime AC, Barnett GH, Muh CR, Sather MD, Fallah A, Wang AC, Bhatia S, Patel K, Tarima S, Graber S, Huckins S, Hafez DM, Rumalla K, Bailey L, Shandley S, Roach A, Alexander E, Jenkins W, Tsering D, Price G, Meola A, Evanoff W, Thompson EM, Brandmeir N. Magnetic resonance-guided stereotactic laser ablation therapy for the treatment of pediatric brain tumors: a multiinstitutional retrospective study. J Neurosurg Pediatr 2020; 26:13-21. [PMID: 32217793 PMCID: PMC7885863 DOI: 10.3171/2020.1.peds19496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/22/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study aimed to assess the safety and efficacy of MR-guided stereotactic laser ablation (SLA) therapy in the treatment of pediatric brain tumors. METHODS Data from 17 North American centers were retrospectively reviewed. Clinical, technical, and radiographic data for pediatric patients treated with SLA for a diagnosis of brain tumor from 2008 to 2016 were collected and analyzed. RESULTS A total of 86 patients (mean age 12.2 ± 4.5 years) with 76 low-grade (I or II) and 10 high-grade (III or IV) tumors were included. Tumor location included lobar (38.4%), deep (45.3%), and cerebellar (16.3%) compartments. The mean follow-up time was 24 months (median 18 months, range 3-72 months). At the last follow-up, the volume of SLA-treated tumors had decreased in 80.6% of patients with follow-up data. Patients with high-grade tumors were more likely to have an unchanged or larger tumor size after SLA treatment than those with low-grade tumors (OR 7.49, p = 0.0364). Subsequent surgery and adjuvant treatment were not required after SLA treatment in 90.4% and 86.7% of patients, respectively. Patients with high-grade tumors were more likely to receive subsequent surgery (OR 2.25, p = 0.4957) and adjuvant treatment (OR 3.77, p = 0.1711) after SLA therapy, without reaching significance. A total of 29 acute complications in 23 patients were reported and included malpositioned catheters (n = 3), intracranial hemorrhages (n = 2), transient neurological deficits (n = 11), permanent neurological deficits (n = 5), symptomatic perilesional edema (n = 2), hydrocephalus (n = 4), and death (n = 2). On long-term follow-up, 3 patients were reported to have worsened neuropsychological test results. Pre-SLA tumor volume, tumor location, number of laser trajectories, and number of lesions created did not result in a significantly increased risk of complications; however, the odds of complications increased by 14% (OR 1.14, p = 0.0159) with every 1-cm3 increase in the volume of the lesion created. CONCLUSIONS SLA is an effective, minimally invasive treatment option for pediatric brain tumors, although it is not without risks. Limiting the volume of the generated thermal lesion may help decrease the incidence of complications.
Collapse
Affiliation(s)
| | - Sean M. Lew
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Neurosurgery, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Michael H. Handler
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, Colorado
| | - Zulma Tovar-Spinoza
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| | - Matthew Smyth
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri
| | - Robert Bollo
- Department of Neurosurgery, Primary Children’s Hospital, Salt Lake City, Utah
| | - David Donahue
- Department of Neurosurgery, Cook Children’s Hospital, Fort Worth, Texas
| | - M. Scott Perry
- Department of Neurology, Cook Children’s Hospital, Fort Worth, Texas
| | - Michael L. Levy
- Department of Neurosurgery, Rady Children’s Hospital-San Diego, California
| | - David Gonda
- Department of Neurosurgery, Rady Children’s Hospital-San Diego, California
| | | | - Phillip B. Storm
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Pennsylvania
| | - Angela V. Price
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel E. Couture
- Department of Neurosurgery, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Chima Oluigbo
- Department of Neurosurgery, Children’s National Health System, Washington, DC
| | - Ann-Christine Duhaime
- Department of Neurosurgery, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Gene H. Barnett
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Carrie R. Muh
- Department of Neurosurgery, Duke Children’s Hospital, Durham, North Carolina
| | - Michael D. Sather
- Department of Neurosurgery, Penn State Health, Hershey, Pennsylvania
| | - Aria Fallah
- Department of Neurosurgery, UCLA Mattel Children’s Hospital, Los Angeles, California
| | - Anthony C. Wang
- Department of Neurosurgery, UCLA Mattel Children’s Hospital, Los Angeles, California
| | - Sanjiv Bhatia
- Department of Neurosurgery, Nicklaus Children’s Hospital, Miami, Florida
| | - Kadam Patel
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sergey Tarima
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sarah Graber
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, Colorado
| | - Sean Huckins
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| | - Daniel M. Hafez
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri
| | - Kavelin Rumalla
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri
| | - Laurie Bailey
- Department of Neurosurgery, Cook Children’s Hospital, Fort Worth, Texas
| | - Sabrina Shandley
- Department of Neurosurgery, Cook Children’s Hospital, Fort Worth, Texas
| | - Ashton Roach
- Department of Neurosurgery, Cincinnati Children’s Hospital, Cincinnati, Ohio
| | - Erin Alexander
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Pennsylvania
| | - Wendy Jenkins
- Department of Neurosurgery, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Deki Tsering
- Department of Neurosurgery, Children’s National Health System, Washington, DC
| | - George Price
- Department of Neurosurgery, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Antonio Meola
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Wendi Evanoff
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Eric M. Thompson
- Department of Neurosurgery, Duke Children’s Hospital, Durham, North Carolina
| | | |
Collapse
|
47
|
Foundations of the Diagnosis and Surgical Treatment of Epilepsy. World Neurosurg 2020; 139:750-761. [DOI: 10.1016/j.wneu.2020.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/02/2020] [Indexed: 12/29/2022]
|
48
|
Maltais-Tariant R, Boudoux C, Uribe-Patarroyo N. Real-time co-localized OCT surveillance of laser therapy using motion corrected speckle decorrelation. BIOMEDICAL OPTICS EXPRESS 2020; 11:2925-2950. [PMID: 32637233 PMCID: PMC7316020 DOI: 10.1364/boe.385654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 05/27/2023]
Abstract
We present a system capable of real-time delivery and monitoring of laser therapy by imaging with optical coherence tomography (OCT) through a double-clad fiber (DCF). A double-clad fiber coupler is used to inject and collect OCT light into the core of a DCF and inject the therapy light into its larger inner cladding, allowing for both imaging and therapy to be perfectly coregistered. Monitoring of treatment depth is achieved by calculating the speckle intensity decorrelation occurring during tissue coagulation. Furthermore, an analytical noise correction was used on the correlation to extend the maximum monitoring depth. We also present a method for correcting motion-induced decorrelation using a lookup table. Using the value of the noise- and motion-corrected correlation coefficient in a novel approach, our system is capable of identifying the depth of thermal coagulation in real time and automatically shut the therapy laser off when the targeted depth is reached. The process is demonstrated ex vivo in rat tongue and abdominal muscles for depths ranging from 500 µm to 1000 µm with induced motion in real time.
Collapse
Affiliation(s)
- Raphaël Maltais-Tariant
- Polytechnique Montréal, Department of Engineering Physics, 2900 Boulevard Edouard-Montpetit, Montreal, Qc, Canada
| | - Caroline Boudoux
- Polytechnique Montréal, Department of Engineering Physics, 2900 Boulevard Edouard-Montpetit, Montreal, Qc, Canada
- Castor Optics Inc., 361 Boul Montpellier, St-Laurent, Qc, Canada
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
49
|
Cook M, Murphy M, Bulluss K, D'Souza W, Plummer C, Priest E, Williams C, Sharan A, Fisher R, Pincus S, Distad E, Anchordoquy T, Abrams D. Anti-seizure therapy with a long-term, implanted intra-cerebroventricular delivery system for drug-resistant epilepsy: A first-in-man study. EClinicalMedicine 2020; 22:100326. [PMID: 32395709 PMCID: PMC7205744 DOI: 10.1016/j.eclinm.2020.100326] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A clinical feasibility study was undertaken at a single center of long-term intra-cerebroventricular drug delivery of the anti-seizure medication valproic acid, into the cerebrospinal fluid (CSF) in order to treat drug resistant focal seizures, using an implantable infusion system. The primary objective was to establish the dose range of VPA administered in this manner. Secondarily, safety, pharmacokinetics (PK) and a preliminary estimate of effectiveness were evaluated. METHODS In this single arm study, five adult subjects, with 29-234 focal onset seizures per month from a seizure focus involving the mesial temporal lobe were implanted with the system (clinicaltrials.gov identifier NCT02899611). Oral valproic acid (VPA) had previously been ineffective in all subjects. Post-surgery, pharmacokinetic studies of CSF infused VPA were performed. Valproic acid doses were increased stepwise in a standardised protocol. FINDINGS The procedure and implantation were well-tolerated by all subjects. Four subjects responded with > 50% seizure reduction at the highest tested dose of 160 mg/day. Two subjects experienced extended periods of complete seizure freedom. All five subjects reported significant quality of life improvement. No clinical dose limiting side effects were encountered and there was no evidence of local periventricular toxicity in three subjects who were evaluated with imaging (T2 MRI). Side effects included nausea and appetite loss but were not dose-limiting. Mean CSF valproic acid levels were 45 μg per ml (range 20-120 μg per ml), with corresponding serum levels of 4-14 μg per ml. Subjects have received therapy for up to 2.5 years in total . The efficacy analysis presented focuses on the period of time with the current pump with a mean 12.5 months, range 11.5-15 months. Pump failure requiring reimplantation was a significant initial issue in all subjects but resolved with use of pumps suitably compatible with long-term exposure to valproic acid. INTERPRETATION The study demonstrated that chronic intraventricular administration of valproic acid is safe and effective in subjects with medically refractory epilepsy over many months. The procedure for implanting the infusion system is safe and well-tolerated. High CSF levels are achieved with corresponding low serum levels and this therapy is shown to be effective despite unsuccessful earlier use of oral valproate preparations. Drug side effects were minimal. FUNDING The study was funded by Cerebral Therapeutics Inc., Suite 137 12635 East Montview Blvd Aurora CO 80045.
Collapse
Affiliation(s)
- Mark Cook
- St Vincent's Hospital, Departments of Medicine & Surgery, The University of Melbourne, 35 Victoria Parade, Fitzroy, 3065 VIC, Australia
- Graeme Clark Institute, The University of Melbourne, 203 Bouverie St, Melbourne 3010, Australia
| | - Michael Murphy
- St Vincent's Hospital, Departments of Medicine & Surgery, The University of Melbourne, 35 Victoria Parade, Fitzroy, 3065 VIC, Australia
| | - Kristian Bulluss
- St Vincent's Hospital, Departments of Medicine & Surgery, The University of Melbourne, 35 Victoria Parade, Fitzroy, 3065 VIC, Australia
| | - Wendyl D'Souza
- St Vincent's Hospital, Departments of Medicine & Surgery, The University of Melbourne, 35 Victoria Parade, Fitzroy, 3065 VIC, Australia
| | - Chris Plummer
- St Vincent's Hospital, Departments of Medicine & Surgery, The University of Melbourne, 35 Victoria Parade, Fitzroy, 3065 VIC, Australia
| | - Emma Priest
- St Vincent's Hospital, Departments of Medicine & Surgery, The University of Melbourne, 35 Victoria Parade, Fitzroy, 3065 VIC, Australia
| | - Catherine Williams
- St Vincent's Hospital, Departments of Medicine & Surgery, The University of Melbourne, 35 Victoria Parade, Fitzroy, 3065 VIC, Australia
| | - Ashwini Sharan
- Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, United States
| | - Robert Fisher
- Stanford University Stanford Epilepsy Center and EEG Lab, 213 Quarry Road, Room 4865, Palo Alto, CA 94304-5979, United States
| | - Sharon Pincus
- Cerebral Therapeutics, 12635 E. Montview Blvd., Aurora, CO 80010, Australia
| | - Eric Distad
- Cerebral Therapeutics, 12635 E. Montview Blvd., Aurora, CO 80010, Australia
| | - Tom Anchordoquy
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of Colorado School of Pharmacy 12850 E. Montview Blvd., V20-4120, Aurora, CO 80045, United States
| | - Dan Abrams
- Cerebral Therapeutics, 12635 E. Montview Blvd., Aurora, CO 80010, Australia
| |
Collapse
|
50
|
Easwaran TP, Lion A, Vortmeyer AO, Kingery K, Bc M, Raskin JS. Seizure freedom from recurrent insular low-grade glioma following laser interstitial thermal therapy. Childs Nerv Syst 2020; 36:1055-1059. [PMID: 31927616 DOI: 10.1007/s00381-019-04493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/30/2019] [Indexed: 11/26/2022]
Abstract
Pediatric low-grade gliomas (LGGs) are found in approximately 1-3% of patients with childhood epilepsy that is often medically refractory. Magnetic resonance guided laser interstitial thermal therapy (MRgLITT) is a minimal access technique FDA-approved since 2007 to ablate soft tissue lesions including brain tumors and seizure foci in children. The authors describe the case of an 11-year-old boy who presented with focal right-sided seizures and was found to have a growing left insular mass determined to be a WHO grade II diffuse astrocytoma. After the initial open resection using frontotemporal craniotomy with transsylvian approach, gross total resection was achieved; however, the tumor recurred, as did the seizures. Six months postoperatively, the patient underwent laser ablation with MRgLITT for the recurrent tumor with complete removal. At both 1- and 6-months post re-operation, he has remained seizure free. MRgLITT management of LGG allows for both successfully reducing tumor burden and the amelioration of secondary seizures.
Collapse
Affiliation(s)
- T P Easwaran
- Section of Pediatric Neurosurgery, Riley Hospital for Children, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Lion
- Section of Pediatric Hematology/Oncology, Riley Hospital for Children, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A O Vortmeyer
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K Kingery
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - McDonald Bc
- Departments of Radiology and Imaging Sciences, Neurology, and Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J S Raskin
- Section of Pediatric Neurosurgery, Riley Hospital for Children, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|