1
|
Zhang E, Yan X, Shen H, Zhao M, Gao X, Huang Y. Intracranial Aneurysm Biomarkers: A Convergence of Genetics, Inflammation, Oxidative Stress, and the Extracellular Matrix. Int J Mol Sci 2025; 26:3316. [PMID: 40244203 PMCID: PMC11989888 DOI: 10.3390/ijms26073316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Intracranial aneurysm (IA) is a common cerebrovascular disease in which sacral aneurysms occurring in the Wills ring region can lead to devastating subarachnoid hemorrhage. Despite advances in research, the underlying mechanisms of IA formation and rupture remain incompletely understood, hindering early diagnosis and effective treatment. This review comprehensively summarizes the current landscape of IA biomarkers, encompassing genetic markers, DNA, RNA, inflammatory molecules, oxidative stress proteins, and extracellular matrix (ECM) components. Accumulating evidence suggests that various biomarkers are associated with different stages of IA pathogenesis, including initiation, progression, and rupture. Aberrant ECM composition and remodeling have been observed in IA patients, and extracellular matrix-degrading enzymes are implicated in IA growth and rupture. Biomarker research in IA holds great potential for improving clinical outcomes. Future studies should focus on validating the existing biomarkers, identifying novel ones, and investigating their underlying mechanisms to facilitate the development of personalized preventive and therapeutic strategies for IA.
Collapse
Affiliation(s)
- Enhao Zhang
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Xu Yan
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Hangyu Shen
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Mingyue Zhao
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Xiang Gao
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Yi Huang
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| |
Collapse
|
2
|
Zhang X, Zhang C, Yang C, Kuang L, Zheng J, Tang L, Lei M, Li C, Ren Y, Guo Z, Ji Y, Deng X, Huang D, Wang G, Xie X. Circular RNA, microRNA and Protein Profiles of the Longissimus Dorsi of Germany ZIKA and Sichuan White Rabbits. Front Genet 2022; 12:777232. [PMID: 35003217 PMCID: PMC8740122 DOI: 10.3389/fgene.2021.777232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the dietetic properties and remarkable nutritive value of rabbit meat, its industry is increasing rapidly. However, the association between circular RNAs, microRNAs, and proteins and muscle fiber type, and meat quality of rabbit is still unknown. Here, using deep sequencing and iTRAQ proteomics technologies we first identified 3159 circRNAs, 356 miRNAs, and 755 proteins in the longissimus dorsi tissues from Sichuan white (SCWrabs) and Germany great line ZIKA rabbits (ZIKArabs). Next, we identified 267 circRNAs, 3 miRNAs, and 29 proteins differentially expressed in the muscle tissues of SCWrabs and ZIKArabs. Interaction network analysis revealed some key regulation relationships between noncoding RNAs and proteins that might be associated with the muscle fiber type and meat quality of rabbit. Further, miRNA isoforms and gene variants identified in SCWrabs and ZIKArabs revealed some pathways and biological processes related to the muscle development. This is the first study of noncoding RNA and protein profiles for the two rabbit breeds. It provides a valuable resource for future studies in rabbits and will improve our understanding of the molecular regulation mechanisms in the muscle development of livestock. More importantly, the output of our study will benefit the researchers and producers in the rabbit breeding program.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Cuixia Zhang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Chao Yang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Liangde Kuang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Jie Zheng
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Li Tang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Min Lei
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Congyan Li
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongjun Ren
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhiqiang Guo
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Yang Ji
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | | | - Dengping Huang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xiaohong Xie
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
3
|
Kunath A, Unosson J, Friederich-Persson M, Bjarnegård N, Becirovic-Agic M, Björck M, Mani K, Wanhainen A, Wågsäter D. Inhibition of angiotensin-induced aortic aneurysm by metformin in apolipoprotein E-deficient mice. JVS Vasc Sci 2021; 2:33-42. [PMID: 34617056 PMCID: PMC8489247 DOI: 10.1016/j.jvssci.2020.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/30/2020] [Indexed: 10/26/2022] Open
Abstract
Objective Metformin is associated with a reduced incidence and growth of abdominal aortic aneurysms (AAAs). The aim of the present study was to investigate the inhibitory effects of metformin on AAA development and possible underlying mechanisms in experimentally induced AAAs in mice, along with the possible synergistic effects of metformin and imatinib. Methods Angiotensin II was used to induce AAAs in apolipoprotein E knockout (ApoE -/- ) mice for 28 days. The mice were treated with metformin (n = 11), metformin combined with imatinib (n = 7), or vehicle (n = 12), starting 3 days before angiotensin II infusion. Ultrasound examination was used to analyze aneurysm formation. Cholesterol and blood pressure levels were measured at the start and end of the study. Gene array and quantitative polymerase chain reaction were used to analyze the changes in gene expression in the aorta. Wire myography was used to study vascular function. Results Metformin (n = 11) suppressed the formation and progression of AAAs by 50% compared with the vehicle controls (n = 12), with no further effects from imatinib (n = 7). Metformin reduced total cholesterol and mRNA expression of SPP1 (encoding osteopontin), MMP12, and the glycoprotein genes Gpnmb and Clec7a. Furthermore, metformin inhibited blood pressure increases and reduced vascular contractions, as determined by wire myography, and restored the anticontractile function of perivascular adipose tissue. Conclusion Metformin inhibited aneurysm formation and progression and normalized vascular function in ApoE -/- mice with no additional effect of imatinib. This might be mediated by the protective effects on vascular endothelial function and perivascular adipose tissue via reduced expression of genes promoting inflammation, including SPP1, MMP12, Gpnmb, and Clec7a. Clinical relevance Retrospective studies of the effects of metformin in patients with aneurysm have so far only been performed of those with type 2 diabetes. The present study shows that metformin has effects on nondiabetic mice and revealed the mechanistic effects mediated by the drug that could also be important to study as outcomes in humans. Future clinical trials using metformin are warranted in patients without diabetes with abdominal aortic aneurysms.
Collapse
Affiliation(s)
- Anne Kunath
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jon Unosson
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Niclas Bjarnegård
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | - Martin Björck
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Kevin Mani
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Wanhainen
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Liu Y, Song Y, Liu P, Li S, Shi Y, Yu G, Quan K, Fan Z, Li P, An Q, Zhu W. Comparative bioinformatics analysis between proteomes of rabbit aneurysm model and human intracranial aneurysm with label-free quantitative proteomics. CNS Neurosci Ther 2021; 27:101-112. [PMID: 33389819 PMCID: PMC7804895 DOI: 10.1111/cns.13570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aims This study aimed to find critical proteins involved in the development of intracranial aneurysm by comparing proteomes of rabbit aneurysm model and human aneurysms. Methods Five human intracranial aneurysm samples and 5 superficial temporal artery samples, and 4 rabbit aneurysm samples and 4 control samples were collected for protein mass spectrometry. Four human intracranial aneurysm samples and 4 superficial temporal artery samples, and 6 rabbit aneurysm samples and 6 control samples were used for immunochemistry. Results Proteomic analysis revealed 180 significantly differentially expressed proteins in human intracranial aneurysms and 716 significantly differentially expressed proteins in rabbit aneurysms. Among them, 57 proteins were differentially expressed in both species, in which 24 were increased and 33 were decreased in aneurysms compared to the control groups. Proteins were involved in focal adhesion and extracellular matrix‐receptor interaction pathways. We found that COL4A2, MYLK, VCL, and TAGLN may be related to aneurysm development. Conclusion Proteomics analysis provided fundamental insights into the pathogenesis of aneurysm. Proteins related to focal adhesion and extracellular matrix‐receptor interaction pathways play an important role in the occurrence and development of intracranial aneurysm.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Yaying Song
- Department of Neurology, Renji Hospital of Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Sichen Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Yuan Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Guo Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Kai Quan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Zhiyuan Fan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Peiliang Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
5
|
Cañes L, Martí-Pàmies I, Ballester-Servera C, Alonso J, Serrano E, Briones AM, Rodríguez C, Martínez-González J. High NOR-1 (Neuron-Derived Orphan Receptor 1) Expression Strengthens the Vascular Wall Response to Angiotensin II Leading to Aneurysm Formation in Mice. Hypertension 2020; 77:557-570. [PMID: 33356402 DOI: 10.1161/hypertensionaha.120.16078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
No drug therapy has shown to limit abdominal aortic aneurysm (AAA) growth or rupture, and the understanding of the disease biology is incomplete; whereby, one challenge of vascular medicine is the development of good animal models and therapies for this life-threatening condition. The nuclear receptor NOR-1 (neuron-derived orphan receptor 1) controls biological processes involved in AAA; however, whether it plays a role in this pathology is unknown. Through a gain-of-function approach we assessed the impact of NOR-1 expression on the vascular response to Ang II (angiotensin II). We used 2 mouse models that overexpress human NOR-1 in the vasculature, one of them specifically in vascular smooth muscle cells. NOR-1 transgenesis amplifies the response to Ang II enhancing vascular inflammation (production of proinflammatory cytokines, chemokines, and reactive oxygen species), increasing MMP (matrix metalloproteinase) activity and disturbing elastin integrity, thereby broking the resistance of C57BL/6 mice to Ang II-induced AAA. Genes encoding for proteins critically involved in AAA formation (Il [interleukin]-6, Il-1β, Cxcl2, [C-X-C motif chemokine ligand 2], Mcp-1 [monocyte chemoattractant protein 1], and Mmp2) were upregulated in aneurysmal tissues. Both animal models show a similar incidence and severity of AAA, suggesting that high expression of NOR-1 in vascular smooth muscle cell is a sufficient condition to strengthen the response to Ang II. These alterations, including AAA formation, were prevented by the MMP inhibitor doxycycline. Microarray analysis identified gene sets that could explain the susceptibility of transgenic animals to Ang II-induced aneurysms, including those related with extracellular matrix remodeling, inflammatory/immune response, sympathetic activity, and vascular smooth muscle cell differentiation. These results involve NOR-1 in AAA and validate mice overexpressing this receptor as useful experimental models.
Collapse
Affiliation(s)
- Laia Cañes
- From the Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Spain (L.C., I.M.-P., C.B.-S., J.A., J.M.-G.).,CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (L.C., I.M.-P., J.A., A.M.B., C.R., J.M.-G.).,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain (L.C., I.M.-P., C.B.-S., J.A., E.S., C.R., J.M.-G.)
| | - Ingrid Martí-Pàmies
- From the Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Spain (L.C., I.M.-P., C.B.-S., J.A., J.M.-G.).,CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (L.C., I.M.-P., J.A., A.M.B., C.R., J.M.-G.).,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain (L.C., I.M.-P., C.B.-S., J.A., E.S., C.R., J.M.-G.)
| | - Carme Ballester-Servera
- From the Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Spain (L.C., I.M.-P., C.B.-S., J.A., J.M.-G.).,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain (L.C., I.M.-P., C.B.-S., J.A., E.S., C.R., J.M.-G.)
| | - Judith Alonso
- From the Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Spain (L.C., I.M.-P., C.B.-S., J.A., J.M.-G.).,CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (L.C., I.M.-P., J.A., A.M.B., C.R., J.M.-G.).,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain (L.C., I.M.-P., C.B.-S., J.A., E.S., C.R., J.M.-G.)
| | - Elena Serrano
- Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain (L.C., I.M.-P., C.B.-S., J.A., E.S., C.R., J.M.-G.).,Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, Spain (E.S., C.R.)
| | - Ana M Briones
- From the Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Spain (L.C., I.M.-P., C.B.-S., J.A., J.M.-G.).,Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Spain (A.M.B.)
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (L.C., I.M.-P., J.A., A.M.B., C.R., J.M.-G.).,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain (L.C., I.M.-P., C.B.-S., J.A., E.S., C.R., J.M.-G.).,Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, Spain (E.S., C.R.)
| | - José Martínez-González
- From the Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Spain (L.C., I.M.-P., C.B.-S., J.A., J.M.-G.).,CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (L.C., I.M.-P., J.A., A.M.B., C.R., J.M.-G.).,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain (L.C., I.M.-P., C.B.-S., J.A., E.S., C.R., J.M.-G.)
| |
Collapse
|
6
|
Wang J, Wei L, Lu H, Zhu Y. Roles of inflammation in the natural history of intracranial saccular aneurysms. J Neurol Sci 2020; 424:117294. [PMID: 33799211 DOI: 10.1016/j.jns.2020.117294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Aneurysmal subarachnoid hemorrhage is caused by intracranial aneurysm (IA) rupture and results in high rates of mortality and morbidity. Factors contributing to IA generation, growth and rupture can involve genetics, injury, hemodynamics, environmental factors, and inflammation, in which inflammatory factors are believed to play central roles in the whole natural history. Inflammatory reactions that contribute to IA development may involve synthesis of many functional proteins and expression of genes induced by changes of blood flow, external stimuli such as smoking, internal balance such as hormonal status changes, and blood pressure. Meanwhile, inflammatory reactions itself can evoke inflammatory cytokines release and aggregation such as MMPs, MCP-1, TNF-α and ZO-1, directly or indirectly promoting aneurysm growth and rupture. However, the details of these inflammatory reactions and their action on inflammatory chemokines are still unknown. Moreover, some agents with the function of anti-inflammation, lipid-lowering, antihypertension or inflammatory factor inhibition may have the potential benefit to reduce the risk of aneurysm development or rupture in a group of population despite the underlying mechanism remains unclear. Consequently, we reviewed the potential inflammatory responses and their mechanisms contributing to aneurysm development and rupture and sought intervention targets that may prevent IA rupture or generation.
Collapse
Affiliation(s)
- Jienan Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road; Shanghai 200233, China
| | - Liming Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road; Shanghai 200233, China
| | - Haitao Lu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road; Shanghai 200233, China.
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road; Shanghai 200233, China.
| |
Collapse
|
7
|
Paul S. RFCM 3: Computational Method for Identification of miRNA-mRNA Regulatory Modules in Cervical Cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1729-1740. [PMID: 30990434 DOI: 10.1109/tcbb.2019.2910851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cervical cancer is a leading severe malignancy throughout the world. Molecular processes and biomarkers leading to tumor progression in cervical cancer are either unknown or only partially understood. An increasing number of studies have shown that microRNAs play an important role in tumorigenesis so understanding the regulatory mechanism of miRNAs in gene-regulatory network will help elucidate the complex biological processes that occur during malignancy. Functional genomics data provides opportunities to study the aberrant microRNA-messenger RNA (miRNA-mRNA) interaction. Identification of miRNA-mRNA regulatory modules will aid deciphering aberrant transcriptional regulatory network in cervical cancer but is computationally challenging. In this regard, an algorithm, termed as relevant and functionally consistent miRNA-mRNA modules (RFCM3), is proposed. It integrates miRNA and mRNA expression data of cervical cancer for identification of potential miRNA-mRNA modules. It selects set of miRNA-mRNA modules by maximizing relation of mRNAs with miRNA and functional similarity between selected mRNAs. Later, using the knowledge of the miRNA-miRNA synergistic network different modules are fused and finally a set of modules are generated containing several miRNAs as well as mRNAs. This type of module explains the underlying biological pathways containing multiple miRNAs and mRNAs. The effectiveness of the proposed approach over other existing methods has been demonstrated on a miRNA and mRNA expression data of cervical cancer with respect to enrichment analyses and other standard metrices. The prognostic value of the genes in a module with respect to cervical cancer is also demonstrated. The approach was found to generate more robust, integrated, and functionally enriched miRNA-mRNA modules in cervical cancer.
Collapse
|
8
|
Turley TN, O'Byrne MM, Kosel ML, de Andrade M, Gulati R, Hayes SN, Tweet MS, Olson TM. Identification of Susceptibility Loci for Spontaneous Coronary Artery Dissection. JAMA Cardiol 2020; 5:929-938. [PMID: 32374345 DOI: 10.1001/jamacardio.2020.0872] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Importance Spontaneous coronary artery dissection (SCAD), an idiopathic disorder that predominantly affects young to middle-aged women, has emerged as an important cause of acute coronary syndrome, myocardial infarction, and sudden cardiac death. Objective To identify common single-nucleotide variants (SNVs) associated with SCAD susceptibility. Design, Setting, and Participants This single-center genome-wide association study examined approximately 5 million genotyped and imputed SNVs and subsequent SNV-targeted replication analysis results in individuals enrolled in the Mayo Clinic SCAD registry from August 30, 2011, to August 2, 2018. Data analysis was performed from June 21, 2017, to December 30, 2019. Main Outcomes and Measures Genetic loci and positional candidate genes associated with SCAD. Results This study included 484 white women with SCAD (mean [SD] age, 46.6 [9.2] years) and 1477 white female controls in the discovery cohort (mean [SD] age, 64.0 [14.5] years) and 183 white women with SCAD (mean [SD] age, 47.1 [9.9] years) and 340 white female controls in the replication cohort (mean [SD] age, 51.0 [15.3] years). Associations with SCAD risk reached genome-wide significance at 3 loci (1q21.3 [OR, 1.78; 95% CI, 1.51-2.09; P = 2.63 × 10-12], 6p24.1 [OR, 1.77; 95% CI, 1.51-2.09; P = 7.09 × 10-12], and 12q13.3 [OR, 1.67; 95% CI, 1.42-1.97; P = 3.62 × 10-10]), and 7 loci had evidence suggestive of an association (1q24.2 [OR, 2.10; 95% CI, 1.58-2.79; P = 2.88 × 10-7], 3q22.3 [OR, 1.47; 95% CI, 1.26-1.71; P = 6.65 × 10-7], 4q34.3 [OR, 1.84; 95% CI, 1.44-2.35; P = 9.80 × 10-7], 8q24.3 [OR, 2.57; 95% CI, 1.76-3.75; P = 9.65 × 10-7], 15q21.1 [OR, 1.75; 95% CI, 1.40-2.18; P = 7.23 × 10-7], 16q24.1 [OR, 1.91; 95% CI, 1.49-2.44; P = 2.56 × 10-7], and 21q22.11 [OR, 2.11; 95% CI, 1.59-2.82; P = 3.12 × 10-7]) after adjusting for the top 5 principal components. Associations were validated for 5 of the 10 risk alleles in the replication cohort. In a meta-analysis of the discovery and replication cohorts, associations for the 5 SNVs were significant, with relatively large effect sizes (1q21.3 [OR, 1.77; 95% CI, 1.54-2.03; P = 3.26 × 10-16], 6p24.1 [OR, 1.71; 95% CI, 1.49-1.97; P = 4.59 × 10-14], 12q13.3 [OR, 1.69; 95% CI, 1.47-1.94; P = 1.42 × 10-13], 15q21.1 [OR, 1.79; 95% CI, 1.48-2.17; P = 2.12 × 10-9], and 21q22.11 [OR, 2.18; 95% CI, 1.70-2.81; P = 1.09 × 10-9]). Each index SNV was within or near a gene highly expressed in arterial tissue and previously linked to SCAD (PHACTR1) and/or other vascular disorders (LRP1, LINC00310, and FBN1). Conclusions and Relevance This study revealed 5 replicated risk loci and positional candidate genes for SCAD, most of which are associated with extracoronary arteriopathies. Moreover, the alternate alleles of 3 SNVs have been previously associated with atherosclerotic coronary artery disease, further implicating allelic susceptibility to coronary artery atherosclerosis vs dissection.
Collapse
Affiliation(s)
- Tamiel N Turley
- Molecular Pharmacology and Experimental Therapeutics Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Megan M O'Byrne
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Matthew L Kosel
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sharonne N Hayes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Marysia S Tweet
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Timothy M Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Tang H, Lu Z, Xue G, Li S, Xu F, Yan Y, Liu J, Zuo Q, Luo Y, Huang Q. The development and understanding of intracranial aneurysm based on rabbit model. Neuroradiology 2020; 62:1219-1230. [PMID: 32594185 DOI: 10.1007/s00234-020-02475-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
In modern society, intracranial aneurysms have seriously affected people's life. To better study and treat intracranial aneurysm, animal models are ideal candidates to perform biological research and preclinical endovascular device testing. Rabbit aneurysm model is one of the most commonly used animal models, and the rabbit aneurysms share similarities in histology, morphology, and hemodynamic aspects with human intracranial aneurysms, which is an ideal model for intracranial aneurysm pre-clinical and basic research. In this review, we will summarize the main methods of establishing rabbit aneurysms model and will further discuss the current biological mechanisms of intracranial aneurysms based on rabbit model. Further improvements of rabbit aneurysm model and more deep studies based on this model are needed to provide new insights into studying and clinical treating intracranial aneurysm.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200050, People's Republic of China
| | - Zhiwen Lu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Gaici Xue
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Sisi Li
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Fengfeng Xu
- Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200050, People's Republic of China
| | - Yazhou Yan
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Qiao Zuo
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yin Luo
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Qinghai Huang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
10
|
Masoudi-Khoram N, Abdolmaleki P, Hosseinkhan N, Nikoofar A, Mowla SJ, Monfared H, Baldassarre G. Differential miRNAs expression pattern of irradiated breast cancer cell lines is correlated with radiation sensitivity. Sci Rep 2020; 10:9054. [PMID: 32493932 PMCID: PMC7270150 DOI: 10.1038/s41598-020-65680-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023] Open
Abstract
Radiotherapy is a fundamental step in the treatment of breast cancer patients. The treatment efficiency is however reduced by the possible onset of radiation resistance. In order to develop the effective treatment approach, it is important to understand molecular basis of radiosensitivity in breast cancer. The purpose of the present study was to investigate different radiation response of breast cancer cell lines, and find out if this response may be related to change in the microRNAs expression profile. MDA-MB-231 and T47D cells were subjected to different doses of radiation, then MTT and clonogenic assays were performed to assess radiation sensitivity. Cytofluorometric and western blot analysis were performed to gain insight into cell cycle distribution and protein expression. MicroRNA sequencing and bioinformatics prediction methods were used to identify the difference in microRNAs expression between two breast cancer cells and the related genes and pathways. T47D cells were more sensitive to radiation respect to MDA-MB-231 cells as demonstrated by a remarkable G2 cell cycle arrest followed by a greater reduction in cell viability and colony forming ability. Accordingly, T47D cells showed higher increase in the phosphorylation of ATM, TP53 and CDK1 (markers of radiation response) and faster and more pronounced increase in RAD51 and γH2AX expression (markers of DNA damage), when compared to MDA-MB-231 cells. The two cell lines had different microRNAs expression profiles with a confirmed significant differential expression of miR-16-5p, which targets cell cycle related genes and predicts longer overall survival of breast cancer patients, as determined by bioinformatics analysis. These results suggest a possible role for miR-16-5p as radiation sensitizing microRNA and as prognostic/predictive biomarker in breast cancer.
Collapse
Affiliation(s)
- Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Nazanin Hosseinkhan
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Alireza Nikoofar
- Department of Radiotherapy, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Seyed Javad Mowla
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamideh Monfared
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gustavo Baldassarre
- Division of Experimental Oncology 2, Department of Translational Research, CRO, National Cancer Institute, Aviano, Italy
| |
Collapse
|
11
|
Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133:104642. [PMID: 31838024 PMCID: PMC8074401 DOI: 10.1016/j.neuint.2019.104642] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative disorders and susceptibility to acute brain injury. DNA and histone modifications act together with non-coding RNAs to form a complex gene expression machinery that adapts the brain to environmental stressors and injury response. These modifications influence cell-level operations like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence the progression of many neurological disorders independent of aberrations in the genetic code. This review aims to highlight ways in which epigenetics applies to several commonly researched neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of epigenetics-based treatments.
Collapse
Affiliation(s)
- Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|
12
|
Aberrant expression of lncRNAs and mRNAs in patients with intracranial aneurysm. Oncotarget 2018; 8:2477-2484. [PMID: 27965470 PMCID: PMC5356817 DOI: 10.18632/oncotarget.13908] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2016] [Indexed: 01/14/2023] Open
Abstract
Intracranial aneurysm (IA) is pathological dilatations of the cerebral artery and rupture of IAs can cause subarachnoid hemorrhage, which has a high ratio of fatality and morbidity. However, the pathogenesis of IAs remains unknown. We performed long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in IA tissues and superficial temporal arteries (STAs). A total of 4129 differentially expressed lncRNAs and 2926 differentially expressed mRNAs were obtained from the microarrays (P < 0.05). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that up-regulated mRNAs were enriched in immune response, inflammatory response, regulation of immune response and lysosome, et al; while the down-regulated mRNAs were enriched in muscle contraction, smooth muscle contraction, cGMP-PKG signaling pathway and vascular smooth muscle contraction, et al. The lncRNA-mRNA co-expression networks were represented in immune response, inflammatory response, muscle contraction and vascular smooth muscle contraction. These findings may gain insight in the pathogenesis of IAs and provide clues to find key roles for IA patients.
Collapse
|
13
|
Huang F, Yi J, Zhou T, Gong X, Jiang H, Yao X. Toward Understanding Non-coding RNA Roles in Intracranial Aneurysms and Subarachnoid Hemorrhage. Transl Neurosci 2017; 8:54-64. [PMID: 28729919 PMCID: PMC5516590 DOI: 10.1515/tnsci-2017-0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common and frequently life-threatening cerebrovascular disease, which is mostly related with a ruptured intracranial aneurysm. Its complications include rebleeding, early brain injury, cerebral vasospasm, delayed cerebral ischemia, chronic hydrocephalus, and also non neurological problems. Non-coding RNAs (ncRNAs), comprising of microRNAs (miRNAs), small interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs), play an important role in intracranial aneurysms and SAH. Here, we review the non-coding RNAs expression profile and their related mechanisms in intracranial aneurysms and SAH. Moreover, we suggest that these non-coding RNAs function as novel molecular biomarkers to predict intracranial aneurysms and SAH, and may yield new therapies after SAH in the future.
Collapse
Affiliation(s)
- Fengzhen Huang
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Jiping Yi
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Tieqiao Zhou
- Department of Laboratory Medicine, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| | - Xiaoxiang Gong
- Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011 P. R.China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R.China.,State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan, 410078, P. R.China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, P. R.China
| | - Xiaoxi Yao
- Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R.China
| |
Collapse
|
14
|
The Genetics of Intracranial Aneurysms. CURRENT GENETIC MEDICINE REPORTS 2017. [DOI: 10.1007/s40142-017-0111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Fennell VS, Kalani MYS, Atwal G, Martirosyan NL, Spetzler RF. Biology of Saccular Cerebral Aneurysms: A Review of Current Understanding and Future Directions. Front Surg 2016; 3:43. [PMID: 27504449 PMCID: PMC4958945 DOI: 10.3389/fsurg.2016.00043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022] Open
Abstract
Understanding the biology of intracranial aneurysms is a clinical quandary. How these aneurysms form, progress, and rupture is poorly understood. Evidence indicates that well-established risk factors play a critical role, along with immunologic factors, in their development and clinical outcomes. Much of the expanding knowledge of the inception, progression, and rupture of intracranial aneurysms implicates inflammation as a critical mediator of aneurysm pathogenesis. Thus, therapeutic targets exploiting this arm of aneurysm pathogenesis have been implemented, often with promising outcomes.
Collapse
Affiliation(s)
- Vernard S Fennell
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - M Yashar S Kalani
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - Gursant Atwal
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - Robert F Spetzler
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| |
Collapse
|
16
|
Rouchaud A, Johnson C, Thielen E, Schroeder D, Ding YH, Dai D, Brinjikji W, Cebral J, Kallmes DF, Kadirvel R. Differential Gene Expression in Coiled versus Flow-Diverter-Treated Aneurysms: RNA Sequencing Analysis in a Rabbit Aneurysm Model. AJNR Am J Neuroradiol 2015; 37:1114-21. [PMID: 26721773 DOI: 10.3174/ajnr.a4648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/10/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE The biologic mechanisms leading to aneurysm healing or rare complications such as delayed aneurysm ruptures after flow-diverter placement remain poorly understood. We used RNA sequencing following implantation of coils or flow diverters in elastase aneurysms in rabbits to identify genes and pathways of potential interest. MATERIALS AND METHODS Aneurysms were treated with coils (n = 5) or flow diverters (n = 4) or were left untreated for controls (n = 6). Messenger RNA was isolated from the aneurysms at 4 weeks following treatment. RNA samples were processed by using RNA-sequencing technology and were analyzed by using the Ingenuity Pathway Analysis tool. RESULTS With RNA sequencing for coiled versus untreated aneurysms, 464/9990 genes (4.6%) were differentially expressed (58 down-regulated, 406 up-regulated). When we compared flow-diverter versus untreated aneurysms, 177/10,041 (1.8%) genes were differentially expressed (8 down-regulated, 169 up-regulated). When we compared flow-diverter versus coiled aneurysms, 13/9982 (0.13%) genes were differentially expressed (8 down-regulated, 5 up-regulated). Keratin 8 was overexpressed in flow diverters versus coils. This molecule may potentially play a critical role in delayed ruptures due to plasmin production. We identified overregulation of apelin in flow diverters, supporting the preponderance of endothelialization, whereas we found overexpression of molecules implicated in wound healing (dectin 1 and hedgehog interacting protein) for coiled aneurysms. Furthermore, we identified metallopeptidases 1, 12, and 13 as overexpressed in coiled versus untreated aneurysms. CONCLUSIONS We observed different physiopathologic responses after endovascular treatment with various devices. Flow diverters promote endothelialization but express molecules that could potentially explain the rare delayed ruptures. Coils promote wound healing and express genes potentially implicated in the recurrence of coiled aneurysms.
Collapse
Affiliation(s)
- A Rouchaud
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - C Johnson
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - E Thielen
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - D Schroeder
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - Y-H Ding
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - D Dai
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| | - W Brinjikji
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.) Department of Radiology (W.B., D.F.K.), Mayo Clinic, Rochester, Minnesota
| | - J Cebral
- Department of Bioengineering (J.C.), George Mason University, Fairfax, Virginia
| | - D F Kallmes
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.) Department of Radiology (W.B., D.F.K.), Mayo Clinic, Rochester, Minnesota
| | - R Kadirvel
- From the Applied Neuroradiology Laboratory (A.R., C.J., E.T., D.S., Y.-H.D., D.D., W.B., D.F.K., R.K.)
| |
Collapse
|
17
|
Sima X, Sun H, Zhou P, You C. A Potential Polymorphism in the Promoter of Let-7 is Associated With an Increased Risk of Intracranial Aneurysm: A Case-Control Study. Medicine (Baltimore) 2015; 94:e2267. [PMID: 26705209 PMCID: PMC4697975 DOI: 10.1097/md.0000000000002267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Let-7 family plays a key role in the progression of atherosclerosis and intracranial aneurysm (IA). We hypothesized that rs10877887 and rs13293512 polymorphisms in the promoters of let-7 family may be associated with the susceptibility of IA. We genotyped the 2 single nucleotide polymorphisms (SNPs) in 305 patients with IA and 401 healthy controls. The rs10877887 was analyzed using a polymerase chain reaction-restriction fragment length polymorphism assay, and the rs13293512 was analyzed using a TaqMan SNP genotyping method. The relative expression of let-7 family was measured in plasma of cases and controls using real-time PCR. We found that the rs13293512CT genotype was associated with a significantly increased risk of developing IA in a heterozygote comparison (adjusted OR = 1.43, 95% CI, 1.00-2.05, P = 0.048) and dominant comparison (adjusted OR = 1.44, 95% CI, 1.02-2.03, P = 0.04). Combined analysis showed that the rs10877887TT and rs13293512CC/CT genotypes had a significantly increased risk of IA (OR = 1.67, 95% CI, 1.04-2.68, P = 0.03). Moreover, the levels of let-7a, let-7d, and let-7f were downregulated in IA patients, and patients with the rs13293512CC/CT genotypes had a lower level of let-7a than those with rs13293512TT genotype (P = 0.03). These findings indicate that the rs13293512CC/CT is a risk factor for the development of IA, possibly because of the genotypes resulting in a lower level of let-7a.
Collapse
Affiliation(s)
- Xiutian Sima
- From the Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | | | | | | |
Collapse
|