1
|
Angileri FF, Raffa G, Curcio A, Granata F, Marzano G, Germanò A. Minimally Invasive Surgery of Deep-Seated Brain Lesions Using Tubular Retractors and Navigated Transcranial Magnetic Stimulation-Based Diffusion Tensor Imaging Tractography Guidance: The Minefield Paradigm. Oper Neurosurg (Hagerstown) 2023; 24:656-664. [PMID: 36805639 DOI: 10.1227/ons.0000000000000652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/08/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Surgical treatment of deep-seated brain lesions is a major challenge for neurosurgeons. Recently, tubular retractors have been used to help neurosurgeons in achieving the targeting and resection of deep lesions. OBJECTIVE To describe a novel surgical approach based on the combination of tubular retractors and preoperative mapping by navigated transcranial magnetic stimulation (nTMS) and nTMS-based diffusion tensor imaging (DTI) tractography for the safe resection of deep-seated lesions. METHODS Ten consecutive patients affected by deep-seated brain lesions close to eloquent motor/language/visual pathways underwent preoperative nTMS mapping of motor/language cortical areas and nTMS-based DTI tractography of adjacent eloquent white matter tracts, including optic radiations. The nTMS-based information was used to plan the optimal surgical trajectory and to guide the insertion of tubular retractors within the brain parenchyma without causing injury to the eloquent cortical and subcortical structures. After surgery, all patients underwent a new nTMS-based DTI tractography of fascicles close to the tumor to verify their structural integrity. RESULTS Gross total resection was achieved in 8 cases, subtotal resection in 1 case, and a biopsy in 1 case. No new postoperative deficits were observed, except in 1 case where a visual field defect due to injury to the optic radiations occurred. Postoperative nTMS-based DTI tractography showed the integrity of the subcortical fascicles crossed by tubular retractors trajectory in 9 cases. CONCLUSION The novel strategy combining tubular retractors with functional nTMS-based preoperative mapping enables a safe microsurgical resection of deep-seated lesions through the preservation of eloquent cortical areas and subcortical fascicles, thus reducing the risk of new permanent deficits.
Collapse
Affiliation(s)
- Filippo Flavio Angileri
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giovanni Raffa
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Antonello Curcio
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Francesca Granata
- Neuroradiology-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giuseppina Marzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonino Germanò
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Kure AJ, Savas H, Hijaz TA, Hussaini SF, Korutz AW. Advancements in Positron Emission Tomography/Magnetic Resonance Imaging and Applications to Diagnostic Challenges in Neuroradiology. Semin Ultrasound CT MR 2021; 42:434-451. [PMID: 34537113 DOI: 10.1053/j.sult.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Since the clinical adoption of magnetic resonance (MR) in medical imaging, MR has proven to be a workhorse in diagnostic neuroradiology, with the ability to provide superb anatomic detail as well as additional functional and physiologic data, depending on the techniques utilized. Positron emission tomography/computed tomography has also shown irreplaceable diagnostic value in certain disease processes of the central nervous system by providing molecular and metabolic information through the development of numerous disease-specific PET tracers, many of which can be utilized as a diagnostic technique in and of themselves or can provide a valuable adjunct to information derived from MR. Despite these advances, many challenges still remain in neuroradiology, particularly in malignancy, neurodegenerative disease, epilepsy, and cerebrovascular disease. Through improvements in attenuation correction, motion correction, and PET detectors, combining the 2 modalities of PET and MR through simultaneous imaging has proven feasible and allows for improved spatial and temporal resolution without compromising either of the 2 individual modalities. The complementary information offered by both technologies has provided increased diagnostic accuracy in both research and many clinical applications in neuroradiology.
Collapse
Affiliation(s)
- Andrew J Kure
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Hatice Savas
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Tarek A Hijaz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Syed F Hussaini
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Alexander W Korutz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
3
|
Sollmann N, Krieg SM, Säisänen L, Julkunen P. Mapping of Motor Function with Neuronavigated Transcranial Magnetic Stimulation: A Review on Clinical Application in Brain Tumors and Methods for Ensuring Feasible Accuracy. Brain Sci 2021; 11:brainsci11070897. [PMID: 34356131 PMCID: PMC8305823 DOI: 10.3390/brainsci11070897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) has developed into a reliable non-invasive clinical and scientific tool over the past decade. Specifically, it has undergone several validating clinical trials that demonstrated high agreement with intraoperative direct electrical stimulation (DES), which paved the way for increasing application for the purpose of motor mapping in patients harboring motor-eloquent intracranial neoplasms. Based on this clinical use case of the technique, in this article we review the evidence for the feasibility of motor mapping and derived models (risk stratification and prediction, nTMS-based fiber tracking, improvement of clinical outcome, and assessment of functional plasticity), and provide collected sets of evidence for the applicability of quantitative mapping with nTMS. In addition, we provide evidence-based demonstrations on factors that ensure methodological feasibility and accuracy of the motor mapping procedure. We demonstrate that selection of the stimulation intensity (SI) for nTMS and spatial density of stimuli are crucial factors for applying motor mapping accurately, while also demonstrating the effect on the motor maps. We conclude that while the application of nTMS motor mapping has been impressively spread over the past decade, there are still variations in the applied protocols and parameters, which could be optimized for the purpose of reliable quantitative mapping.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA 94143, USA
- Correspondence:
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
4
|
Katsigiannis S, Grau S, Krischek B, Er K, Pintea B, Goldbrunner R, Stavrinou P. MGMT-Positive vs MGMT-Negative Patients With Glioblastoma: Identification of Prognostic Factors and Resection Threshold. Neurosurgery 2021; 88:E323-E329. [PMID: 33432978 DOI: 10.1093/neuros/nyaa562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/04/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The importance of the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status as a predictive factor for the response to chemotherapy with temozolomide is well established. Its significance though at stratifying glioblastoma (GBM) patients in regard to their prognostic factors and the impact of surgical approach on them has not been identified. OBJECTIVE To reveal possible differences in the prognostic factors and the impact of surgery between GBM patients stratified according to their MGMT status. METHODS The authors retrospectively analyzed 186 patients with a newly diagnosed primary supratentorial GBM treated with surgical resection followed by standard radiation and chemotherapy. A prospective quantitative volumetric analysis of tumor characteristics identified on magnetic resonance imaging was performed. RESULTS For the 109 patients with unmethylated MGMT promoter, extent of resection (EOR) represented independent predictor of survival, whereas residual tumor volume (RTV), Karnofsky Performance Score, and age were found to be independent prognostic factors of survival for the 77 patients with methylated MGMT promoter. For the group of patients with unmethylated and the group with methylated MGMT promoter, an EOR threshold of 70% and 98% and an RTV threshold of 1.5 and 1 cm3 were identified, respectively. CONCLUSION The selection of patients according to the MGMT promoter methylation status resulted in different prognostic factors and different resection thresholds for each patient population. A survival benefit seen from 70% EOR threshold in patients with MGMT unmethylated GBM supports the doctrine of maximum safe resection rather than the "all-or-nothing" approach.
Collapse
Affiliation(s)
- Sotirios Katsigiannis
- Department of Neurosurgery, Knappschaftskrankenhaus University Hospital of Bochum, Bochum, Germany
| | - Stefan Grau
- Center for Neurosurgery, Department of General Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Boris Krischek
- Center for Neurosurgery, Department of General Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Kadir Er
- Department of Neurosurgery, Knappschaftskrankenhaus University Hospital of Bochum, Bochum, Germany
| | - Bogdan Pintea
- Department of Neurosurgery, Bergmannsheil University Hospital of Bochum, Bochum, Germany
| | - Roland Goldbrunner
- Center for Neurosurgery, Department of General Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Pantelis Stavrinou
- Center for Neurosurgery, Department of General Neurosurgery, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
5
|
Kocher M, Jockwitz C, Lohmann P, Stoffels G, Filss C, Mottaghy FM, Ruge MI, Weiss Lucas C, Goldbrunner R, Shah NJ, Fink GR, Galldiks N, Langen KJ, Caspers S. Lesion-Function Analysis from Multimodal Imaging and Normative Brain Atlases for Prediction of Cognitive Deficits in Glioma Patients. Cancers (Basel) 2021; 13:cancers13102373. [PMID: 34069074 PMCID: PMC8156090 DOI: 10.3390/cancers13102373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This prospective cross-sectional study utilized standard structural MR imaging and amino acid PET in conjunction with brain atlases of gray matter functional regions and white matter tracts, and elastic registration techniques to estimate the influence of the type and location of treatment-related brain damage or recurrent tumors on cognitive functioning in a group of well-doing WHO Grade III/IV glioma patients at follow-up after treatment. The negative impact of T2/FLAIR hyperintensities, supposed to be mainly caused by radiotherapy, on cognitive performance far exceeded that of surgical brain defects or recurrent tumors. The affection of functional nodes and fiber tracts of the left hemisphere and especially of the left temporal lobe by T2/FLAIR hyperintensities was highly correlated with verbal episodic memory dysfunction. These observations imply that radiotherapy for gliomas of the left hemisphere should be individually tailored by means of publicly available brain atlases and registration techniques. Abstract Cognitive deficits are common in glioma patients following multimodality therapy, but the relative impact of different types and locations of treatment-related brain damage and recurrent tumors on cognition is not well understood. In 121 WHO Grade III/IV glioma patients, structural MRI, O-(2-[18F]fluoroethyl)-L-tyrosine FET-PET, and neuropsychological testing were performed at a median interval of 14 months (range, 1–214 months) after therapy initiation. Resection cavities, T1-enhancing lesions, T2/FLAIR hyperintensities, and FET-PET positive tumor sites were semi-automatically segmented and elastically registered to a normative, resting state (RS) fMRI-based functional cortical network atlas and to the JHU atlas of white matter (WM) tracts, and their influence on cognitive test scores relative to a cohort of matched healthy subjects was assessed. T2/FLAIR hyperintensities presumably caused by radiation therapy covered more extensive brain areas than the other lesion types and significantly impaired cognitive performance in many domains when affecting left-hemispheric RS-nodes and WM-tracts as opposed to brain tissue damage caused by resection or recurrent tumors. Verbal episodic memory proved to be especially vulnerable to T2/FLAIR abnormalities affecting the nodes and tracts of the left temporal lobe. In order to improve radiotherapy planning, publicly available brain atlases, in conjunction with elastic registration techniques, should be used, similar to neuronavigation in neurosurgery.
Collapse
Affiliation(s)
- Martin Kocher
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Correspondence:
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, 52428 Juelich, Germany; (C.J.); (S.C.)
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
| | - Christian Filss
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Maximilian I. Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
| | - Carolin Weiss Lucas
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Roland Goldbrunner
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Nadim J. Shah
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Neurology, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Juelich-Aachen Research Alliance (JARA)–Section JARA-Brain, 52428 Juelich, Germany
| | - Gereon R. Fink
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, 52428 Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Norbert Galldiks
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, 52428 Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany;
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, 52428 Juelich, Germany; (C.J.); (S.C.)
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
6
|
Larkin JR, Simard MA, de Bernardi A, Johanssen VA, Perez-Balderas F, Sibson NR. Improving Delineation of True Tumor Volume With Multimodal MRI in a Rat Model of Brain Metastasis. Int J Radiat Oncol Biol Phys 2020; 106:1028-1038. [PMID: 31959544 PMCID: PMC7082766 DOI: 10.1016/j.ijrobp.2019.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/01/2022]
Abstract
PURPOSE Brain metastases are almost universally lethal with short median survival times. Despite this, they are often potentially curable, with therapy failing only because of local relapse. One key reason relapse occurs is because treatment planning did not delineate metastasis margins sufficiently or accurately, allowing residual tumor to regrow. The aim of this study was to determine the extent to which multimodal magnetic resonance imaging (MRI), with a simple and automated analysis pipeline, could improve upon current clinical practice of single-modality, independent-observer tumor delineation. METHODS AND MATERIALS We used a single rat model of brain metastasis (ENU1564 breast carcinoma cells in BD-IX rats), with and without radiation therapy. Multimodal MRI data were acquired using sequences either in current clinical use or in clinical trial and included postgadolinium T1-weighted images and maps of blood flow, blood volume, T1 and T2 relaxation times, and apparent diffusion coefficient. RESULTS In all cases, independent observers underestimated the true size of metastases from single-modality gadolinium-enhanced MRI (85 ± 36 μL vs 131 ± 40 μL histologic measurement), although multimodal MRI more accurately delineated tumor volume (132 ± 41 μL). Multimodal MRI offered increased sensitivity compared with independent observer for detecting metastasis (0.82 vs 0.61, respectively), with only a slight decrease in specificity (0.86 vs 0.98). Blood flow maps conferred the greatest improvements in margin detection for late-stage metastases after radiation therapy. Gadolinium-enhanced T1-weighted images conferred the greatest increase in accuracy of detection for smaller metastases. CONCLUSIONS These findings suggest that multimodal MRI of brain metastases could significantly improve the visualization of brain metastasis margins, beyond current clinical practice, with the potential to decrease relapse rates and increase patient survival. This finding now needs validation in additional tumor models or clinical cohorts.
Collapse
Affiliation(s)
- James R Larkin
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford
| | - Manon A Simard
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford
| | - Axel de Bernardi
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford
| | - Vanessa A Johanssen
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford
| | - Francisco Perez-Balderas
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford
| | - Nicola R Sibson
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford.
| |
Collapse
|
7
|
Wende T, Hoffmann KT, Meixensberger J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J Neurol Surg A Cent Eur Neurosurg 2020; 81:442-455. [PMID: 32176926 DOI: 10.1055/s-0039-1691823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to visualize the brain's fiber connections noninvasively in vivo is relatively young compared with other possibilities of functional magnetic resonance imaging. Although many studies showed tractography to be of promising value for neurosurgical care, the implications remain inconclusive. An overview of current applications is presented in this systematic review. A search was conducted for (("tractography" or "fiber tracking" or "fibre tracking") and "neurosurgery") that produced 751 results. We identified 260 relevant articles and added 20 more from other sources. Most publications concerned surgical planning for resection of tumors (n = 193) and vascular lesions (n = 15). Preoperative use of transcranial magnetic stimulation was discussed in 22 of these articles. Tractography in skull base surgery presents a special challenge (n = 29). Fewer publications evaluated traumatic brain injury (TBI) (n = 25) and spontaneous intracranial bleeding (n = 22). Twenty-three articles focused on tractography in pediatric neurosurgery. Most authors found tractography to be a valuable addition in neurosurgical care. The accuracy of the technique has increased over time. There are articles suggesting that tractography improves patient outcome after tumor resection. However, no reliable biomarkers have yet been described. The better rehabilitation potential after TBI and spontaneous intracranial bleeding compared with brain tumors offers an insight into the process of neurorehabilitation. Tractography and diffusion measurements in some studies showed a correlation with patient outcome that might help uncover the neuroanatomical principles of rehabilitation itself. Alternative corticofugal and cortico-cortical networks have been implicated in motor recovery after ischemic stroke, suggesting more complex mechanisms in neurorehabilitation that go beyond current models. Hence tractography may potentially be able to predict clinical deficits and rehabilitation potential, as well as finding possible explanations for neurologic disorders in retrospect. However, large variations of the results indicate a lack of data to establish robust diagnostical concepts at this point. Therefore, in vivo tractography should still be interpreted with caution and by experienced surgeons.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
8
|
Caldeira L, Rota Kops E, Yun SD, da Silva N, Mauler J, Weirich C, Scheins J, Herzog H, Tellmann L, Lohmann P, Langen KJ, Lerche C, Shah NJ. The Jülich Experience With Simultaneous 3T MR-BrainPET: Methods and Technology. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2863953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Chen Z, Jamadar SD, Li S, Sforazzini F, Baran J, Ferris N, Shah NJ, Egan GF. From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies. Hum Brain Mapp 2018; 39:5126-5144. [PMID: 30076750 DOI: 10.1002/hbm.24314] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Simultaneous Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scanning is a recent major development in biomedical imaging. The full integration of the PET detector ring and electronics within the MR system has been a technologically challenging design to develop but provides capacity for simultaneous imaging and the potential for new diagnostic and research capability. This article reviews state-of-the-art MR-PET hardware and software, and discusses future developments focusing on neuroimaging methodologies for MR-PET scanning. We particularly focus on the methodologies that lead to an improved synergy between MRI and PET, including optimal data acquisition, PET attenuation and motion correction, and joint image reconstruction and processing methods based on the underlying complementary and mutual information. We further review the current and potential future applications of simultaneous MR-PET in both systems neuroscience and clinical neuroimaging research. We demonstrate a simultaneous data acquisition protocol to highlight new applications of MR-PET neuroimaging research studies.
Collapse
Affiliation(s)
- Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | - Sharna D Jamadar
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Shenpeng Li
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | | | - Jakub Baran
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Nicholas Ferris
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Imaging, Monash Health, Clayton, Victoria, Australia
| | - Nadim Jon Shah
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum, Jülich, Germany
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Ding D, Li P, Ma XY, Dun WH, Yang SF, Ma SH, Liu HJ, Zhang M. The relationship between putamen-SMA functional connectivity and sensorimotor abnormality in ESRD patients. Brain Imaging Behav 2017; 12:1346-1354. [DOI: 10.1007/s11682-017-9808-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Magill ST, Han SJ, Li J, Berger MS. Resection of primary motor cortex tumors: feasibility and surgical outcomes. J Neurosurg 2017; 129:961-972. [PMID: 29219753 DOI: 10.3171/2017.5.jns163045] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Brain tumors involving the primary motor cortex are often deemed unresectable due to the potential neurological consequences that result from injury to this region. Nevertheless, we have challenged this dogma for many years and used asleep, as well as awake, intraoperative stimulation mapping to maximize extent of resection. It remains unclear whether these tumors can be resected with acceptable morbidity, whether performing the surgery with the patient awake or asleep impacts extent of resection, and how stimulation mapping influences outcomes. METHODS A retrospective chart review was performed on the senior author's cohort to identify patients treated between 1998 and 2016 who underwent resection of tumors that were located within the primary motor cortex. Clinical notes, operative reports, and radiographic images were reviewed to identify intraoperative stimulation mapping findings and functional outcomes following tumor resection. Extent of resection was quantified volumetrically. Characteristics of patients were analyzed to identify factors associated with postoperative motor deficits. RESULTS Forty-nine patients underwent 53 resections of tumors located primarily within the motor cortex. Stimulation mapping was performed in all cases. Positive cortical sites for motor response were identified in 91% of cases, and subcortical sites in 74%. Awake craniotomy was performed in 65% of cases, while 35% were done under general anesthesia. The mean extent of resection was 91%. There was no statistically significant difference in extent of resection in cases done awake compared with those done under general anesthesia. New or worsened postoperative motor deficits occurred in 32 patients (60%), and 20 patients (38%) had a permanent deficit. Of the permanent deficits, 14 were mild, 4 were moderate, and 2 were severe (3.8% of cases). Decreased intraoperative motor response and diffusion restriction on postoperative MRI were associated with permanent deficit. Awake motor mapping surgery was associated with increased diffusion signal on postoperative MRI. CONCLUSIONS Resection of tumors from the primary motor cortex is associated with an increased risk of motor deficit, but most of these deficits are transient or mild and have little functional impact. Excellent extent of resection can be achieved with intraoperative stimulation mapping, suggesting that these tumors are indeed amenable to resection and should not be labeled unresectable. Injury to small perforating or en passage blood vessels was the most common cause of infarction that led to moderate or severe deficits. Awake motor mapping was not superior to mapping done under general anesthesia with regard to long-term functional outcome.
Collapse
|
12
|
Raffa G, Conti A, Scibilia A, Cardali SM, Esposito F, Angileri FF, La Torre D, Sindorio C, Abbritti RV, Germanò A, Tomasello F. The Impact of Diffusion Tensor Imaging Fiber Tracking of the Corticospinal Tract Based on Navigated Transcranial Magnetic Stimulation on Surgery of Motor-Eloquent Brain Lesions. Neurosurgery 2017; 83:768-782. [DOI: 10.1093/neuros/nyx554] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/05/2017] [Indexed: 01/22/2023] Open
Abstract
Abstract
BACKGROUND
Navigated transcranial magnetic stimulation (nTMS) enables preoperative mapping of the motor cortex (M1). The combination of nTMS with diffusion tensor imaging fiber tracking (DTI-FT) of the corticospinal tract (CST) has been described; however, its impact on surgery of motor-eloquent lesions has not been addressed.
OBJECTIVE
To analyze the impact of nTMS-based mapping on surgery of motor-eloquent lesions.
METHODS
In this retrospective case-control study, we reviewed the data of patients operated for suspected motor-eloquent lesions between 2012 and 2015. The patients underwent nTMS mapping of M1 and, from 2014, nTMS-based DTI-FT of the CST. The impact on the preoperative risk/benefit analysis, surgical strategy, craniotomy size, extent of resection (EOR), and outcome were compared with a control group.
RESULTS
We included 35 patients who underwent nTMS mapping of M1 (group A), 35 patients who also underwent nTMS-based DTI-FT of the CST (group B), and a control group composed of 35 patients treated without nTMS (group C). The patients in groups A and B received smaller craniotomies (P = .01; P = .001), had less postoperative seizures (P = .02), and a better postoperative motor performance (P = .04) and Karnofsky Performance Status (P = .009) than the controls. Group B exhibited an improved risk/benefit analysis (P = .006), an increased EOR of nTMS-negative lesions in absence of preoperative motor deficits (P = .01), and less motor and Karnofsky Performance Status worsening in case of preoperative motor deficits (P = .02, P = .03) than group A.
CONCLUSION
nTMS-based mapping enables a tailored surgical approach for motor-eloquent lesions. It may improve the risk/benefit analysis, EOR and outcome, particularly when nTMS-based DTI-FT is performed.
Collapse
Affiliation(s)
- Giovanni Raffa
- Department of Neurosurgery, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alfredo Conti
- Department of Neurosurgery, University of Messina, Messina, Italy
| | | | | | - Felice Esposito
- Department of Neurosurgery, University of Messina, Messina, Italy
| | | | | | - Carmela Sindorio
- Department of Neurosurgery, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Antonino Germanò
- Department of Neurosurgery, University of Messina, Messina, Italy
| | | |
Collapse
|
13
|
Abstract
PET/MR imaging benefits neurologic clinical care and research by providing spatially and temporally matched anatomic MR imaging, advanced MR physiologic imaging, and metabolic PET imaging. MR imaging sequences and PET tracers can be modified to target physiology specific to a neurologic disease process, with applications in neurooncology, epilepsy, dementia, cerebrovascular disease, and psychiatric and neurologic research. Simultaneous PET/MR imaging provides efficient acquisition of multiple temporally matched datasets, and opportunities for motion correction and improved anatomic assignment of PET data. Current challenges include optimizing MR imaging-based attenuation correction and necessity for dual expertise in PET and MR imaging.
Collapse
Affiliation(s)
- Michelle M Miller-Thomas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, Campus Box 8131, St Louis, MO 63110, USA.
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, Campus Box 8131, St Louis, MO 63110, USA
| |
Collapse
|