1
|
Radwan AM, Emsell L, Vansteelandt K, Cleeren E, Peeters R, De Vleeschouwer S, Theys T, Dupont P, Sunaert S. Comparative validation of automated presurgical tractography based on constrained spherical deconvolution and diffusion tensor imaging with direct electrical stimulation. Hum Brain Mapp 2024; 45:e26662. [PMID: 38646998 PMCID: PMC11033921 DOI: 10.1002/hbm.26662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/27/2024] [Accepted: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVES Accurate presurgical brain mapping enables preoperative risk assessment and intraoperative guidance. This cross-sectional study investigated whether constrained spherical deconvolution (CSD) methods were more accurate than diffusion tensor imaging (DTI)-based methods for presurgical white matter mapping using intraoperative direct electrical stimulation (DES) as the ground truth. METHODS Five different tractography methods were compared (three DTI-based and two CSD-based) in 22 preoperative neurosurgical patients undergoing surgery with DES mapping. The corticospinal tract (CST, N = 20) and arcuate fasciculus (AF, N = 7) bundles were reconstructed, then minimum distances between tractograms and DES coordinates were compared between tractography methods. Receiver-operating characteristic (ROC) curves were used for both bundles. For the CST, binary agreement, linear modeling, and posthoc testing were used to compare tractography methods while correcting for relative lesion and bundle volumes. RESULTS Distance measures between 154 positive (functional response, pDES) and negative (no response, nDES) coordinates, and 134 tractograms resulted in 860 data points. Higher agreement was found between pDES coordinates and CSD-based compared to DTI-based tractograms. ROC curves showed overall higher sensitivity at shorter distance cutoffs for CSD (8.5 mm) compared to DTI (14.5 mm). CSD-based CST tractograms showed significantly higher agreement with pDES, which was confirmed by linear modeling and posthoc tests (PFWE < .05). CONCLUSIONS CSD-based CST tractograms were more accurate than DTI-based ones when validated using DES-based assessment of motor and sensory function. This demonstrates the potential benefits of structural mapping using CSD in clinical practice.
Collapse
Affiliation(s)
- Ahmed Mohamed Radwan
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
| | - Louise Emsell
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Department of Neurosciences, NeuropsychiatryLeuvenBelgium
- KU Leuven, Department of Geriatric PsychiatryUniversity Psychiatric Center (UPC)LeuvenBelgium
| | - Kristof Vansteelandt
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Department of Neurosciences, NeuropsychiatryLeuvenBelgium
- KU Leuven, Department of Geriatric PsychiatryUniversity Psychiatric Center (UPC)LeuvenBelgium
| | - Evy Cleeren
- UZ Leuven, Department of NeurologyLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
| | | | - Steven De Vleeschouwer
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
- KU Leuven, Department of NeurosciencesResearch Group Experimental Neurosurgery and NeuroanatomyLeuvenBelgium
| | - Tom Theys
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of NeurosurgeryLeuvenBelgium
- KU Leuven, Department of NeurosciencesResearch Group Experimental Neurosurgery and NeuroanatomyLeuvenBelgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- KU Leuven, Laboratory for Cognitive NeurologyDepartment of NeurosciencesLeuvenBelgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and PathologyTranslational MRILeuvenBelgium
- KU Leuven, Leuven Brain Institute (LBI), Department of NeurosciencesLeuvenBelgium
- UZ Leuven, Department of RadiologyLeuvenBelgium
| |
Collapse
|
2
|
Vega-Zelaya L, Pastor J. The Network Systems Underlying Emotions: The Rational Foundation of Deep Brain Stimulation Psychosurgery. Brain Sci 2023; 13:943. [PMID: 37371421 PMCID: PMC10296681 DOI: 10.3390/brainsci13060943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Science and philosophy have tried to understand the origin of emotions for centuries. However, only in the last 150 years have we started to try to understand them in a neuroscientific scope. Emotions include physiological changes involving different systems, such as the endocrine or the musculoskeletal, but they also cause a conscious experience of those changes that are embedded in memory. In addition to the cortico-striato-thalamo-cortical circuit, which is the most important of the basal ganglia, the limbic system and prefrontal circuit are primarily involved in the process of emotion perceptions, thoughts, and memories. The purpose of this review is to describe the anatomy and physiology of the different brain structures involved in circuits that underlie emotions and behaviour, underlying the symptoms of certain psychiatric pathologies. These circuits are targeted during deep brain stimulation (DBS) and knowledge of them is mandatory to understand the clinical-physiological implications for the treatment. We summarize the main outcomes of DBS treatment in several psychiatric illness such as obsessive compulsive disorder, refractory depression, erethism and other conditions, aiming to understand the rationale for selecting these neural systems as targets for DBS.
Collapse
Affiliation(s)
| | - Jesús Pastor
- Clinical Neurophysiology, Instituto de Investigación Biomédica Hospital, Universitario de La Princesa, C/Diego de León 62, 28006 Madrid, Spain;
| |
Collapse
|
3
|
Kähkölä J, Lahtinen M, Keinänen T, Katisko J. Stimulation of the Presupplementary Motor Area Cluster of the Subthalamic Nucleus Predicts More Consistent Clinical Outcomes. Neurosurgery 2022; 92:1058-1065. [PMID: 36700693 DOI: 10.1227/neu.0000000000002292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The development of diffusion tensor imaging and tractography has raised increasing interest in the functional targeting of deep brain stimulation of the subthalamic nucleus (STN) in Parkinson disease. OBJECTIVE To study, using deterministic tractography, the functional subdivisions of the STN and hyperdirect white matter connections located between the STN and the medial frontal cortex, especially the presupplementary motor area (preSMA), SMA, primary motor area (M1), and dorsolateral premotor cortex, and to study retrospectively whether this information correlates with clinical outcome. METHODS Twenty-two patients with Parkinson disease who underwent STN deep brain stimulation were analyzed. Using 3 T MR images, the medial frontal cortex was manually segmented into preSMA, SMA, M1, and dorsolateral premotor cortex, which were then used to determine the functional subdivisions of the lateral border of the STN. The intersectional quantities of the volume of activated tissue (VAT) and the hyperdirect white matter connections were calculated. The results were combined with clinical data including unilateral 12-month postoperative motor outcome and levodopa equivalent daily dose. RESULTS Stimulated clusters of the STN were connected mostly to the cortical SMA and preSMA regions. Patients with primarily preSMA cluster stimulation (presmaVAT% ≥ 50%) had good responses to the treatment with unilateral motor improvement over 40% and levodopa equivalent daily dose reduction over 60%. Larger VAT was not found to correlate with better patient outcomes. CONCLUSION Our study is the first to suggest that stimulating, predominantly, the STN cluster where preSMA hyperdirect pathways are located, could be predictive of more consistent treatment results.
Collapse
Affiliation(s)
- Johannes Kähkölä
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Maija Lahtinen
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Tuija Keinänen
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Jani Katisko
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Neurocenter, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
4
|
García-García S, González-Sánchez JJ, Cepeda S, Mosteiro-Cadaval A, Ferres A, Arrese I, Sarabia R. Validation of Presurgical Simulation of White Matter Damage Using Diffusion Tensor Imaging. World Neurosurg 2022; 167:e846-e857. [PMID: 36049727 DOI: 10.1016/j.wneu.2022.08.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND The understanding of white matter (WM) was revolutionized by the emergence of tractography based on diffusion tensor imaging (DTI). Currently, DTI simulations are implemented in preoperative planning to optimize surgical approaches. The reliability of these simulations has been questioned and investigated seeking for correlation between neurological performance and anomalies in DTI parameters. However, the ability of preoperative WM simulations to predict a surgical injury has not been thoroughly evaluated. Our objective was to assess the reliability of preoperatively simulated WM injuries for conventional neurosurgical procedures. METHODS WM surgical damage was preoperatively simulated by creating a 3-dimensional volume representing the endoscope or the surgical trajectory. This volume was used as an additional region of interest in the fascicle reconstruction to be subtracted from the original fascicle. Simulated, injured fascicles were compared in terms of the number of fibers and volume to those created from postoperative DTI studies. Reliability was assimilated into the correlation between the simulation and the postoperative reconstruction; evaluated using the intraclass correlation coefficient or Lin's Concordance correlation coefficient (CCC), and represented on Bland-Altman plots. RESULTS The preoperative and postoperative DTI studies of 30 patients undergoing various neurosurgical approaches were processed. The correlation between simulated injuries and postoperative studies was high in terms of fibers (Concordance correlation coefficient = Rho.C = 0.989 [95% confidence interval = 0.979-0.995]) and volume (intraclass correlation coefficient = 0.95 [95% CI = 0.89-0.97]). Bland-Altman plots demonstrated that the great majority of cases fell within the mean ± 2 Standard deviations. CONCLUSIONS Presurgical simulation of WM fascicles based on DTI is consistent with postoperative DTI studies. These findings require further validation by neurophysiological and clinical correlation.
Collapse
Affiliation(s)
| | | | - Santiago Cepeda
- Neurosurgery Department, Hospital Universitario Río Hortega, Valladolid, Spain
| | | | - Abel Ferres
- Neurosurgery Department, Hospital Clìnic, Barcelona, Spain
| | - Ignacio Arrese
- Neurosurgery Department, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Rosario Sarabia
- Neurosurgery Department, Hospital Universitario Río Hortega, Valladolid, Spain
| |
Collapse
|
5
|
Kochanski RB, Slavin KV. The future perspectives of psychiatric neurosurgery. PROGRESS IN BRAIN RESEARCH 2022; 270:211-228. [PMID: 35396029 DOI: 10.1016/bs.pbr.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The future of psychiatric neurosurgery can be viewed from two separate perspectives: the immediate future and the distant future. Both show promise, but the treatment strategy for mental diseases and the technology utilized during these separate periods will likely differ dramatically. It can be expected that the initial advancements will be built upon progress of neuroimaging and stereotactic targeting while surgical technology becomes adapted to patient-specific symptomatology and structural/functional imaging parameters. This individualized approach has already begun to show significant promise when applied to deep brain stimulation for treatment-resistant depression and obsessive-compulsive disorder. If effectiveness of these strategies is confirmed by well designed, double-blind, placebo-controlled clinical studies, further technological advances will continue into the distant future, and will likely involve precise neuromodulation at the cellular level, perhaps using wireless technology with or without closed-loop design. This approach, being theoretically less invasive and carrying less risk, may ultimately propel psychiatric neurosurgery to the forefront in the treatment algorithm of mental illness. Despite prominent development of non-invasive therapeutic options, such as stereotactic radiosurgery or transcranial magnetic resonance-guided focused ultrasound, chances are there will still be a need in surgical management of patients with most intractable psychiatric conditions.
Collapse
Affiliation(s)
- Ryan B Kochanski
- Neurosurgery, Methodist Healthcare System, San Antonio, TX, United States
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, United States; Neurology Service, Jesse Brown Veterans Administration Medical Center, Chicago, IL, United States.
| |
Collapse
|
6
|
Can We Put Aside Microelectrode Recordings in Deep Brain Stimulation Surgery? Brain Sci 2020; 10:brainsci10090571. [PMID: 32825301 PMCID: PMC7564183 DOI: 10.3390/brainsci10090571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/01/2022] Open
Abstract
Microelectrode recording (MER) in deep brain stimulation (DBS) surgery has long been a recognized and efficient method for defining a target. However, in recent decades, imaging techniques, including DBS surgery, have experienced significant growth. There is convincing evidence that imaging-guided surgery can be helpful for targeting anatomically well-defined nuclei (e.g., subthalamic nucleus (STN) or internal globus pallidus (GPi)), and reductions in secondary effects have also been claimed. It has even been proposed that MER is not necessary to perform DBS, identifying in this way asleep surgery and imaging-guided DBS. However, there are several reasons why this is not the case. Neurophysiological techniques can efficiently and safely help to identify neural structures even in sleeping patients (e.g., different types of evoked potentials or motor stimulation). Deep nuclei are not homogeneous structures (even STN), so it is important to identify different places inside the putative target. Evidently, this is more relevant in the case of thalamic or hypothalamic surgery. Moreover, it is important to remember that the clinical and scientific knowledge acquired during DBS surgery can be important to gain further insight into pathologies and develop more effective treatments. Finally, the cost/efficiency of medical technology should be considered.
Collapse
|
7
|
Coenen VA, Sajonz BE, Reisert M, Urbach H, Reinacher PC. There's more to the picture than meets the eye : Reply to: Letter to the editor of Acta Neurochirurgica: Blind men and the elephant-comment on "The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series". Acta Neurochir (Wien) 2020; 162:1869-1870. [PMID: 32337611 PMCID: PMC7360644 DOI: 10.1007/s00701-020-04348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany.
- Center for Deep Brain Stimulation, Freiburg University Medical Center, Freiburg i.Br., Germany.
| | - Bastian E Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| |
Collapse
|
8
|
Coenen VA, Sajonz B, Prokop T, Reisert M, Piroth T, Urbach H, Jenkner C, Reinacher PC. The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series. Acta Neurochir (Wien) 2020; 162:1053-1066. [PMID: 31997069 PMCID: PMC7156360 DOI: 10.1007/s00701-020-04248-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/23/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Deep brain stimulation alleviates tremor of various origins. The dentato-rubro-thalamic tract (DRT) has been suspected as a common tremor-reducing structure. Statistical evidence has not been obtained. We here report the results of an uncontrolled case series of patients with refractory tremor who underwent deep brain stimulation under tractographic assistance. METHODS A total of 36 patients were enrolled (essential tremor (17), Parkinson's tremor (8), multiple sclerosis (7), dystonic head tremor (3), tardive dystonia (1)) and received 62 DBS electrodes (26 bilateral; 10 unilateral). Preoperatively, diffusion tensor magnetic resonance imaging sequences were acquired together with high-resolution anatomical T1W and T2W sequences. The DRT was individually tracked and used as a direct thalamic or subthalamic target. Intraoperative tremor reduction was graded on a 4-point scale (0 = no tremor reduction to 3 = full tremor control) and recorded together with the current amplitude, respectively. Stimulation point coordinates were recorded and compared to DRT. The relation of the current amplitude needed to reduce tremor was expressed as TiCR (tremor improvement per current ratio). RESULTS Stimulation points of 241 were available for analysis. A total of 68 trajectories were tested (62 dB leads, 1.1 trajectories tested per implanted lead). Tremor improvement was significantly decreasing (p < 0.01) if the distance to both the border and the center of the DRT was increasing. On the initial trajectory, 56 leads (90.3%) were finally placed. Long-term outcomes were not part of this analysis. DISCUSSION Tremor of various origins was acutely alleviated at different points along the DRT fiber tract (above and below the MCP plane) despite different tremor diseases. DRT is potentially a common tremor-reducing structure. Individual targeting helps to reduce brain penetrating tracts. TiCR characterizes stimulation efficacy and might help to identify an optimal stimulation point.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany.
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany.
- Brain Links/Brain Tools Cluster of Excellence, Freiburg University, Freiburg (i.Br.), Germany.
- NeuroModul Basics (Center for Basics in NeuroModulation), Freiburg University, Freiburg (i.Br.), Germany.
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Tobias Piroth
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Brain Links/Brain Tools Cluster of Excellence, Freiburg University, Freiburg (i.Br.), Germany
- Department of Neurology and Neurophysiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Horst Urbach
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Carolin Jenkner
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Clinical Trials Unit, Freiburg University Medical Center, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| |
Collapse
|
9
|
Vanderweyen DC, Theaud G, Sidhu J, Rheault F, Sarubbo S, Descoteaux M, Fortin D. The role of diffusion tractography in refining glial tumor resection. Brain Struct Funct 2020; 225:1413-1436. [PMID: 32180019 DOI: 10.1007/s00429-020-02056-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
Primary brain tumors are notoriously hard to resect surgically. Due to their infiltrative nature, finding the optimal resection boundary without damaging healthy tissue can be challenging. One potential tool to help make this decision is diffusion-weighted magnetic resonance imaging (dMRI) tractography. dMRI exploits the diffusion of water molecule along axons to generate a 3D modelization of the white matter bundles in the brain. This feature is particularly useful to visualize how a tumor affects its surrounding white matter and plan a surgical path. This paper reviews the different ways in which dMRI can be used to improve brain tumor resection, its benefits and also its limitations. We expose surgical tools that can be paired with dMRI to improve its impact on surgical outcome, such as loading the 3D tractography in the neuronavigation system and direct electrical stimulation to validate the position of the white matter bundles of interest. We also review articles validating dMRI findings using other anatomical investigation techniques, such as postmortem dissections, manganese-enhanced MRI, electrophysiological stimulations, and phantom studies with known ground truth. We will be discussing the areas of the brain where dMRI performs well and where the future challenges are. We will conclude this review with suggestions and take home messages for neurosurgeons, tractographers, and vendors for advancing the field and on how to benefit from tractography's use in clinical practice.
Collapse
Affiliation(s)
- Davy Charles Vanderweyen
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada.
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Jasmeen Sidhu
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Silvio Sarubbo
- Division of Neurosurgery, Emergency Area, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - David Fortin
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada
| |
Collapse
|
10
|
Hori H, Yamaguchi T, Konishi Y, Taira T, Muragaki Y. Correlation between fractional anisotropy changes in the targeted ventral intermediate nucleus and clinical outcome after transcranial MR-guided focused ultrasound thalamotomy for essential tremor: results of a pilot study. J Neurosurg 2020; 132:568-573. [PMID: 30771772 DOI: 10.3171/2018.10.jns18993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/26/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study evaluated changes of fractional anisotropy (FA) in the ventral intermediate nucleus (VIM) of the thalamus after transcranial MR-guided focused ultrasound (TcMRgFUS) thalamotomy and their associations with clinical outcome. METHODS Clinical and radiological data of 12 patients with medically refractory essential tremor (mean age 76.5 years) who underwent TcMRgFUS thalamotomy with VIM targeting were analyzed retrospectively. The Clinical Rating Scale for Tremor (CRST) score was calculated before and at 1 year after treatment. Measurements of the relative FA (rFA) values, defined as ratio of the FA value in the targeted VIM to the FA value in the contralateral VIM, were performed before thalamotomy, and 1 day and 1 year thereafter. RESULTS TcMRgFUS thalamotomy was well tolerated and no long-term complications were noted. At 1-year follow-up, 8 patients demonstrated relief of tremor (improvement group), whereas in 4 others persistent tremor was noted (recurrence group). In the entire cohort, mean rFA values in the targeted VIM before treatment, and at 1 day and 1 year after treatment, were 1.12 ± 0.15, 0.44 ± 0.13, and 0.82 ± 0.22, respectively (p < 0.001). rFA values were consistently higher in the recurrence group compared with the improvement group, and the difference reached statistical significance at 1 day (p < 0.05) and 1 year (p < 0.01) after treatment. There was a statistically significant (p < 0.01) positive correlation between rFA values in the targeted VIM at 1 day after thalamotomy and CRST score at 1 year after treatment. Receiver operating characteristic curve analysis revealed that the optimal cutoff value of rFA at 1 day after thalamotomy for prediction of symptomatic improvement at 1-year follow-up is 0.54. CONCLUSIONS TcMRgFUS thalamotomy results in significant decrease of rFA in the targeted VIM, at both 1 day and 1 year after treatment. Relative FA values at 1 day after treatment showed significant correlation with CRST score at 1-year follow-up. Therefore, FA may be considered a possible imaging biomarker for early prediction of clinical outcome after TcMRgFUS thalamotomy for essential tremor.
Collapse
Affiliation(s)
- Hiroki Hori
- 1Faculty of Advanced Techno-Surgery and
- 3Department of Radiology and
| | - Toshio Yamaguchi
- 4Research Institute for Diagnostic Radiology, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | | | - Takaomi Taira
- 2Department of Neurosurgery, Tokyo Women's Medical University, Tokyo; and
| | - Yoshihiro Muragaki
- 1Faculty of Advanced Techno-Surgery and
- 2Department of Neurosurgery, Tokyo Women's Medical University, Tokyo; and
| |
Collapse
|
11
|
Sammartino F, Rege R, Krishna V. Reliability of Intraoperative Testing During Deep Brain Stimulation Surgery. Neuromodulation 2019; 23:525-529. [PMID: 31823438 DOI: 10.1111/ner.13081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/29/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an effective treatment for medically refractory Parkinson's disease (PD). During DBS surgery, intraoperative testing is performed to confirm optimal lead placement by determining the stimulation thresholds for symptom improvement and side effects. However, the reliability of intraoperative testing in predicting distant postoperative thresholds is unknown. In this study, we hypothesized that intraoperative testing reliably estimates postoperative thresholds for both symptom improvement and side effects. METHODS We retrospectively analyzed a prospective database with intraoperative and postoperative thresholds for symptom improvement and side effects from a cohort of 66 PD patients who underwent STN DBS. We recorded the stimulation locations relative to the mid-commissural point. Within-patient stimulation pairs were generated by clustering the intraoperative stimulation locations closest to the DBS contacts. We computed the distance between stimulation locations and atlas-based pyramidal tract (PT) and medial lemniscus (ML) masks. A leave-one-out cross-validation analysis was performed to determine the reliability of intraoperative testing in predicting postoperative thresholds while controlling for the distance from the relevant tracks. RESULTS Intraoperative testing reliably predicted (area under ROC >0.8) postoperative thresholds for tremor and rigidity improvements, as well as stimulation-induced motor contractions and paresthesias. The reliability was poor for improvement in bradykinesia. CONCLUSION Intraoperative testing reliably predicts postoperative thresholds. These results are relevant during the informed consent process and patient counseling for DBS surgery. These will also guide the development of future methods for intraoperative feedback, especially during asleep DBS.
Collapse
Affiliation(s)
| | - Rahul Rege
- Department of Neurosurgery, The Ohio State University, Columbus, OH
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University, Columbus, OH
| |
Collapse
|
12
|
Kochanski RB, Bus S, Brahimaj B, Borghei A, Kraimer KL, Keppetipola KM, Beehler B, Pal G, Metman LV, Sani S. The Impact of Microelectrode Recording on Lead Location in Deep Brain Stimulation for the Treatment of Movement Disorders. World Neurosurg 2019; 132:e487-e495. [DOI: 10.1016/j.wneu.2019.08.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
|
13
|
Comparison of posterior subthalamic area deep brain stimulation for tremor using conventional landmarks versus directly targeting the dentatorubrothalamic tract with tractography. Clin Neurol Neurosurg 2019; 185:105466. [PMID: 31466022 DOI: 10.1016/j.clineuro.2019.105466] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To compare posterior subthalamic area deep brain stimulation (PSA-DBS) performed in the conventional manner against diffusion tensor imaging and tractography (DTIT)-guided lead implantation into the dentatorubrothalamic tract (DRTT). PATIENTS AND METHODS Double-blind, randomised study involving 34 patients with either tremor-dominant Parkinson's disease or essential tremor. Patients were randomised to Group A (DBS leads inserted using conventional landmarks) or Group B (leads guided into the DRTT using DTIT). Tremor (Fahn-Tolosa-Marin) and quality-of-life (PDQ-39) scores were evaluated 0-, 6-, 12-, 36- and 60-months after surgery. RESULTS PSA-DBS resulted in marked tremor reduction in both groups. However, Group B patients had significantly better arm tremor control (especially control of intention tremor), increased mobility and activities of daily living, reduced social stigma and need for social support as well as lower stimulation amplitudes and pulse widths compared to Group A patients. The better outcomes were sustained for up to 60-months from surgery. The active contacts of Group B patients were consistently closer to the centre of the DRTT than in Group A. Speech problems were more common in Group A patients. CONCLUSION DTIT-guided lead placement results in better and more stable tremor control and fewer adverse effects compared to lead placement in the conventional manner. This is because DTIT-guidance allows closer and more consistent placement of leads to the centre of the DRTT than conventional methods.
Collapse
|
14
|
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder and affects more than 1 million individuals in the United States. Deep brain stimulation (DBS) is one form of treatment of PD. DBS treatment is still evolving due to technological innovations that shape how this therapy is used.
Collapse
Affiliation(s)
- Michael Kogan
- Department of Neurosurgery, University at Buffalo, 100 High Street Section B, 4th Floor, Buffalo, NY 14203, USA
| | - Matthew McGuire
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 875 Ellicott Street, 6071 CTRC, Buffalo, NY 14203, USA
| | - Jonathan Riley
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Functional Neurosurgery Kaleida Health System, 5959 Big Tree Road, Orchard Park, NY 14207, USA.
| |
Collapse
|
15
|
Predicting Current Thresholds for Pyramidal Tract Activation Using Volume of Activated Tissue Modeling in Patients Undergoing Deep Brain Stimulation Surgery. World Neurosurg 2018; 117:e692-e697. [DOI: 10.1016/j.wneu.2018.06.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 11/22/2022]
|
16
|
Awake versus Asleep Deep Brain Stimulation Surgery: Technical Considerations and Critical Review of the Literature. Brain Sci 2018; 8:brainsci8010017. [PMID: 29351243 PMCID: PMC5789348 DOI: 10.3390/brainsci8010017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 11/22/2022] Open
Abstract
Advancements in neuroimaging have led to a trend toward direct, image-based targeting under general anesthesia without the use of microelectrode recording (MER) or intraoperative test stimulation, also referred to as “asleep” deep brain stimulation (DBS) surgery. Asleep DBS, utilizing imaging in the form of intraoperative computed tomography (iCT) or magnetic resonance imaging (iMRI), has demonstrated reliable targeting accuracy of DBS leads implanted within the globus pallidus and subthalamic nucleus while also improving clinical outcomes in patients with Parkinson’s disease. In lieu, of randomized control trials, retrospective comparisons between asleep and awake DBS with MER have shown similar short-term efficacy with the potential for decreased complications in asleep cohorts. In lieu of long-term outcome data, awake DBS using MER must demonstrate more durable outcomes with fewer stimulation-induced side effects and lead revisions in order for its use to remain justifiable; although patient-specific factors may also be used to guide the decision regarding which technique may be most appropriate and tolerable to the patient.
Collapse
|
17
|
Coenen VA, Varkuti B, Parpaley Y, Skodda S, Prokop T, Urbach H, Li M, Reinacher PC. Postoperative neuroimaging analysis of DRT deep brain stimulation revision surgery for complicated essential tremor. Acta Neurochir (Wien) 2017; 159:779-787. [PMID: 28283867 PMCID: PMC5385205 DOI: 10.1007/s00701-017-3134-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/20/2017] [Indexed: 11/29/2022]
Abstract
Background We report a patient who received conventional bilateral deep brain stimulation of the ventral intermediate nucleus of thalamus (Vim) for the treatment of medication refractory essential tremor (ET). After initial beneficial effects, therapeutic efficacy was lost due to a loss of control of his proximal trunkal and extremity tremor. The patient received successful diffusion tensor magnetic resonance imaging fiber tractographic (DTI FT)-assisted DBS revision surgery targeting the dentato-rubro-thalamic tract (DRT) in the subthalamic region (STR). Objective To report the concept of DTI FT-assisted DRT DBS revision surgery for ET and to show sophisticated postoperative neuroimaging analysis explaining improved symptom control. Methods Analysis was based on preoperative DTI sequences and postoperative helical computed tomography (hCT). Leads, stimulation fields, and fibers were reconstructed using commercial software systems (Elements, Brainlab AG, Feldkirchen, Germany; GUIDE XT, Boston Scientific Corp., Boston, MA, USA). Results The patient showed immediate and sustained tremor improvement after DTI FT-assisted revision surgery. Analysis of the two implantations (electrode positions in both instances) revealed a lateral and posterior shift in the pattern of modulation of the cortical fiber pathway projection after revision surgery as compared to initial implantation, explaining a more efficacious stimulation. Conclusions Our work underpins a possible superiority of direct targeting approaches using advanced neuroimaging technologies to perform personalized DBS surgery. The evaluation of DBS electrode positions with the herein-described neuroimaging simulation technologies will likely improve targeting and revision strategies. Direct targeting with DTI FT-assisted approaches in a variety of indications is the focus of our ongoing research.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty, Freiburg University Medical Center, Freiburg (i.Br.), Germany.
| | | | - Yaroslav Parpaley
- Department of Neurosurgery, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany
| | - Sabine Skodda
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Horst Urbach
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Meng Li
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| |
Collapse
|
18
|
Park SC, Lee CS, Kim SM, Choi EJ, Lee JK. Comparison of the Stereotactic Accuracies of Function-Guided Deep Brain Stimulation, Calculated Using Multitrack Target Locations Geometrically Inferred from Three-Dimensional Trajectory Rotations, and of Magnetic Resonance Imaging-Guided Deep Brain Stimulation and Outcomes. World Neurosurg 2017; 98:734-749.e7. [DOI: 10.1016/j.wneu.2016.11.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022]
|
19
|
Baumgarten C, Zhao Y, Sauleau P, Malrain C, Jannin P, Haegelen C. Improvement of Pyramidal Tract Side Effect Prediction Using a Data-Driven Method in Subthalamic Stimulation. IEEE Trans Biomed Eng 2016; 64:2134-2141. [PMID: 27959795 DOI: 10.1109/tbme.2016.2638018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE subthalamic nucleus deep brain stimulation (STN DBS) is limited by the occurrence of a pyramidal tract side effect (PTSE) induced by electrical activation of the pyramidal tract. Predictive models are needed to assist the surgeon during the electrode trajectory preplanning. The objective of the study was to compare two methods of PTSE prediction based on clinical assessment of PTSE induced by STN DBS in patients with Parkinson's disease. METHODS two clinicians assessed PTSE postoperatively in 20 patients implanted for at least three months in the STN. The resulting dataset of electroclinical tests was used to evaluate two methods of PTSE prediction. The first method was based on the volume of tissue activated (VTA) modeling and the second one was a data-driven-based method named Pyramidal tract side effect Model based on Artificial Neural network (PyMAN) developed in our laboratory. This method was based on the nonlinear correlation between the PTSE current threshold and the 3-D electrode coordinates. PTSE prediction from both methods was compared using Mann-Whitney U test. RESULTS 1696 electroclinical tests were used to design and compare the two methods. Sensitivity, specificity, positive- and negative-predictive values were significantly higher with the PyMAN method than with the VTA-based method (P < 0.05). CONCLUSION the PyMAN method was more effective than the VTA-based method to predict PTSE. SIGNIFICANCE this data-driven tool could help the neurosurgeon in predicting adverse side effects induced by DBS during the electrode trajectory preplanning.
Collapse
|
20
|
Jakab A, Werner B, Piccirelli M, Kovács K, Martin E, Thornton JS, Yousry T, Szekely G, O'Gorman Tuura R. Feasibility of Diffusion Tractography for the Reconstruction of Intra-Thalamic and Cerebello-Thalamic Targets for Functional Neurosurgery: A Multi-Vendor Pilot Study in Four Subjects. Front Neuroanat 2016; 10:76. [PMID: 27462207 PMCID: PMC4940380 DOI: 10.3389/fnana.2016.00076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/20/2016] [Indexed: 01/28/2023] Open
Abstract
Functional stereotactic neurosurgery by means of deep brain stimulation or ablation provides an effective treatment for movement disorders, but the outcome of surgical interventions depends on the accuracy by which the target structures are reached. The purpose of this pilot study was to evaluate the feasibility of diffusion tensor imaging (DTI) based probabilistic tractography of deep brain structures that are commonly used for pre- and perioperative targeting for functional neurosurgery. Three targets were reconstructed based on their significance as intervention sites or as a no-go area to avoid adverse side effects: the connections propagating from the thalamus to (1) primary and supplementary motor areas, (2) to somatosensory areas and the cerebello-thalamic tract (CTT). We evaluated the overlap of the reconstructed connectivity based targets with corresponding atlas based data, and tested the inter-subject and inter-scanner variability by acquiring repeated DTI from four volunteers, and on three MRI scanners with similar sequence parameters. Compared to a 3D histological atlas of the human thalamus, moderate overlaps of 35-50% were measured between connectivity- and atlas based volumes, while the minimal distance between the centerpoints of atlas and connectivity targets was 2.5 mm. The variability caused by the MRI scanner was similar to the inter-subject variability, except for connections with the postcentral gyrus where it was higher. While CTT resolved the anatomically correct trajectory of the tract individually, high volumetric variability was found across subjects and between scanners. DTI can be applied in the clinical, preoperative setting to reconstruct the CTT and to localize subdivisions within the lateral thalamus. In our pilot study, such subdivisions moderately matched the borders of the ventrolateral-posteroventral (VLpv) nucleus and the ventral-posterolateral (VPL) nucleus. Limitations of the currently used standard DTI protocols were exacerbated by large scanner-to-scanner variability of the connectivity-based targets.
Collapse
Affiliation(s)
- András Jakab
- Center for Magnetic Resonance Imaging Research, University Children's HospitalZürich, Switzerland; Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of ViennaVienna, Austria
| | - Beat Werner
- Center for Magnetic Resonance Imaging Research, University Children's Hospital Zürich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, University Hospital Zürich Zürich, Switzerland
| | - Kázmér Kovács
- Department of Biomedical Imaging and Laboratory Science, University of Debrecen Debrecen, Hungary
| | - Ernst Martin
- Center for Magnetic Resonance Imaging Research, University Children's Hospital Zürich, Switzerland
| | | | - Tarek Yousry
- University College London Institute of Neurology London, UK
| | - Gabor Szekely
- Computer Vision Laboratory, ETH Zürich Zürich, Switzerland
| | - Ruth O'Gorman Tuura
- Center for Magnetic Resonance Imaging Research, University Children's Hospital Zürich, Switzerland
| |
Collapse
|