1
|
Khalil A, Asseyer S, Rust R, Schmitz‐Hübsch T, Fiebach JB, Paul F, Chien C. Non-invasive Assessment of Cerebral Hemodynamics Using Resting-State Functional Magnetic Resonance Imaging in Multiple Sclerosis and Age-Related White Matter Lesions. Hum Brain Mapp 2024; 45:e70076. [PMID: 39535849 PMCID: PMC11558553 DOI: 10.1002/hbm.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Perfusion changes in white matter (WM) lesions and normal-appearing brain regions play an important pathophysiological role in multiple sclerosis (MS). However, most perfusion imaging methods require exogenous contrast agents, the repeated use of which is discouraged. Using resting-state functional MRI (rs-fMRI), we aimed to investigate differences in perfusion between white matter lesions and normal-appearing brain regions in MS and healthy participants. A total of 41 MS patients and 41 age- and sex-matched healthy participants received rs-fMRI, from which measures of cerebral hemodynamics and oxygenation were extracted and compared across brain regions and study groups using within- and between-group nonparametric tests, linear mixed models, and robust multiple linear regression. We found longer blood arrival times and lower blood volumes in lesions than in normal-appearing WM. Higher blood volumes were found in MS patients' deep WM lesions compared to healthy participants, and blood arrival time was more delayed in MS patients' deep WM lesions than in healthy participants. Delayed blood arrival time in the cortical grey matter was associated with greater cognitive impairment in MS patients. Perfusion imaging using rs-fMRI is useful for WM lesion characterization. rs-fMRI-based blood arrival times and volumes are associated with cognitive function.
Collapse
Affiliation(s)
- Ahmed Khalil
- Center for Stroke Research Berlin, Charité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Susanna Asseyer
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Rebekka Rust
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Institute of Medical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Tanja Schmitz‐Hübsch
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Jochen B. Fiebach
- Center for Stroke Research Berlin, Charité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Claudia Chien
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of Psychiatry and PsychotherapyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
2
|
Amemiya S, Takao H, Abe O. Resting-State fMRI: Emerging Concepts for Future Clinical Application. J Magn Reson Imaging 2024; 59:1135-1148. [PMID: 37424140 DOI: 10.1002/jmri.28894] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (rsfMRI) has been developed as a method of investigating spontaneous neural activity. Based on its low-frequency signal synchronization, rsfMRI has made it possible to identify multiple macroscopic structures termed resting-state networks (RSNs) on a single scan of less than 10 minutes. It is easy to implement even in clinical practice, in which assigning tasks to patients can be challenging. These advantages have accelerated the adoption and growth of rsfMRI. Recently, studies on the global rsfMRI signal have attracted increasing attention. Because it primarily arises from physiological events, less attention has hitherto been paid to the global signal than to the local network (i.e., RSN) component. However, the global signal is not a mere nuisance or a subsidiary component. On the contrary, it is quantitatively the dominant component that accounts for most of the variance in the rsfMRI signal throughout the brain and provides rich information on local hemodynamics that can serve as an individual-level diagnostic biomarker. Moreover, spatiotemporal analyses of the global signal have revealed that it is closely and fundamentally associated with the organization of RSNs, thus challenging the basic assumptions made in conventional rsfMRI analyses and views on RSNs. This review introduces new concepts emerging from rsfMRI spatiotemporal analyses focusing on the global signal and discusses how they may contribute to future clinical medicine. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Dogra S, Wang X, Gee JM, Gupta A, Veraart J, Ishida K, Qiu D, Dehkharghani S. Diaschisis Profiles in the Cerebellar Response to Hemodynamic Stimuli: Insights From Dynamic Measurement of Cerebrovascular Reactivity to Identify Occult and Transient Maxima. J Magn Reson Imaging 2023; 58:1462-1469. [PMID: 36995159 DOI: 10.1002/jmri.28648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Crossed cerebellar diaschisis (CCD) refers to depressions in perfusion and metabolism within the cerebellar hemisphere contralateral to supratentorial disease. Prior investigation into CCD in cerebrovascular reactivity (CVR) has been limited to terminal CVR estimations (CVRend ). We recently have demonstrated the presence of unsustained CVR maxima (CVRmax ) using dynamic CVR analysis, offering a fully dynamic characterization of CVR to hemodynamic stimuli. PURPOSE To investigate CCD in CVRmax from dynamic blood oxygen level-dependent (BOLD) MRI, by comparison with conventional CVRend estimation. STUDY TYPE Retrospective. POPULATION A total of 23 patients (median age: 51 years, 10 females) with unilateral chronic steno-occlusive cerebrovascular disease, without prior knowledge of CCD status. FIELD STRENGTH/SEQUENCE A 3-T, T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) and acetazolamide-augmented BOLD imaging performed with a gradient-echo echo-planar imaging (EPI) sequence. ASSESSMENT A custom denoising pipeline was used to generate BOLD-CVR time signals. CVRend was established using the last minute of the BOLD response relative to the first-minute baseline. Following classification of healthy versus diseased cerebral hemispheres, CVRmax and CVRend were calculated for bilateral cerebral and cerebellar hemispheres. Three independent observers evaluated all data for the presence of CCD. STATISTICAL TESTS Pearson correlations for comparing CVR across hemispheres, two-proportion Z-tests for comparing CCD prevalence, and Wilcoxon signed-rank tests for comparing median CVR. The level of statistical significance was set at P ≤ 0.05. RESULTS CCD-related changes were observed on both CVRend and CVRmax maps, with all CCD+ cases identifiable by inspection of either map. Diseased cerebral and contralateral cerebellar hemispheric CVR correlations in CCD+ patients were stronger when using CVRend (r = 0.728) as compared to CVRmax (r = 0.676). CVR correlations between healthy cerebral hemispheres and contralateral cerebellar hemispheres were stronger for CVRmax (r = 0.739) than for CVRend (r = 0.705). DATA CONCLUSION CCD-related alterations could be observed in CVR examinations. Conventional CVRend may underestimate CVR and could exaggerate CCD. EVIDENCE LEVEL 4. TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
- Siddhant Dogra
- Department of Radiology, New York University Langone Health, New York, New York, USA
| | - Xiuyuan Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - James Michael Gee
- Department of Radiology, New York University Langone Health, New York, New York, USA
| | - Alejandro Gupta
- Department of Radiology, New York University Langone Health, New York, New York, USA
| | - Jelle Veraart
- Department of Radiology, New York University Langone Health, New York, New York, USA
| | - Koto Ishida
- Department of Neurology, New York University Langone Health, New York, New York, USA
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Seena Dehkharghani
- Department of Radiology, New York University Langone Health, New York, New York, USA
- Department of Neurology, New York University Langone Health, New York, New York, USA
| |
Collapse
|
4
|
Schneider SC, Kaczmarz S, Göttler J, Kufer J, Zott B, Priller J, Kallmayer M, Zimmer C, Sorg C, Preibisch C. Stronger influence of systemic than local hemodynamic-vascular factors on resting-state BOLD functional connectivity. Neuroimage 2023; 281:120380. [PMID: 37741595 DOI: 10.1016/j.neuroimage.2023.120380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
Correlated fluctuations in the blood oxygenation level dependent (BOLD) signal of resting-state functional MRI (i.e., BOLD-functional connectivity, BOLD-FC) reflect a spectrum of neuronal and non-neuronal processes. In particular, there are multiple hemodynamic-vascular influences on BOLD-FC on both systemic (e.g., perfusion delay) and local levels (e.g., neurovascular coupling). While the influence of individual factors has been studied extensively, combined and comparative studies of systemic and local hemodynamic-vascular factors on BOLD-FC are scarce, notably in humans. We employed a multi-modal MRI approach to investigate and compare distinct hemodynamic-vascular processes and their impact on homotopic BOLD-FC in healthy controls and patients with unilateral asymptomatic internal carotid artery stenosis (ICAS). Asymptomatic ICAS is a cerebrovascular disorder, in which neuronal functioning is largely preserved but hemodynamic-vascular processes are impaired, mostly on the side of stenosis. Investigated indicators for local hemodynamic-vascular processes comprise capillary transit time heterogeneity (CTH) and cerebral blood volume (CBV) from dynamic susceptibility contrast (DSC) MRI, and cerebral blood flow (CBF) from pseudo-continuous arterial spin labeling (pCASL). Indicators for systemic processes are time-to-peak (TTP) from DSC MRI and BOLD lags from functional MRI. For each of these parameters, their influence on BOLD-FC was estimated by a comprehensive linear mixed model. Equally across groups, we found that individual mean BOLD-FC, local (CTH, CBV, and CBF) and systemic (TTP and BOLD lag) hemodynamic-vascular factors together explain 40.7% of BOLD-FC variance, with 20% of BOLD-FC variance explained by hemodynamic-vascular factors, with an about two-times larger contribution of systemic versus local factors. We conclude that regional differences in blood supply, i.e., systemic perfusion delays, exert a stronger influence on BOLD-FC than impairments in local neurovascular coupling.
Collapse
Affiliation(s)
- Sebastian C Schneider
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany.
| | - Stephan Kaczmarz
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Philips GmbH Market DACH, Hamburg, Germany
| | - Jens Göttler
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Jan Kufer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Benedikt Zott
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Josef Priller
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany
| | - Michael Kallmayer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for vascular surgery, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Claus Zimmer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Christian Sorg
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Neurology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| |
Collapse
|
5
|
Gee JM, Wang X, Dogra S, Veraart J, Ishida K, Dehkharghani S. White Matter Cerebrovascular Reactivity: Effects of Microangiopathy and Proximal Occlusions on the Dynamic BOLD Response. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.29.23290700. [PMID: 37398412 PMCID: PMC10312885 DOI: 10.1101/2023.05.29.23290700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Introduction Cerebral microangiopathy often manifests as white matter hyperintensities (WMH) on T2-weighted MR images and is associated with elevated stroke risk. Large vessel steno-occlusive disease (SOD) is also independently associated with stroke risk, however, the interaction of microangiopathy and SOD is not well understood. Cerebrovascular reactivity (CVR) describes the capacity of cerebral circulation to adapt to changes in perfusion pressure and neurovascular demand, and its impairment portends future infarctions. CVR can be measured with blood oxygen level dependent (BOLD) imaging following acetazolamide stimulus (ACZ-BOLD). We studied CVR differences between WMH and normal-appearing white matter (NAWM) in patients with chronic SOD, hypothesizing additive influences upon CVR measured by novel, fully dynamic CVR maxima ( CVR max ). Methods A cross sectional study was conducted to measure per-voxel, per-TR maximal CVR ( CVR max ) using a custom computational pipeline in 23 subjects with angiographically-proven unilateral SOD. WMH and NAWM masks were applied to CVR max maps. White matter was subclassified with respect to the SOD-affected hemisphere, including: i. contralateral NAWM; ii. contralateral WMH iii. ipsilateral NAWM; iv. ipsilateral WMH. CVR max was compared between these groups with a Kruskal-Wallis test followed by a Dunn-Sidak post-hoc test for multiple comparisons. Results 19 subjects (age 50±12 years, 53% female) undergoing 25 examinations met criteria. WMH volume was asymmetric in 16/19 subjects with 13/16 exhibiting higher volumes ipsilateral to SOD. Pairwise comparisons of CVR max between groups was significant with ipsilateral WMH CVR max lower than contralateral NAWM (p=0.015) and contralateral WMH (p=0.003) when comparing in-subject medians and lower than all groups when comparing pooled voxelwise values across all subjects (p<0.0001). No significant relationship between WMH lesion size and CVR max was detected. Conclusion Our results suggest additive effects of microvascular and macrovascular disease upon white matter CVR, but with greater overall effects relating to macrovascular SOD than to apparent microangiopathy. Dynamic ACZ-BOLD presents a promising path towards a quantitative stroke risk imaging biomarker. BACKGROUND Cerebral white matter (WM) microangiopathy manifests as sporadic or sometimes confluent high intensity lesions in MR imaging with T2-weighting, and bears known associations with stroke, cognitive disability, depression and other neurological disorders 1-5 . Deep white matter is particularly susceptible to ischemic injury owing to the deprivation of collateral flow between penetrating arterial territories, and hence deep white matter hyperintensities (WMH) may portend future infarctions 6-8 . The pathophysiology of WMH is variable but commonly includes a cascade of microvascular lipohyalinosis and atherosclerosis together with impaired vascular endothelial and neurogliovascular integrity, leading to blood brain barrier dysfunction, interstitial fluid accumulation, and eventually tissue damage 9-14 . Independent of the microcirculation, cervical and intracranial large vessel steno-occlusive disease (SOD) often results from atheromatous disease and is associated with increased risk of stroke owing to thromboembolic phenomena, hypoperfusion, or combinations thereof 15-17 . White matter disease is more common in the affected hemisphere of patients with asymmetric or unilateral SOD, producing both macroscopic WMH detectable by routine structural MRI, as well as microstructural changes and altered structural connectivity detected by advanced diffusion microstructural imaging 18, 19 . An improved understanding of the interaction of microvascular disease (i.e., WMH) and macrovascular steno-occlusion could better inform stroke risk stratification and guide treatment strategies when coexistent. Cerebrovascular reactivity (CVR) is an autoregulatory adaptation characterized by the capacity of the cerebral circulation to respond to physiological or pharmacological vasodilatory stimuli 20-22 . CVR may be heterogeneous and varies across tissue type and pathological states 1, 16 . Alterations in CVR are associated with elevated stroke risk in SOD patients, although white matter CVR, and in particular the CVR profiles of WMH, are only sparsely studied and not fully understood 1, 23-26 . We have previously employed blood oxygen level dependent (BOLD) imaging following a hemodynamic stimulus with acetazolamide (ACZ) in order to measure CVR (i.e. ACZ-BOLD) 21, 27, 28 . Despite the emergence of ACZ-BOLD as a technique for clinical and experimental use, poor signal-to-noise characteristics of the BOLD effect have generally limited its interpretation to coarse, time-averaged assessment of the terminal ACZ response at arbitrarily prescribed delays following ACZ administration (e.g. 10-20 minutes) 29 . More recently, we have introduced a dedicated computational pipeline to overcome historically intractable signal-to-noise ratio (SNR) limitations of BOLD, enabling fully dynamic characterization of the cerebrovascular response, including identification of previously unreported, unsustained or transient CVR maxima ( CVR max ) following hemodynamic provocation 27, 30 . In this study, we compared such dynamic interrogation of true CVR maxima between WMH and normal appearing white matter (NAWM) among patients with chronic, unilateral SOD in order to quantify their interaction and to assess the hypothesized additive effects of angiographically-evident macrovascular stenoses when intersecting microangiopathic WMH.
Collapse
|
6
|
Dogra S, Wang X, Gupta A, Veraart J, Ishida K, Qiu D, Dehkharghani S. Acetazolamide-augmented BOLD MRI to Assess Whole-Brain Cerebrovascular Reactivity in Chronic Steno-occlusive Disease Using Principal Component Analysis. Radiology 2023; 307:e221473. [PMID: 36916889 PMCID: PMC10140639 DOI: 10.1148/radiol.221473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/12/2023] [Accepted: 02/10/2023] [Indexed: 03/16/2023]
Abstract
Background Exhaustion of cerebrovascular reactivity (CVR) portends increased stroke risk. Acetazolamide-augmented blood oxygenation level-dependent (BOLD) MRI has been used to estimate CVR, but low signal-to-noise conditions relegate its use to terminal CVR (CVRend) measurements that neglect dynamic features of CVR. Purpose To demonstrate comprehensive characterization of acetazolamide-augmented BOLD MRI response in chronic steno-occlusive disease using a computational framework to precondition signal time courses for dynamic whole-brain CVR analysis. Materials and Methods This study focused on retrospective analysis of consecutive patients with unilateral chronic steno-occlusive disease who underwent acetazolamide-augmented BOLD imaging for recurrent minor stroke or transient ischemic attack at an academic medical center between May 2017 and October 2020. A custom principal component analysis-based denoising pipeline was used to correct spatially varying non-signal-bearing contributions obtained by a local principal component analysis of the MRI time series. Standard voxelwise CVRend maps representing terminal responses were produced and compared with maximal CVR (CVRmax) as isolated from binned (per-repetition time) denoised BOLD time course. A linear mixed-effects model was used to compare CVRmax and CVRend in healthy and diseased hemispheres. Results A total of 23 patients (median age, 51 years; IQR, 42-61, 13 men) who underwent 32 BOLD examinations were included. Processed MRI data showed twofold improvement in signal-to-noise ratio, allowing improved isolation of dynamic characteristics in signal time course for sliding window CVRmax analysis to the level of each BOLD repetition time (approximately 2 seconds). Mean CVRmax was significantly higher than mean CVRend in diseased (5.2% vs 3.8%, P < .01) and healthy (5.5% vs 4.0%, P < .01) hemispheres. Several distinct time-signal signatures were observed, including nonresponsive; delayed/blunted; brisk; and occasionally nonmonotonic time courses with paradoxical features in normal and abnormal tissues (ie, steal and reverse-steal patterns). Conclusion A principal component analysis-based computational framework for analysis of acetazolamide-augmented BOLD imaging can be used to measure unsustained CVRmax through twofold improvements in signal-to-noise ratio. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Siddhant Dogra
- From the Departments of Radiology (S. Dogra, A.G., J.V., S. Dehkharghani) and Neurology (K.I., S. Dehkharghani), New York University Langone Health, 660 First Ave, New York, NY 10016; Department of Radiology, Weill Cornell Medical College, New York, NY (X.W.); and Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (D.Q.)
| | - Xiuyuan Wang
- From the Departments of Radiology (S. Dogra, A.G., J.V., S. Dehkharghani) and Neurology (K.I., S. Dehkharghani), New York University Langone Health, 660 First Ave, New York, NY 10016; Department of Radiology, Weill Cornell Medical College, New York, NY (X.W.); and Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (D.Q.)
| | - Alejandro Gupta
- From the Departments of Radiology (S. Dogra, A.G., J.V., S. Dehkharghani) and Neurology (K.I., S. Dehkharghani), New York University Langone Health, 660 First Ave, New York, NY 10016; Department of Radiology, Weill Cornell Medical College, New York, NY (X.W.); and Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (D.Q.)
| | - Jelle Veraart
- From the Departments of Radiology (S. Dogra, A.G., J.V., S. Dehkharghani) and Neurology (K.I., S. Dehkharghani), New York University Langone Health, 660 First Ave, New York, NY 10016; Department of Radiology, Weill Cornell Medical College, New York, NY (X.W.); and Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (D.Q.)
| | - Koto Ishida
- From the Departments of Radiology (S. Dogra, A.G., J.V., S. Dehkharghani) and Neurology (K.I., S. Dehkharghani), New York University Langone Health, 660 First Ave, New York, NY 10016; Department of Radiology, Weill Cornell Medical College, New York, NY (X.W.); and Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (D.Q.)
| | - Deqiang Qiu
- From the Departments of Radiology (S. Dogra, A.G., J.V., S. Dehkharghani) and Neurology (K.I., S. Dehkharghani), New York University Langone Health, 660 First Ave, New York, NY 10016; Department of Radiology, Weill Cornell Medical College, New York, NY (X.W.); and Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (D.Q.)
| | - Seena Dehkharghani
- From the Departments of Radiology (S. Dogra, A.G., J.V., S. Dehkharghani) and Neurology (K.I., S. Dehkharghani), New York University Langone Health, 660 First Ave, New York, NY 10016; Department of Radiology, Weill Cornell Medical College, New York, NY (X.W.); and Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (D.Q.)
| |
Collapse
|
7
|
Khalil AA, Tanritanir AC, Grittner U, Kirilina E, Villringer A, Fiebach JB, Mekle R. Reproducibility of cerebral perfusion measurements using BOLD delay. Hum Brain Mapp 2023; 44:2778-2789. [PMID: 36840928 PMCID: PMC10089099 DOI: 10.1002/hbm.26244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/26/2023] Open
Abstract
BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test-retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions.
Collapse
Affiliation(s)
- Ahmed A Khalil
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ayse C Tanritanir
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Center for Cognitive Neuroscience Berlin, Free University, Berlin, Germany
| | - Arno Villringer
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Mekle
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Wu J, Nahab F, Allen JW, Hu R, Dehkharghani S, Qiu D. Alterations in Functional Network Topology Within Normal Hemispheres Contralateral to Anterior Circulation Steno-Occlusive Disease: A Resting-State BOLD Study. Front Neurol 2022; 13:780896. [PMID: 35392638 PMCID: PMC8980268 DOI: 10.3389/fneur.2022.780896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to assess spatially remote effects of hemodynamic impairment on functional network topology contralateral to unilateral anterior circulation steno-occlusive disease (SOD) using resting-state blood oxygen level-dependent (BOLD) imaging, and to investigate the relationships between network connectivity and cerebrovascular reactivity (CVR), a measure of hemodynamic stress. Twenty patients with unilateral, chronic anterior circulation SOD and 20 age-matched healthy controls underwent resting-state BOLD imaging. Five-minute standardized baseline BOLD acquisition was followed by acetazolamide infusion to measure CVR. The BOLD baseline was used to analyze network connectivity contralateral to the diseased hemispheres of SOD patients. Compared to healthy controls, reduced network degree (z-score = −1.158 ± 1.217, P < 0.001, false discovery rate (FDR) corrected), local efficiency (z-score = −1.213 ± 1.120, P < 0.001, FDR corrected), global efficiency (z-score = −1.346 ± 1.119, P < 0.001, FDR corrected), and enhanced modularity (z-score = 1.000 ± 1.205, P = 0.002, FDR corrected) were observed in the contralateral, normal hemispheres of SOD patients. Network degree (P = 0.089, FDR corrected; P = 0.027, uncorrected) and nodal efficiency (P = 0.089, FDR corrected; P = 0.045, uncorrected) showed a trend toward a positive association with CVR. The results indicate remote abnormalities in functional connectivity contralateral to the diseased hemispheres in patients with unilateral SOD, despite the absence of macrovascular disease or demonstrable hemodynamic impairment. The clinical impact of remote functional disruptions requires dedicated investigation but may portend far reaching consequence for even putatively unilateral cerebrovascular disease.
Collapse
Affiliation(s)
- Junjie Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Fadi Nahab
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jason W. Allen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Joint Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Seena Dehkharghani
- Department of Radiology, New York University Langone Medical Center, New York, NY, United States
- Department of Neurology, New York University Langone Medical Center, New York, NY, United States
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Joint Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
- *Correspondence: Deqiang Qiu
| |
Collapse
|
9
|
Hemodynamic evaluation of patients with Moyamoya Angiopathy: comparison of resting-state fMRI to breath-hold fMRI and [ 15O]water PET. Neuroradiology 2021; 64:553-563. [PMID: 34570251 PMCID: PMC8850258 DOI: 10.1007/s00234-021-02814-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/09/2021] [Indexed: 11/27/2022]
Abstract
Purpose Patients with Moyamoya Angiopathy (MMA) require hemodynamic evaluation to assess the risk of stroke. Assessment of cerebral blood flow with [15O]water PET and acetazolamide challenge is the diagnostic standard for the evaluation of the cerebral perfusion reserve (CPR). Estimation of the cerebrovascular reactivity (CVR) by use of breath-hold-triggered fMRI (bh-fMRI) as an index of CPR has been proposed as a reliable and more readily available approach. Recent findings suggest the use of resting-state fMRI (rs-fMRI) which requires minimum patient compliance. The aim of this study was to compare rs-fMRI to bh-fMRI and [15O]water PET in patients with MMA. Methods Patients with MMA underwent rs-fMRI and bh-fMRI in the same MRI session. Maps of the CVR gained by both modalities were compared retrospectively by calculating the correlation between the mean CVR of 12 volumes of interest. Additionally, the rs-maps of a subgroup of patients were compared to CPR-maps gained by [15O]water PET. Results The comparison of the rs-maps and the bh-maps of 24 patients revealed a good correlation (Pearson’s r = 0.71 ± 0.13; preoperative patients: Pearson’s r = 0.71 ± 0.17; postoperative patients: Pearson’s r = 0.71 ± 0.11). The comparison of 7 rs-fMRI data sets to the corresponding [15O]water PET data sets also revealed a high level of agreement (Pearson’s r = 0.80 ± 0.19). Conclusion The present analysis indicates that rs-fMRI might be a promising non-invasive method with almost no patient cooperation needed to evaluate the CVR. Further prospective studies are required.
Collapse
|
10
|
Hu JY, Kirilina E, Nierhaus T, Ovadia-Caro S, Livne M, Villringer K, Margulies D, Fiebach JB, Villringer A, Khalil AA. A novel approach for assessing hypoperfusion in stroke using spatial independent component analysis of resting-state fMRI. Hum Brain Mapp 2021; 42:5204-5216. [PMID: 34323339 PMCID: PMC8519861 DOI: 10.1002/hbm.25610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023] Open
Abstract
Individualized treatment of acute stroke depends on the timely detection of ischemia and potentially salvageable tissue in the brain. Using functional MRI (fMRI), it is possible to characterize cerebral blood flow from blood‐oxygen‐level‐dependent (BOLD) signals without the administration of exogenous contrast agents. In this study, we applied spatial independent component analysis to resting‐state fMRI data of 37 stroke patients scanned within 24 hr of symptom onset, 17 of whom received follow‐up scans the next day. Our analysis revealed “Hypoperfusion spatially‐Independent Components” (HICs) whose spatial patterns of BOLD signal resembled regions of delayed perfusion depicted by dynamic susceptibility contrast MRI. These HICs were detected even in the presence of excessive patient motion, and disappeared following successful tissue reperfusion. The unique spatial and temporal features of HICs allowed them to be distinguished with high accuracy from other components in a user‐independent manner (area under the curve = 0.93, balanced accuracy = 0.90, sensitivity = 1.00, and specificity = 0.85). Our study therefore presents a new, noninvasive method for assessing blood flow in acute stroke that minimizes interpretative subjectivity and is robust to severe patient motion.
Collapse
Affiliation(s)
- Jiun-Yiing Hu
- Department of Internal Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Evgeniya Kirilina
- Department of Neurophysics, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Neurocomputation and Neuroimaging Unit, Center for Cognitive Neuroscience Berlin (CCNB), Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Till Nierhaus
- Neurocomputation and Neuroimaging Unit, Center for Cognitive Neuroscience Berlin (CCNB), Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Michelle Livne
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kersten Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Margulies
- Centre National de la Recherche Scientifique (CNRS) UMR 7225, Frontlab, Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
| | - Ahmed A Khalil
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
11
|
Mamontov OV, Sokolov AY, Volynsky MA, Osipchuk AV, Zaytsev VV, Romashko RV, Kamshilin AA. Animal model of assessing cerebrovascular functional reserve by imaging photoplethysmography. Sci Rep 2020; 10:19008. [PMID: 33149189 PMCID: PMC7642404 DOI: 10.1038/s41598-020-75824-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/16/2020] [Indexed: 01/12/2023] Open
Abstract
Assessment of the cerebral blood-flow-reserve in patients with cerebrovascular diseases is extremely important in terms of making prognosis, determining treatment tactics, and controlling the revascularization outcome in the case of reconstructive interventions on the brain vessels. However, there is no easy-to-use, contactless method for either assessing the functional reserve of the cortical vascular network or intraoperative monitoring of surgical intervention. Our study aims to demonstrate feasibility of green-light imaging photoplethysmography (iPPG) to estimate cerebrovascular functional reserve in animal model of craniosurgical intervention. Custom-made iPPG system was exploited to visualize intracranial vessels in anesthetized Wistar rats (n = 15). Video frames of rat's cortex were recorded concurrently with systemic blood pressure, end-tidal CO2, and electrocardiogram. We found that injection of dorzolamide (carbonic-anhydrase inhibitor) significantly increased the blood-pulsations amplitude in all animals by 35 ± 19% (p < 0.001). Such an increase negatively correlated with significant decrease in end-tidal CO2 by 32 ± 7% (p < 0.001). It is noteworthy that the dorzolamide injection did not lead to significant changes in systemic blood pressure. Concluding, pulsations amplitude is a marker of the vascular tone that can be used to evaluate the functional cerebrovascular reserve. Imaging PPG is a simple and convenient method to assess cerebral blood flow, including during various neurosurgical interventions.
Collapse
Affiliation(s)
- Oleg V Mamontov
- Department of Circulation Physiology, Almazov National Medical Research Centre, Saint Petersburg, Russia
- Department of Departmental Therapy, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Alexey Y Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Maxim A Volynsky
- Faculty of Applied Optics, ITMO University, Saint Petersburg, Russia
| | - Anastasija V Osipchuk
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Valery V Zaytsev
- Faculty of Applied Optics, ITMO University, Saint Petersburg, Russia
| | - Roman V Romashko
- Laboratory of High-Precision Optical Measurements, Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia
| | - Alexei A Kamshilin
- Laboratory of High-Precision Optical Measurements, Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia.
- Faculty of Photonics and Optical Information, ITMO University, Saint Petersburg, Russia.
| |
Collapse
|
12
|
Thomas MA, Hazany S, Ellingson BM, Hu P, Nguyen KL. Pathophysiology, classification, and MRI parallels in microvascular disease of the heart and brain. Microcirculation 2020; 27:e12648. [PMID: 32640064 DOI: 10.1111/micc.12648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Diagnostic imaging technology in vascular disease has long focused on large vessels and the pathologic processes that impact them. With improved diagnostic techniques, investigators are now able to uncover many underlying mechanisms and prognostic factors for microvascular disease. In the heart and brain, these pathologic entities include coronary microvascular disease and cerebral small vessel disease, both of which have significant impact on patients, causing angina, myocardial infarction, heart failure, stroke, and dementia. In the current paper, we will discuss parallels in pathophysiology, classification, and diagnostic modalities, with a focus on the role of magnetic resonance imaging in microvascular disease of the heart and brain. Novel approaches for streamlined imaging of the cardiac and central nervous systems including the use of intravascular contrast agents such as ferumoxytol are presented, and unmet research gaps in diagnostics are summarized.
Collapse
Affiliation(s)
- Michael A Thomas
- Division of Cardiology, David Geffen School of Medicine at, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Radiology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Saman Hazany
- Department of Radiology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine at, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
13
|
Tanrıtanır AC, Villringer K, Galinovic I, Grittner U, Kirilina E, Fiebach JB, Villringer A, Khalil AA. The Effect of Scan Length on the Assessment of BOLD Delay in Ischemic Stroke. Front Neurol 2020; 11:381. [PMID: 32431665 PMCID: PMC7214917 DOI: 10.3389/fneur.2020.00381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/15/2020] [Indexed: 01/21/2023] Open
Abstract
Objectives: To evaluate the impact of resting-state functional MRI scan length on the diagnostic accuracy, image quality and lesion volume estimation of BOLD delay maps used for brain perfusion assessment in acute ischemic stroke. Methods: Sixty-three acute ischemic stroke patients received a 340 s resting-state functional MRI within 24 h of stroke symptom onset. BOLD delay maps were calculated from the full scan and four shortened versions (68 s, 136 s, 204 s, 272 s). The BOLD delay lesions on these maps were compared in terms of spatial overlap and volumetric agreement with the lesions derived from the full scans and with time-to-maximum (Tmax) lesions derived from DSC-MRI in a subset of patients (n = 10). In addition, the interpretability and quality of these maps were compared across different scan lengths using mixed models. Results: Shortened BOLD delay scans showed a small volumetric bias (ranging from 0.05 to 5.3 mL; between a 0.13% volumetric underestimation and a 7.7% overestimation relative to the mean of the volumes, depending on scan length) compared to the full scan. Decreased scan length was associated with decreased spatial overlap with both the BOLD delay lesions derived from the full scans and with Tmax lesions. Only the two shortest scan lengths (68 and 136 s) were associated with substantially decreased interpretability, decreased structure clarity, and increased noisiness of BOLD delay maps. Conclusions: BOLD delay maps derived from resting-state fMRI scans lasting 272 and 204 s provide sufficient diagnostic quality and adequate assessment of perfusion lesion volumes. Such shortened scans may be helpful in situations where quick clinical decisions need to be made.
Collapse
Affiliation(s)
| | - Kersten Villringer
- Center for Stroke Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ivana Galinovic
- Center for Stroke Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Center for Cognitive Neuroscience Berlin, Free University, Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ahmed A Khalil
- Center for Stroke Research, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
14
|
Nishida S, Aso T, Takaya S, Takahashi Y, Kikuchi T, Funaki T, Yoshida K, Okada T, Kunieda T, Togashi K, Fukuyama H, Miyamoto S. Resting-state Functional Magnetic Resonance Imaging Identifies Cerebrovascular Reactivity Impairment in Patients With Arterial Occlusive Diseases: A Pilot Study. Neurosurgery 2020; 85:680-688. [PMID: 30247676 DOI: 10.1093/neuros/nyy434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/16/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The development of noninvasive approaches for identifying hypoperfused brain tissue at risk is of major interest. Recently, the temporal-shift (TS) maps estimated from resting-state blood oxygenation level-dependent (BOLD) signals have been proposed for determining hemodynamic state. OBJECTIVE To examine the equivalency of the TS map and the cerebrovascular reactivity (CVR) map derived from acetazolamide-challenged single-photon emission computed tomography (SPECT) in identifying hemodynamic impairment in patients with arterial occlusive diseases. METHODS Twenty-three patients with arterial occlusive diseases who underwent SPECT were studied. With a recursive TS analysis of low-frequency fluctuation of the BOLD signal, a TS map relative to the global signal was created for each patient. The voxel-by-voxel correlation coefficient was calculated to examine the image similarity between TS and SPECT-based cerebral blood flow (CBF) or CVR maps in each patient. Furthermore, simple linear regression analyses were performed to examine the quantitative relationship between the TS of BOLD signals and CVR in each cerebrovascular territory. RESULTS The within-patient, voxel-by-voxel comparison revealed that the TS map was more closely correlated with SPECT-CVR map ([Z(r)] = 0.42 ± 0.18) than SPECT-CBF map ([Z(r)] = 0.058 ± 0.11; P < .001, paired t-test). The regression analysis showed a significant linear association between the TS of BOLD signals and CVR in the anterior circulation where the reduction of CVR was evident in the patient group. CONCLUSION BOLD TS analysis has potential as a noninvasive alternative to current methods based on CVR for identification of tissue at risk of ischemic stroke.
Collapse
Affiliation(s)
- Sei Nishida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan.,Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan
| | - Toshihiko Aso
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan
| | - Shigetoshi Takaya
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan.,Senri Rehabilitation Hospital, Mino City, Osaka Prefecture, Japan
| | - Yuki Takahashi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan.,Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan
| | - Tomohisa Okada
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan.,Department of Radiology, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan.,Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Kaori Togashi
- Department of Radiology, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan
| |
Collapse
|
15
|
Dehkharghani S, Qiu D. MR Thermometry in Cerebrovascular Disease: Physiologic Basis, Hemodynamic Dependence, and a New Frontier in Stroke Imaging. AJNR Am J Neuroradiol 2020; 41:555-565. [PMID: 32139425 DOI: 10.3174/ajnr.a6455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/02/2020] [Indexed: 01/20/2023]
Abstract
The remarkable temperature sensitivity of the brain is widely recognized and has been studied for its role in the potentiation of ischemic and other neurologic injuries. Pyrexia frequently complicates large-vessel acute ischemic stroke and develops commonly in critically ill neurologic patients; the profound sensitivity of the brain even to minor intraischemic temperature changes, together with the discovery of brain-to-systemic as well as intracerebral temperature gradients, has thus compelled the exploration of cerebral thermoregulation and uncovered its immutable dependence on cerebral blood flow. A lack of pragmatic and noninvasive tools for spatially and temporally resolved brain thermometry has historically restricted empiric study of cerebral temperature homeostasis; however, MR thermometry (MRT) leveraging temperature-sensitive nuclear magnetic resonance phenomena is well-suited to bridging this long-standing gap. This review aims to introduce the reader to the following: 1) fundamental aspects of cerebral thermoregulation, 2) the physical basis of noninvasive MRT, and 3) the physiologic interdependence of cerebral temperature, perfusion, metabolism, and viability.
Collapse
Affiliation(s)
- S Dehkharghani
- From the Department of Radiology (S.D.), New York University Langone Health, New York, New York
| | - D Qiu
- Department of Radiology (D.Q.), Emory University Hospital, Atlanta, Georgia
| |
Collapse
|
16
|
Evanoff NG, Mueller BA, Marlatt KL, Geijer JR, Lim KO, Dengel DR. Reproducibility of a ramping protocol to measure cerebral vascular reactivity using functional magnetic resonance imaging. Clin Physiol Funct Imaging 2020; 40:183-189. [PMID: 31984617 DOI: 10.1111/cpf.12621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 12/14/2019] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Abstract
Though individual differences in arterial carbon dioxide and oxygen levels inherently exist, the degree of their influence on cerebral vascular reactivity (CVR) is less clear. We examined the reproducibility of BOLD signal changes to an iso-oxic ramping Pet CO2 protocol. CVR changes were induced by altering Pet CO2 while holding Pet O2 constant using a computer-controlled sequential gas delivery (SGD) device. Two MRI scans, each including a linear change in Pet CO2 , were performed using a 3-Tesla (3T) scanner. This ramp sequence consisted of 1 min at 30 mmHg followed by 4 min period during where Pet CO2 was linearly increased from 30 to 50 mmHg, 1 min at 51 mmHg, and concluded with 4 min at baseline. The protocol was repeated at a separate visit with 3 days between visits (minimum). Intraclass correlation coefficients (ICC) and coefficients of variation (CV) were used to verify reproducibility. Eleven subjects (6 females; mean age 26.5 ± 5.7 years) completed the full testing protocol. Good reproducibility was observed for the within-visit ramp sequence (Visit 1: ICC = 0.82, CV = 6.5%; Visit 2: ICC = 0.74, CV = 6.4%). Similarly, ramp sequence were reproducible between visits (Scan 1: ICC = 0.74, CV = 6.5%; Scan 2: ICC = 0.66, CV = 6.1%). Establishing reproducible methodologies for measuring BOLD signal changes in response to Pet CO2 alterations using a ramp protocol will allow researchers to study CVR functionality. Finally, adding a ramping protocol to CVR studies could provide information about changes in CVR over a broad range of Pet CO2 .
Collapse
Affiliation(s)
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Kara L Marlatt
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Justin R Geijer
- Department of Health, Exercise and Rehabilitative Sciences, Winona State University, Winona, Minnesota
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Donald R Dengel
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
17
|
Khalil AA, Villringer K, Filleböck V, Hu JY, Rocco A, Fiebach JB, Villringer A. Non-invasive monitoring of longitudinal changes in cerebral hemodynamics in acute ischemic stroke using BOLD signal delay. J Cereb Blood Flow Metab 2020; 40:23-34. [PMID: 30334657 PMCID: PMC6928563 DOI: 10.1177/0271678x18803951] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Relative delays in blood-oxygen-level-dependent (BOLD) signal oscillations can be used to assess cerebral perfusion without using contrast agents. However, little is currently known about the utility of this method in detecting clinically relevant perfusion changes over time. We investigated the relationship between longitudinal BOLD delay changes, vessel recanalization, and reperfusion in 15 acute stroke patients with vessel occlusion examined within 24 h of symptom onset (D0) and one day later (D1). We created BOLD delay maps using time shift analysis of resting-state functional MRI data and quantified perfusion lesion volume changes (using the D1/D0 volume ratio) and severity changes (using a linear mixed model) over time. Between baseline and follow-up, BOLD delay lesions shrank (median D1/D0 ratio = 0.2, IQR = 0.03-0.7) and BOLD delay severity decreased (b = -4.4 s) in patients with recanalization, whereas they grew (median D1/D0 ratio = 1.47, IQR = 1.1-1.7) and became more severe (b = 4.3 s) in patients with persistent vessel occlusion. Clinically relevant changes in cerebral perfusion in early stroke can be detected using BOLD delay, making this non-invasive method a promising option for detecting tissue at risk of infarction and monitoring stroke patients following recanalization therapy.
Collapse
Affiliation(s)
- Ahmed A Khalil
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Mind, Brain, Body Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kersten Villringer
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vivien Filleböck
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jiun-Yiing Hu
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Rocco
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Mind, Brain, Body Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
18
|
Eker OF, Ameli R, Makris N, Jurkovic T, Montigon O, Barbier EL, Cho TH, Nighoghossian N, Berthezène Y. MRI Assessment of Oxygen Metabolism and Hemodynamic Status in Symptomatic Intracranial Atherosclerotic Stenosis: A Pilot Study. J Neuroimaging 2019; 29:467-475. [DOI: 10.1111/jon.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 10/27/2022] Open
Affiliation(s)
- Omer F. Eker
- Department of NeuroradiologyHospices Civils de Lyon Bron France
- CREATIS CNRS UMR 5220, INSERM U1044 Villeurbanne cedex France
| | - Roxana Ameli
- Department of NeuroradiologyHospices Civils de Lyon Bron France
| | - Nikolaos Makris
- CREATIS CNRS UMR 5220, INSERM U1044 Villeurbanne cedex France
| | - Thomas Jurkovic
- Department of NeuroradiologyHospices Civils de Lyon Bron France
| | - Olivier Montigon
- INSERM U1216Grenoble Institut des Neurosciences La Tronche France
| | - Emmanuel L. Barbier
- INSERM U1216Grenoble Institut des Neurosciences La Tronche France
- Université Grenoble Alpes Saint‐Martin‐d'Hères France
| | - Tae Hee Cho
- CREATIS CNRS UMR 5220, INSERM U1044 Villeurbanne cedex France
| | | | - Yves Berthezène
- Department of NeuroradiologyHospices Civils de Lyon Bron France
- CREATIS CNRS UMR 5220, INSERM U1044 Villeurbanne cedex France
- Department of Vascular Neurology, Hospices Civils de LyonHôpital Pierre Wertheimer Bron France
| |
Collapse
|
19
|
Leatherday C, Dehkharghani S, Nahab F, Allen JW, Wu J, Hu R, Qiu D. Cerebral MR oximetry during acetazolamide augmentation: Beyond cerebrovascular reactivity in hemodynamic failure. J Magn Reson Imaging 2018; 50:175-182. [PMID: 30390367 DOI: 10.1002/jmri.26546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxygen extraction fraction (OEF) elevation predicts increased ischemic stroke incidence among patients with carotid steno-occlusive disease, and can be estimated from quantitative susceptibility mapping (QSM) MRI. PURPOSE To explore QSM oximetry during acetazolamide (ACZ) challenge, hypothesizing that detectable OEF alterations will reflect hemodynamic compromise in unilateral cerebrovascular disease (CVD) patients. STUDY TYPE Retrospective. SUBJECTS Fourteen unilateral CVD patients, and 24 healthy controls (HC). FIELD STRENGTH/SEQUENCE Multiecho gradient echo (GRE) and T1 -weighted images at 3T. ASSESSMENT We constructed QSM images and R2* maps from multiecho GRE images. QSM-OEF maps were generated from the susceptibility difference between venous blood and background brain tissue. Intrasubject diseased/contralateral hemisphere OEF ratios in the middle cerebral artery (MCA) territories were calculated. Intravascular susceptibility in the straight sinus (SS) and MCA was also measured. STATISTICAL TESTS The result significance was determined using t-tests and Pearson's correlation. RESULTS Mean and standard deviation for the patient diseased/contralateral OEF ratios were 1.15 ± 0.14 at baseline and 1.23 ± 0.17 post-ACZ. Disease group R2* ratios were 0.95 ± 0.05 at baseline and 1.03 ± 0.08 post-ACZ. Left/right OEF and R2* ratios for the HC group were 0.98 ± 0.06 and 0.99 ± 0.038, respectively. Susceptibility (ppb) in the SS and MCA in patients was 162.63 ± 35.4 and -22.33 ± 13.70, respectively, at baseline, 124.56 ± 37.43 and -19.27 ± 23.14 post-ACZ. The HC group SS and MCA susceptibility was 146.10 ± 24.79 and -19.59 ± 12.37, respectively. Patient group OEF ratios were greater than 1.0 before and after ACZ challenge (P < 0.01 and < 0.001, respectively, one-sample t-test), and were greater than HC ratios (P < 0.001 unpaired t-test). OEF and R2* ratios increased from baseline to post-ACZ (P = 0.024, 0.004, respectively, paired t-test). Detectable blood oxygenation change was confirmed by finding SS susceptibility decreased from baseline to post-ACZ (P < 0.001, paired t-test), while MCA susceptibility did not change significantly (P = 0.67, paired t-test). DATA CONCLUSION These results suggest QSM is sensitive to dynamic OEF modulation during hemodynamic augmentation. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:175-182.
Collapse
Affiliation(s)
| | | | - Fadi Nahab
- Neurology, Emory University, Atlanta, Georgia, USA
| | - Jason W Allen
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA.,Neurology, Emory University, Atlanta, Georgia, USA
| | - Junjie Wu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Ranliang Hu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Deqiang Qiu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Fleischer CC, Wu J, Qiu D, Park SE, Nahab F, Dehkharghani S. The Brain Thermal Response as a Potential Neuroimaging Biomarker of Cerebrovascular Impairment. AJNR Am J Neuroradiol 2017; 38:2044-2051. [PMID: 28935624 DOI: 10.3174/ajnr.a5380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/09/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Brain temperature is critical for homeostasis, relating intimately to cerebral perfusion and metabolism. Cerebral thermometry is historically challenged by the cost and invasiveness of clinical and laboratory methodologies. We propose the use of noninvasive MR thermometry in patients with cerebrovascular disease, hypothesizing the presence of a measurable brain thermal response reflecting the tissue hemodynamic state. MATERIALS AND METHODS Contemporaneous imaging and MR thermometry were performed in 10 patients (32-68 years of age) undergoing acetazolamide challenge for chronic, anterior circulation steno-occlusive disease. Cerebrovascular reactivity was calculated with blood oxygen level-dependent imaging and arterial spin-labeling methods. Brain temperature was calculated pre- and post-acetazolamide using previously established chemical shift thermometry. Mixed-effects models of the voxelwise relationships between the brain thermal response and cerebrovascular reactivity were computed, and the significance of model coefficients was determined with an F test (P < .05). RESULTS We observed significant, voxelwise quadratic relationships between cerebrovascular reactivity from blood oxygen level-dependent imaging and the brain thermal response (x coefficient = 0.052, P < .001; x2coefficient = 0.0068, P < .001) and baseline brain temperatures (x coefficient = 0.59, P = .008; x2 coefficient = -0.13, P < .001). A significant linear relationship was observed for the brain thermal response with cerebrovascular reactivity from arterial spin-labeling (P = .001). CONCLUSIONS The findings support the presence of a brain thermal response exhibiting complex but significant interactions with tissue hemodynamics, which we posit to reflect a relative balance of heat-producing versus heat-dissipating tissue states. The brain thermal response is a potential noninvasive biomarker for cerebrovascular impairment.
Collapse
Affiliation(s)
- C C Fleischer
- From the Department of Biomedical Engineering (C.C.F., S.-E.P.), Emory University and Georgia Institute of Technology, Atlanta, Georgia
- the Departments of Radiology and Imaging Sciences (C.C.F., J.W., D.Q., S.D.)
| | - J Wu
- the Departments of Radiology and Imaging Sciences (C.C.F., J.W., D.Q., S.D.)
| | - D Qiu
- the Departments of Radiology and Imaging Sciences (C.C.F., J.W., D.Q., S.D.)
| | - S-E Park
- From the Department of Biomedical Engineering (C.C.F., S.-E.P.), Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - F Nahab
- Neurology (F.N., S.D.)
- Pediatrics (F.N.), Emory University School of Medicine, Atlanta, Georgia
| | - S Dehkharghani
- the Departments of Radiology and Imaging Sciences (C.C.F., J.W., D.Q., S.D.)
- Neurology (F.N., S.D.)
| |
Collapse
|
21
|
Wu J, Dehkharghani S, Nahab F, Qiu D. Acetazolamide-augmented dynamic BOLD (aczBOLD) imaging for assessing cerebrovascular reactivity in chronic steno-occlusive disease of the anterior circulation: An initial experience. NEUROIMAGE-CLINICAL 2016; 13:116-122. [PMID: 27942454 PMCID: PMC5137181 DOI: 10.1016/j.nicl.2016.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 01/22/2023]
Abstract
The purpose of this study was to measure cerebrovascular reactivity (CVR) in chronic steno-occlusive disease using a novel approach that couples BOLD imaging with acetazolamide (ACZ) vasoreactivity (aczBOLD), to evaluate dynamic effects of ACZ on BOLD and to establish the relationship between aczBOLD and dynamic susceptibility contrast (DSC) perfusion MRI. Eighteen patients with unilateral chronic steno-occlusive disease of the anterior circulation underwent a 20-min aczBOLD imaging protocol, with ACZ infusion starting at 5 min of scan initiation. AczBOLD reactivity was calculated on a voxel-by-voxel basis to generate CVR maps for subsequent quantitative analyses. Reduced CVR was observed in the diseased vs. the normal hemisphere both by qualitative and quantitative assessment (gray matter (GM): 4.13% ± 1.16% vs. 4.90% ± 0.98%, P = 0.002; white matter (WM): 2.83% ± 1.23% vs. 3.50% ± 0.94%, P = 0.005). In all cases BOLD signal began increasing immediately following ACZ infusion, approaching a plateau at ~ 8.5 min after infusion, with the tissue volume of reduced augmentation increasing progressively with time, peaking at 2.60 min (time range above 95% of the maximum value: 0–4.43 min) for the GM and 1.80 min (time range above 95% of the maximum value: 1.40–3.53 min) for the WM. In the diseased hemisphere, aczBOLD CVR significantly correlated with baseline DSC time-to-maximum of the residue function (Tmax) (P = 0.008 for the WM) and normalized cerebral blood flow (P = 0.003 for the GM, and P = 0.001 for the WM). AczBOLD provides a novel, safe, easily implementable approach to CVR measurement in the routine clinical environments. Further studies can establish quantitative thresholds from aczBOLD towards identification of patients at heightened risk of recurrent ischemia and cognitive decline. A method coupling BOLD with ACZ challenge (aczBOLD) for CVR assessment was proposed. Compromised CVR was detected in patients with cerebrovascular disease. Dynamic effects of ACZ on BOLD were characterized. CVR correlated with baseline dynamic susceptibility contrast perfusion MRI.
Collapse
Affiliation(s)
- Junjie Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Seena Dehkharghani
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Fadi Nahab
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| |
Collapse
|