1
|
Huflage H, Wech T, Rak K, Schindehuette M, Engert J, Hackenberg S, Pham M, Bley TA, Grunz JP, Spahn B. Influence of CT Radiation Dose and Field-of-View on Automatic Morphometry for Cochlear Implant Planning. Otol Neurotol 2025:00129492-990000000-00807. [PMID: 40360256 DOI: 10.1097/mao.0000000000004534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
INTRODUCTION In cochlear implantation (CI), precise preoperative cochlear duct length (CDL) and angular insertion depth (AID) measurements are pivotal for individualized electrode carrier selection, since recipients benefit from sufficient cochlear coverage of the electrode carrier, enabling electric stimulation of all crucial frequency bands. Since the quality of temporal bone CT largely depends on acquisition and reconstruction settings and is limited by the technical capabilities of the CT scanner, this study aims to assess how radiation dose and reconstruction field-of-view (FOV) affect automatic cochlear morphometry and electrode contact determination in conventional multislice CT. METHODS Twenty fresh-frozen human petrous bone specimens were examined at three radiation dose levels (40, 20, and 10 mGy) using a multislice CT scanner. Each dataset was reconstructed with three different FOV settings (250, 125, and 50 mm). Preoperative CDL and AID measurements were performed with dedicated otological planning software. Maxed-out dose images (250 mGy) served as standard of reference for comparing the morphometric results. RESULTS Regardless of the selected combination of dose level and FOV, significant CDL or AID measurement differences were neither ascertained among the individual groups, nor in comparison to the reference scans (all p ≥ 0.05). Likewise, the simulation of all stimulable frequency bandwidths showed no dependency on radiation dose or FOV settings (all p ≥ 0.05). CONCLUSION The assessment of cochlear morphometry with conventional multislice CT imaging before CI surgery allowed a radiation dose reduction up to 75% without compromising the accuracy of software-based cochlear analysis. Notably, automatic CDL and AID measurements for surgical planning did not benefit from a smaller reconstruction FOV.
Collapse
Affiliation(s)
- Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Magnus Schindehuette
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Jonas Engert
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Bjoern Spahn
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| |
Collapse
|
2
|
Müller-Graff FT, von Düring J, Voelker J, Al-Tinawi F, Hagen R, Neun T, Hackenberg S, Rak K. Improved radiological imaging of congenital aural atresia using flat-panel volume CT. HNO 2024; 72:111-119. [PMID: 39508837 PMCID: PMC11618206 DOI: 10.1007/s00106-024-01512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Precise preoperative radiological evaluation of aural atresia is of utmost importance for surgical planning. Until now, multislice computed tomography (MSCT) has been used but it cannot adequately visualize small structures such as the stapes. Flat-panel volume CT (fpVCT) with its secondary reconstructions (fpVCTSECO) offers a high-resolution visualization of the middle ear. New otosurgical planning software also enables detailed 3D reconstruction of the middle ear anatomy. AIM OF THE WORK Evaluation of the use of fpVCTSECO in combination with an otosurgical planning software for a more accurate diagnosis and treatment of congenital aural atresia. MATERIAL AND METHODS Seven patients with congenital aural atresia underwent preoperative MSCT (600 µm slice thickness) and corresponding fpVCT (466 µm slice thickness). In addition, fpVCTSECO (99 µm slice thickness) were reconstructed. The Jahrsdoerfer and Siegert grading scores were determined and their applicability in the abovementioned imaging modalities was evaluated. In addition, the malleus incus complex was analyzed in 3D rendering. RESULTS Imaging with fpVCTSECO enabled reliable visualization of the abnormalities, in particular the ossicular chain. A significant difference in the Siegert grading score was found. In addition, the malleus-incus complex could be visualized better in 3D. DISCUSSION The introduction of new imaging techniques and surgical planning techniques into the diagnostic concept of aural atresia facilitates the identification of malformed anatomy and enables systematic analysis. This combination can also help to more accurately classify the pathology and thus increase the safety and success of the surgical procedure.
Collapse
Affiliation(s)
- Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.
| | - Jan von Düring
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Fadi Al-Tinawi
- Insitute for Diagnostic and Interventional Neuroradiology, University of Wuerzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Tilmann Neun
- Insitute for Diagnostic and Interventional Neuroradiology, University of Wuerzburg, Würzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| |
Collapse
|
3
|
Müller-Graff FT, von Düring J, Voelker J, Al-Tinawi F, Hagen R, Neun T, Hackenberg S, Rak K. [Improved radiological imaging of congenital aural atresia using flat-panel volume CT. German version]. HNO 2024; 72:815-824. [PMID: 39283501 PMCID: PMC11499392 DOI: 10.1007/s00106-024-01511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Precise preoperative radiological evaluation of aural atresia is of utmost importance for surgical planning. Until now, multislice computed tomography (MSCT) has been used but it cannot adequately visualize small structures such as the stapes. Flat-panel volume CT (fpVCT) with its secondary reconstructions (fpVCTSECO) offers a high-resolution visualization of the middle ear. New otosurgical planning software also enables detailed 3D reconstruction of the middle ear anatomy. AIM OF THE WORK Evaluation of the use of fpVCTSECO in combination with an otosurgical planning software for a more accurate diagnosis and treatment of congenital aural atresia. MATERIAL AND METHODS Seven patients with congenital aural atresia underwent preoperative MSCT (600 µm slice thickness) and corresponding fpVCT (466 µm slice thickness). In addition, fpVCTSECO (99 µm slice thickness) were reconstructed. The Jahrsdoerfer and Siegert grading scores were determined and their applicability in the abovementioned imaging modalities was evaluated. In addition, the malleus incus complex was analyzed in 3D rendering. RESULTS Imaging with fpVCTSECO enabled reliable visualization of the abnormalities, in particular the ossicular chain. A significant difference in the Siegert grading score was found. In addition, the malleus-incus complex could be visualized better in 3D. DISCUSSION The introduction of new imaging techniques and surgical planning techniques into the diagnostic concept of aural atresia facilitates the identification of malformed anatomy and enables systematic analysis. This combination can also help to more accurately classify the pathology and thus increase the safety and success of the surgical procedure.
Collapse
Affiliation(s)
- Franz-Tassilo Müller-Graff
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland.
| | - Jan von Düring
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland
| | - Johannes Voelker
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland
| | - Fadi Al-Tinawi
- Institut für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Rudolf Hagen
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland
| | - Tilmann Neun
- Institut für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Stephan Hackenberg
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland
| | - Kristen Rak
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland
| |
Collapse
|
4
|
Zhang Z, Tang R, Wu Q, Zhao P, Yang Z, Wang Z. An exploratory study of imaging diagnostic clues for overhanging facial nerve in ultra-high-resolution CT. Eur Arch Otorhinolaryngol 2023; 280:3643-3651. [PMID: 36847878 PMCID: PMC10313554 DOI: 10.1007/s00405-023-07879-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Overhanging facial nerve (FN) may be challenging in imaging diagnosis. The purpose of the study is to investigate the imaging clues for overhanging FN near the oval window on ultra-high-resolution computed tomography (U-HRCT) images. METHODS Between October 2020 and August 2021, images of 325 ears (276 patients) were included in the analysis obtained by an experimental U-HRCT scanner. On standard reformatted images, the morphology of FN was evaluated and its position was quantitatively measured using the following indices: protrusion ratio (PR), protruding angle (A), position of FN (P-FN), distance between FN and stapes (D-S), and distance between FN and anterior and posterior crura of stapes (D-AC and D-PC). According to the FN morphology in imaging, images were divided into overhanging FN group and non-overhanging FN group. Binary univariate logistic regression analysis was used to identify the imaging indices independently associated with overhanging FN. RESULTS Overhanging FN was found in 66 ears (20.3%), which manifested as downwards protrusion of either local segment (61 ears, 61/66) or the entire course near the oval window (5 ears, 5/66). D-AC [odds ratio: 0.063, 95% CI 0.012-0.334, P = 0.001) and D-PC (odds ratio: 0.008, 95% CI 0.001-0.050, P = 0.000) were identified as independent predictors of FN overhang (area under the curve: 0.828 and 0.865, respectively). CONCLUSION Abnormal morphology of the lower margin of FN, D-AC and D-PC on U-HRCT images provide valuable diagnostic clues for FN overhang.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Western District, Beijing, 100050, China
| | - Ruowei Tang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Western District, Beijing, 100050, China
| | - Qian Wu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Western District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Western District, Beijing, 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Western District, Beijing, 100050, China.
| |
Collapse
|
5
|
Gianoli G, Soileau J, Shore B. Description of a New Labyrinthine Dehiscence: Horizontal Semicircular Canal Dehiscence at the Tympanic Segment of the Facial Nerve. Front Neurol 2022; 13:879149. [PMID: 35832172 PMCID: PMC9271764 DOI: 10.3389/fneur.2022.879149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis report is a case series of patients with findings suspicious for a labyrinthine dehiscence syndrome not previously described in the medical literature. We describe the clinical and test findings in 16 patients with CT findings suspicious for dehiscence of the ampullated end of the horizontal semicircular canal at the tympanic segment of the facial nerve.Study DesignObservational case series.SettingNeurotology vestibular referral center.PatientsTo be included in this study the patients were seen at our center in 2019 and had a high-resolution CT scan with a collimation of 0.6 mm. Patients who were identified as having findings suspicious for dehiscence of bone where the facial nerve crosses the ampullated end of the horizontal semicircular canal (HSC-FND) were identified and further analyzed.InterventionsCase series retrospective record review of patient symptoms, physical findings, audiometry, vestibular testing, and CT scans was performed. CT findings of other dehiscent sites were noted. A comparison to surgically treated perilymph fistula (PLF) patients of the same period was performed.Main Outcome MeasuresHistory and physical exam were reviewed for auditory symptoms, vestibular symptoms, and exacerbating factors. and. Audiometry and vestibular testing were reviewed to determine which tests were most likely to be abnormal. CT scans were independently graded according to degree of suspicion for HSC-FND. Finally, patients with HSC-FND as the sole dehiscence identified were compared to those who had HSC-FND plus other dehiscent sites (HSC-FND+O) and to the group of surgically treated PLF patients.ResultsOf 18 patients, 16 met inclusion criteria. Nine (56%) of those suspicious for HSC-FND had dehiscences in other parts of the labyrinth. Additional dehiscent sites included: six superior semicircular canal dehiscences (SSCD), two cochlear facial dehiscences and one cochlear carotid dehiscence. The most common auditory symptoms were autophony followed by tinnitus and aural fullness. The most common vestibular symptoms were pulsion sensation (feeling of being pushed to one side) followed by vertigo spells. The most common exacerbating factors for vertigo were straining, and sound. The most commonly abnormal vestibular test was nasal Valsalva testing, which was positive in all but one patient. Anamnesis and examination observations were similar in both groups, but the HSC-FND group were less likely to demonstrate a caloric weakness or an abnormal ECOG compared to the HSC-FND+O group. Of note, cVEMP was more often found to have lower thresholds in the HSC-FND group compared to the HSC-FND+O group. An example case is highlighted. Comparison to the PLF patients revealed statistically significant difference in the presenting symptoms of autophony, fullness and pulsion sensation. When comparing testing, HSC-FND patients were more likely to have an abnormal cVEMP and PLF patients were more likely to have asymmetric hearing. The incidence of bilateral disease was also more common among the HSC-FND patients than the PLF patients.ConclusionsA new labyrinthine dehiscence has been described to occur where the tympanic segment of the facial nerve crosses over the ampullated end of the horizontal semicircular canal. HSC-FND patients can present in a similar manner as HSC-FND+O patients with similar test findings except as mentioned above. The identification of one dehiscence such as SSCD does not preclude the presence of another dehiscence such as HSC-FND. HSC-FND could be the source of persistent symptoms post SSCD surgery as illustrated in the case presented. HSC-FND patients seem to identify themselves compared to PLF patients by a much more likely presenting symptoms of autophony, fullness, pulsion, abnormal cVEMP, bilaterality of disease, and symmetric hearing.
Collapse
Affiliation(s)
- Gerard Gianoli
- The Ear and Balance Institute, Covington, LA, United States
- *Correspondence: Gerard Gianoli
| | - James Soileau
- The Ear and Balance Institute, Covington, LA, United States
| | - Bradley Shore
- Diagnostic Imaging Services, New Orleans, LA, United States
| |
Collapse
|
6
|
Schendzielorz P, Ilgen L, Müller-Graff FT, Noyalet L, Völker J, Taeger J, Hagen R, Neun T, Zabler S, Althoff D, Rak K. Precise evaluation of the postoperative cochlear duct length by flat-panel volume computed tomography - Application of secondary reconstructions. Cochlear Implants Int 2021; 23:32-42. [PMID: 34519256 DOI: 10.1080/14670100.2021.1973208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE There is still a lack in precise postoperative evaluation of the cochlea because of strong artifacts. This study aimed to improve accuracy of postoperative two-turn (2TL) and cochlear duct length (CDL) measurements by applying flat-panel volume computed tomography (fpVCT), secondary reconstruction (fpVCTSECO) and three-dimensional curved multiplanar reconstruction. METHODS First, 10 temporal bone specimens with or without electrode were measured in multi-slice computed tomography (MSCT), fpVCT and fpVCTSECO and compared to high-resolution micro-CT scans. Later, pre- and postoperative scans of 10 patients were analyzed in a clinical setting. RESULTS Concerning 2TL, no statistically significant difference was observed between implanted fpVCTSECO and nonimplanted micro-CT in 10 temporal bone specimens. In contrast, there was a significant discrepancy for CDL (difference: -0.7 mm, P = 0.004). Nevertheless, there were no clinically unacceptable errors (±1.5 mm). These results could be confirmed in a clinical setting. Using fpVCTSECO, CDL was slightly underestimated postoperatively (difference: -0.5 mm, P = 0.002) but without any clinically unacceptable errors. CONCLUSION fpVCTSECO can be successfully applied for a precise measurement of the cochlear lengths pre- and postoperatively. However, users must be aware of a slight systematic underestimation of CDL postoperatively. These results may help to refine electrode selection and frequency mapping.
Collapse
Affiliation(s)
- Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Lukas Ilgen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Laurent Noyalet
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Johannes Völker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Johannes Taeger
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Tilmann Neun
- Department of Diagnostic and Interventional Neuroradiology, University of Würzburg, Würzburg, Germany
| | - Simon Zabler
- Department of X-ray Microscopy, University of Würzburg, Würzburg, Germany
| | - Daniel Althoff
- Fraunhofer Development Center for X-ray Technology, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Taeger J, Müller-Graff FT, Neun T, Köping M, Schendzielorz P, Hagen R, Rak K. Highly precise navigation at the lateral skull base by the combination of flat-panel volume CT and electromagnetic navigation. Sci Prog 2021; 104:368504211032090. [PMID: 34397283 PMCID: PMC10450718 DOI: 10.1177/00368504211032090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to evaluate the feasibility and accuracy of electromagnetic navigation at the lateral skull base in combination with flat panel volume computed tomography (fpVCT) datasets. A mastoidectomy and a posterior tympanotomy were performed on 10 samples of fresh frozen temporal bones. For registration, four self-drilling titanium screws were applied as fiducial markers. Multi-slice computed tomography (MSCT; 600 µm), conventional flat panel volume computed tomography (fpVCT; 466 µm), micro-fpVCT (197 µm) and secondary reconstructed fpVCT (100 µM) scans were performed and data were loaded into the navigation system. The resulting fiducial registration error (FRE) was analysed, and control of the navigation accuracy was performed. The registration process was very quick and reliable with the screws as fiducials. Compared to using the MSCT data, the micro-fpVCT data led to significantly lower FRE values, whereas conventional fpVCT and secondary reconstructed fpVCT data had no advantage in terms of accuracy. For all imaging modalities, there was no relevant visual deviation when targeting defined anatomical points with a navigation probe. fpVCT data are very well suited for electromagnetic navigation at the lateral skull base. The use of titanium screws as fiducial markers turned out to be ideal for comparing different imaging methods. A further evaluation of this approach by a clinical trial is required.
Collapse
Affiliation(s)
- Johannes Taeger
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Franz-Tassilo Müller-Graff
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Tilmann Neun
- Institute for Diagnostical and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Maria Köping
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Philipp Schendzielorz
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Kristen Rak
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| |
Collapse
|
8
|
Müller-Graff FT, Ilgen L, Schendzielorz P, Voelker J, Taeger J, Kurz A, Hagen R, Neun T, Rak K. Implementation of secondary reconstructions of flat-panel volume computed tomography (fpVCT) and otological planning software for anatomically based cochlear implantation. Eur Arch Otorhinolaryngol 2021; 279:2309-2319. [PMID: 34101009 PMCID: PMC8986679 DOI: 10.1007/s00405-021-06924-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/29/2021] [Indexed: 11/28/2022]
Abstract
Purpose For further improvements in cochlear implantation, the measurement of the cochlear duct length (CDL) and the determination of the electrode contact position (ECP) are increasingly in the focus of clinical research. Usually, these items were investigated by multislice computed tomography (MSCT). The determination of ECP was only possible by research programs so far. Flat-panel volume computed tomography (fpVCT) and its secondary reconstructions (fpVCTSECO) allow for high spatial resolution for the visualization of the temporal bone structures. Using a newly developed surgical planning software that enables the evaluation of CDL and the determination of postoperative ECP, this study aimed to investigate the combination of fpVCT and otological planning software to improve the implementation of an anatomically based cochlear implantation. Methods Cochlear measurements were performed utilizing surgical planning software in imaging data (MSCT, fpVCT and fpVCTSECO) of patients with and without implanted electrodes. Results Measurement of the CDL by the use of an otological planning software was highly reliable using fpVCTSECO with a lower variance between the respective measurements compared to MSCT. The determination of the inter-electrode-distance (IED) between the ECP was improved in fpVCTSECO compared to MSCT. Conclusion The combination of fpVCTSECO and otological planning software permits a simplified and more reliable analysis of the cochlea in the pre- and postoperative setting. The combination of both systems will enable further progress in the development of an anatomically based cochlear implantation.
Collapse
Affiliation(s)
- Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Lukas Ilgen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Johannes Taeger
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Anja Kurz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Tilmann Neun
- Insitute for Diagnostic and Interventional Neuroradiology, University of Wuerzburg, Bavaria, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany.
| |
Collapse
|
9
|
Tang R, Yin H, Wang Z, Zhang Z, Zhao L, Zhang P, Li J, Zhao P, Lv H, Zhang L, Yang Z, Wang Z. Stapes visualization by ultra-high resolution CT in cadaveric heads: A preliminary study. Eur J Radiol 2021; 141:109786. [PMID: 34058698 DOI: 10.1016/j.ejrad.2021.109786] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE This study aimed to assess stapes visualization using an ultra-high resolution computed tomography (U-HRCT). METHOD Sixty ears from 30 cadaveric human heads were scanned by both U-HRCT and 128-section multislice CT (MSCT) with clinical parameters. Image quality of the stapes head, anterior and posterior crura, footplate, incudostapedial joint and stapedial muscle within the pyramidal eminence was scored using a 3-point Likert scale. Linear measurements of the stapes configuration were performed on U-HRCT. RESULTS The interobserver agreement for image qualitative score on U-HRCT was good to excellent (interobserver agreement coefficients 0.65-0.86). With the exception of the stapes head, U-HRCT achieved significantly higher qualitative scores than MSCT across all anatomical structures (Ps < 0.05). The total height of the stapes was measured to be 3.48 ± 0.33 mm. The height and width of the obturator foramen were 1.77 ± 0.28 mm and 2.19 ± 0.33 mm, respectively. The widths of the anterior and posterior crura were 0.20 ± 0.06 mm and 0.22 ± 0.06 mm, respectively. The thickness of the footplate was 0.22 ± 0.06 mm, and the angle of the incudostapedial joint was 95.91 ± 10.69°. CONCLUSIONS U-HRCT is capable of delineating fine structures of the stapes and provides linear data on dimensions of the stapes, which could be helpful for detecting stapes disease and making individualized surgical plans in the clinical setting.
Collapse
Affiliation(s)
- Ruowei Tang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hongxia Yin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhengyu Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Li Zhang
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
10
|
Precise Evaluation of the Cochlear Duct Length by Flat-panel Volume Computed Tomography (fpVCT)-Implication of Secondary Reconstructions. Otol Neurotol 2021; 42:e294-e303. [PMID: 33555750 DOI: 10.1097/mao.0000000000002951] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Flat-panel volume computed tomography (fpVCT) and secondary reconstruction allow for more accurate measurements of two-turn length (2TL), cochlear duct length (CDL), and angular length (AL). BACKGROUND Cochlear geometry is a controversially debated topic. In the meantime, there are many different studies partly reporting highly divergent values. Our aim is to discuss the differences and to propose a radiological possibility to improve cochlear measurements using 3D-curved multiplanar reconstruction and fpVCT. METHODS Performing different image modalities and settings, we tried to find a clinically usable option that allows for a high degree of accuracy. Therefore, we tested them against reference values of high-definition micro-computed tomography. RESULTS Comparison of 99 μm slice thickness secondary reconstruction of fpVCT and reference showed no significant differences for 2TL and CDL (p ≥ 0.05). Accordingly, ICC (intraclass correlation) values were excellent (ICC ≥ 0.75; lower limit of confidence interval [CI] ≥ 0.75; Cronbach's alpha [α] ≥ 0.9). Evaluating AL, there was a significant difference (difference: -17.27°; p = 0.002). The lower limit of the CI of the ICC was unacceptable (ICC = 0.944; lower limit of CI = 0.248; α = 0.990). Regarding the Bland-Altman plots, there were no clinically unacceptable errors, but a systematic underestimation of AL. CONCLUSION Secondary reconstruction is a suitable tool for producing reliable data that allow the accurate measurement of 2TL and CDL. The option of generating these reconstructions from raw data limits the need for higher radiation doses. Nevertheless, there is an underestimation of AL using secondary reconstructions.
Collapse
|
11
|
Conte G, Casale S, Caschera L, Lo Russo FM, Paolella C, Cinnante C, Berardino FD, Zanetti D, Stocchetti D, Scola E, Bassi L, Triulzi F. Assessment of the Membranous Labyrinth in Infants Using a Heavily T2-weighted 3D FLAIR Sequence without Contrast Agent Administration. AJNR Am J Neuroradiol 2021; 42:377-381. [PMID: 33509916 DOI: 10.3174/ajnr.a6876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Imaging is fundamental to assessing the acoustic pathway in infants with congenital deafness. We describe our depiction of the membranous labyrinth in infants using the heavily T2-weighted 3D FLAIR sequence without a contrast agent. MATERIALS AND METHODS We retrospectively reviewed 10 infants (20 ears) (median term equivalent age: 2 weeks; IQR: 1-5 weeks) who had undergone brain MR imaging including a noncontrast heavily T2-weighted 3D FLAIR scan of the temporal bone. For each ear, 3 observers analyzed, in consensus, the saccule, the utricle, and the 3 ampullae, assessing the visibility (score 0, not appreciable; score 1, visible without well-defined boundaries; score 2, visible with well-defined boundaries) and morphology ("expected" or "unexpected" compared with adults). The heavily T2-weighted 3D FLAIR sequence was scored for overall quality (score 0, inadequate; score 1, adequate but with the presence of image degradation; score 2, adequate). RESULTS Six (60%) MR examinations were considered adequate (score 1 or 2). The saccule was visible in 10 ears (83.3%) with an expected morphology in 9 ears (90%). In 1 ear of an infant with congenital deafness, the saccule showed an unexpected morphology. The utricle was visible as expected in 12 ears (100%). The lateral ampulla was visible in 5 ears (41.6%), the superior ampulla was visible in 6 ears (50.0%), and the posterior ampulla was visible in 6 ears (50.0%), always with expected morphology (100%). CONCLUSIONS MR imaging can depict the membranous labyrinth in infants using heavily T2-weighted 3D FLAIR without an injected contrast agent, but the sequence acquisition time reduces its feasibility in infants undergoing MR studies during natural sleep.
Collapse
Affiliation(s)
- G Conte
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - S Casale
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - L Caschera
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - F M Lo Russo
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - C Paolella
- Department of Advanced Biomedical Sciences (C.P.), University of Naples "Federico II," Naples, Italy
| | - C Cinnante
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | | | | | - D Stocchetti
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - E Scola
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.)
| | - L Bassi
- NICU (L.B.), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Università degli Studi di Milano, Milan, Italy
| | - F Triulzi
- From the Neuroradiology Unit (G.C., S.C., L.C., F.M.L.R., C.C., D.S., E.S., F.T.).,Department of Pathophysiology and Transplantation (F.T.), University of Milan, Milan, Italy
| |
Collapse
|
12
|
Touska P, Connor S. Imaging of the temporal bone. Clin Radiol 2020; 75:658-674. [DOI: 10.1016/j.crad.2020.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
|
13
|
Evaluation of artifacts of cochlear implant electrodes in cone beam computed tomography. Eur Arch Otorhinolaryngol 2020; 278:1381-1386. [PMID: 32671538 PMCID: PMC8057993 DOI: 10.1007/s00405-020-06198-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
Purpose Cone Beam Computed Tomography (CBCT) offers a valid alternative to conventional Computed Tomography (CT). A possible radiation dose reduction with the use of CBCT in postoperative imaging of CIs is of great importance. Whether the visualization of Cochlear Implant (CI) electrodes in CBCT correlates with the radiation dose applied was investigated in this study. Methods We compared the visualization quality of Contour Advance CIs to Straight CIs from Cochlear using CBCT with varying tube parameters on whole-head specimen. Results The internal diameter of the cochlea decreases from base to apex, resulting in a significantly different intracochlear positioning of the two tested CI models. While electrodes of the Contour Advance series are located close to the modiolus, thus closer to the spiral ganglion neurons, those of the Straight series are located further away. The artifact portion of the electrode amounts to 50–70% of the radiological diameter of the electrode. An increase in artifact portion from the base (electrode #1 approx. 50%) to the apex (electrode #20 approx. 70%) of the cochlea was observed. The visualization of electrodes in the medial and apical part of the cochlea is limited due to artifact overlapping. There was no correlation between the artifact size and the applied radiation dose. Conclusion The results indicate that a reduction of the radiation dose by up to 45% of the currently applied radiation dose of standard protocols would be possible. Investigations of the effects on subjective image quality still need to be performed.
Collapse
|
14
|
Zanoletti E, Mazzoni A, Martini A, Abbritti RV, Albertini R, Alexandre E, Baro V, Bartolini S, Bernardeschi D, Bivona R, Bonali M, Borghesi I, Borsetto D, Bovo R, Breun M, Calbucci F, Carlson ML, Caruso A, Cayé-Thomasen P, Cazzador D, Champagne PO, Colangeli R, Conte G, D'Avella D, Danesi G, Deantonio L, Denaro L, Di Berardino F, Draghi R, Ebner FH, Favaretto N, Ferri G, Fioravanti A, Froelich S, Giannuzzi A, Girasoli L, Grossardt BR, Guidi M, Hagen R, Hanakita S, Hardy DG, Iglesias VC, Jefferies S, Jia H, Kalamarides M, Kanaan IN, Krengli M, Landi A, Lauda L, Lepera D, Lieber S, Lloyd SLK, Lovato A, Maccarrone F, Macfarlane R, Magnan J, Magnoni L, Marchioni D, Marinelli JP, Marioni G, Mastronardi V, Matthies C, Moffat DA, Munari S, Nardone M, Pareschi R, Pavone C, Piccirillo E, Piras G, Presutti L, Restivo G, Reznitsky M, Roca E, Russo A, Sanna M, Sartori L, Scheich M, Shehata-Dieler W, Soloperto D, Sorrentino F, Sterkers O, Taibah A, Tatagiba M, Tealdo G, Vlad D, Wu H, Zanetti D. Surgery of the lateral skull base: a 50-year endeavour. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2019; 39:S1-S146. [PMID: 31130732 PMCID: PMC6540636 DOI: 10.14639/0392-100x-suppl.1-39-2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Disregarding the widely used division of skull base into anterior and lateral, since the skull base should be conceived as a single anatomic structure, it was to our convenience to group all those approaches that run from the antero-lateral, pure lateral and postero-lateral side of the skull base as “Surgery of the lateral skull base”. “50 years of endeavour” points to the great effort which has been made over the last decades, when more and more difficult surgeries were performed by reducing morbidity. The principle of lateral skull base surgery, “remove skull base bone to approach the base itself and the adjacent sites of the endo-esocranium”, was then combined with function preservation and with tailoring surgery to the pathology. The concept that histology dictates the extent of resection, balancing the intrinsic morbidity of each approach was the object of the first section of the present report. The main surgical approaches were described in the second section and were conceived not as a step-by-step description of technique, but as the highlighthening of the surgical principles. The third section was centered on open issues related to the tumor and its treatment. The topic of vestibular schwannoma was investigated with the current debate on observation, hearing preservation surgery, hearing rehabilitation, radiotherapy and the recent efforts to detect biological markers able to predict tumor growth. Jugular foramen paragangliomas were treated in the frame of radical or partial surgery, radiotherapy, partial “tailored” surgery and observation. Surgery on meningioma was debated from the point of view of the neurosurgeon and of the otologist. Endolymphatic sac tumors and malignant tumors of the external auditory canal were also treated, as well as chordomas, chondrosarcomas and petrous bone cholesteatomas. Finally, the fourth section focused on free-choice topics which were assigned to aknowledged experts. The aim of this work was attempting to report the state of the art of the lateral skull base surgery after 50 years of hard work and, above all, to raise questions on those issues which still need an answer, as to allow progress in knowledge through sharing of various experiences. At the end of the reading, if more doubts remain rather than certainties, the aim of this work will probably be achieved.
Collapse
Affiliation(s)
- E Zanoletti
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - A Mazzoni
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - A Martini
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - R V Abbritti
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | | | - E Alexandre
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - V Baro
- Academic Neurosurgery, Department of Neuroscience DNS, University of Padova Medical School, Padova, Italy
| | - S Bartolini
- Neurosurgery, Bellaria Hospital, Bologna, Italy
| | - D Bernardeschi
- AP-HP, Groupe Hôspital-Universitaire Pitié-Salpêtrière, Neuro-Sensory Surgical Department and NF2 Rare Disease Centre, Paris, France
- Sorbonne Université, Paris, France
| | - R Bivona
- ENT and Skull-Base Surgery Department, Department of Neurosciences, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - M Bonali
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Modena, Italy
| | - I Borghesi
- Neurosurgery, Maria Cecilia Hospital, Cotignola (RA), Italy
| | - D Borsetto
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - R Bovo
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - M Breun
- Department of Neurosurgery, Julius Maximilians University Hospital Würzburg, Bavaria, Germany
| | - F Calbucci
- Neurosurgery, Maria Cecilia Hospital, Cotignola (RA), Italy
| | - M L Carlson
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - A Caruso
- Gruppo Otologico, Piacenza-Rome, Italy
| | - P Cayé-Thomasen
- The Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - D Cazzador
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
- Department of Neuroscience DNS, Section of Human Anatomy, Padova University, Padova, Italy
| | - P-O Champagne
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | - R Colangeli
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - G Conte
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - D D'Avella
- Academic Neurosurgery, Department of Neuroscience DNS, University of Padova Medical School, Padova, Italy
| | - G Danesi
- ENT and Skull-Base Surgery Department, Department of Neurosciences, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - L Deantonio
- Department of Radiation Oncology, University Hospital Maggiore della Carità, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - L Denaro
- Academic Neurosurgery, Department of Neuroscience DNS, University of Padova Medical School, Padova, Italy
| | - F Di Berardino
- Unit of Audiology, Department of Clinical Sciences and Community Health, University of Milano, Italy
- Department of Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - R Draghi
- Neurosurgery, Maria Cecilia Hospital, Cotignola (RA), Italy
| | - F H Ebner
- Department of Neurosurgery, Eberhard Karls University Tübingen, Germany
| | - N Favaretto
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - G Ferri
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Modena, Italy
| | | | - S Froelich
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | | | - L Girasoli
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - B R Grossardt
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - M Guidi
- Gruppo Otologico, Piacenza-Rome, Italy
| | - R Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, "Julius-Maximilians" University Hospital of Würzburg, Bavaria, Germany
| | - S Hanakita
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | - D G Hardy
- Department of Neurosurgery, Cambridge University Hospital, Cambridge, UK
| | - V C Iglesias
- ENT and Skull-Base Surgery Department, Department of Neurosciences, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - S Jefferies
- Oncology Department, Cambridge University Hospital, Cambridge, UK
| | - H Jia
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninh People's Hospital, Shanghai Jiatong University School of Medicine, China
| | - M Kalamarides
- AP-HP, Groupe Hôspital-Universitaire Pitié-Salpêtrière, Neuro-Sensory Surgical Department and NF2 Rare Disease Centre, Paris, France
- Sorbonne Université, Paris, France
| | - I N Kanaan
- Department of Neurosciences, King Faisal Specialist Hospital & Research Center, Alfaisal University, College of Medicine, Riyadh, KSA
| | - M Krengli
- Department of Radiation Oncology, University Hospital Maggiore della Carità, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - A Landi
- Academic Neurosurgery, Department of Neuroscience DNS, University of Padova Medical School, Padova, Italy
| | - L Lauda
- Gruppo Otologico, Piacenza-Rome, Italy
| | - D Lepera
- ENT & Skull-Base Department, Ospedale Nuovo di Legnano, Legnano (MI), Italy
| | - S Lieber
- Department of Neurosurgery, Eberhard Karls University Tübingen, Germany
| | - S L K Lloyd
- Department of Neuro-Otology and Skull-Base Surgery Manchester Royal Infirmary, Manchester, UK
| | - A Lovato
- Department of Neuroscience DNS, Audiology Unit, Padova University, Treviso, Italy
| | - F Maccarrone
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Modena, Italy
| | - R Macfarlane
- Department of Neurosurgery, Cambridge University Hospital, Cambridge, UK
| | - J Magnan
- University Aix-Marseille, France
| | - L Magnoni
- Unit of Audiology, Department of Clinical Sciences and Community Health, University of Milano, Italy
- Department of Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - D Marchioni
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Verona, Italy
| | | | - G Marioni
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | | | - C Matthies
- Department of Neurosurgery, Julius Maximilians University Hospital Würzburg, Bavaria, Germany
| | - D A Moffat
- Department of Neuro-otology and Skull Base Surgery, Cambridge University Hospital, Cambridge, UK
| | - S Munari
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - M Nardone
- ENT Department, Treviglio (BG), Italy
| | - R Pareschi
- ENT & Skull-Base Department, Ospedale Nuovo di Legnano, Legnano (MI), Italy
| | - C Pavone
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | | | - G Piras
- Gruppo Otologico, Piacenza-Rome, Italy
| | - L Presutti
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Modena, Italy
| | - G Restivo
- ENT and Skull-Base Surgery Department, Department of Neurosciences, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - M Reznitsky
- The Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - E Roca
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | - A Russo
- Gruppo Otologico, Piacenza-Rome, Italy
| | - M Sanna
- Gruppo Otologico, Piacenza-Rome, Italy
| | - L Sartori
- Academic Neurosurgery, Department of Neuroscience DNS, University of Padova Medical School, Padova, Italy
| | - M Scheich
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, "Julius-Maximilians" University Hospital of Würzburg, Bavaria, Germany
| | - W Shehata-Dieler
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, "Julius-Maximilians" University Hospital of Würzburg, Bavaria, Germany
| | - D Soloperto
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Verona, Italy
| | - F Sorrentino
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - O Sterkers
- AP-HP, Groupe Hôspital-Universitaire Pitié-Salpêtrière, Neuro-Sensory Surgical Department and NF2 Rare Disease Centre, Paris, France
- Sorbonne Université, Paris, France
| | - A Taibah
- Gruppo Otologico, Piacenza-Rome, Italy
| | - M Tatagiba
- Department of Neurosurgery, Eberhard Karls University Tübingen, Germany
| | - G Tealdo
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - D Vlad
- Gruppo Otologico, Piacenza-Rome, Italy
| | - H Wu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninh People's Hospital, Shanghai Jiatong University School of Medicine, China
| | - D Zanetti
- Unit of Audiology, Department of Clinical Sciences and Community Health, University of Milano, Italy
- Department of Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
15
|
Flat-panel CT versus 128-slice CT in temporal bone imaging: Assessment of image quality and radiation dose. Eur J Radiol 2018; 106:106-113. [DOI: 10.1016/j.ejrad.2018.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/08/2018] [Accepted: 07/14/2018] [Indexed: 11/18/2022]
|