1
|
Morin A, Chu CP, Pavlidis P. Identifying reproducible transcription regulator coexpression patterns with single cell transcriptomics. PLoS Comput Biol 2025; 21:e1012962. [PMID: 40257984 PMCID: PMC12011263 DOI: 10.1371/journal.pcbi.1012962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/13/2025] [Indexed: 04/23/2025] Open
Abstract
The proliferation of single cell transcriptomics has potentiated our ability to unveil patterns that reflect dynamic cellular processes such as the regulation of gene transcription. In this study, we leverage a broad collection of single cell RNA-seq data to identify the gene partners whose expression is most coordinated with each human and mouse transcription regulator (TR). We assembled 120 human and 103 mouse scRNA-seq datasets from the literature (>28 million cells), constructing a single cell coexpression network for each. We aimed to understand the consistency of TR coexpression profiles across a broad sampling of biological contexts, rather than examine the preservation of context-specific signals. Our workflow therefore explicitly prioritizes the patterns that are most reproducible across cell types. Towards this goal, we characterize the similarity of each TR's coexpression within and across species. We create single cell coexpression rankings for each TR, demonstrating that this aggregated information recovers literature curated targets on par with ChIP-seq data. We then combine the coexpression and ChIP-seq information to identify candidate regulatory interactions supported across methods and species. Finally, we highlight interactions for the important neural TR ASCL1 to demonstrate how our compiled information can be adopted for community use.
Collapse
Affiliation(s)
- Alexander Morin
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ching Pan Chu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Morin A, Chu CP, Pavlidis P. Identifying Reproducible Transcription Regulator Coexpression Patterns with Single Cell Transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.15.580581. [PMID: 38559016 PMCID: PMC10979919 DOI: 10.1101/2024.02.15.580581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The proliferation of single cell transcriptomics has potentiated our ability to unveil patterns that reflect dynamic cellular processes such as the regulation of gene transcription. In this study, we leverage a broad collection of single cell RNA-seq data to identify the gene partners whose expression is most coordinated with each human and mouse transcription regulator (TR). We assembled 120 human and 103 mouse scRNA-seq datasets from the literature (>28 million cells), constructing a single cell coexpression network for each. We aimed to understand the consistency of TR coexpression profiles across a broad sampling of biological contexts, rather than examine the preservation of context-specific signals. Our workflow therefore explicitly prioritizes the patterns that are most reproducible across cell types. Towards this goal, we characterize the similarity of each TR's coexpression within and across species. We create single cell coexpression rankings for each TR, demonstrating that this aggregated information recovers literature curated targets on par with ChIP-seq data. We then combine the coexpression and ChIP-seq information to identify candidate regulatory interactions supported across methods and species. Finally, we highlight interactions for the important neural TR ASCL1 to demonstrate how our compiled information can be adopted for community use.
Collapse
Affiliation(s)
- Alexander Morin
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - C. Pan Chu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Power P, Straehla JP, Fangusaro J, Bandopadhayay P, Manoharan N. Pediatric neuro-oncology: Highlights of the last quarter-century. Neoplasia 2025; 59:101098. [PMID: 39637686 DOI: 10.1016/j.neo.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The last quarter century has heralded dramatic changes in the field of pediatric neuro-oncology, with the era defined by profound developments in the understanding of the biological underpinnings of childhood central nervous system (CNS) tumors and translational therapeutics. Although there have been momentous strides forward in biologic, diagnostic, therapeutic, and experimental domains, considerable challenges remain and CNS tumors remain the leading cause of pediatric cancer-related mortality. Here, we review the significant advances in the field of pediatric neuro-oncology over the last 25 years and highlight ongoing hurdles facing future progress.
Collapse
Affiliation(s)
- Phoebe Power
- Department of Pediatric Oncology, Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Cambridge, MA, USA
| | - Joelle P Straehla
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA; Aflac Cancer Center, Atlanta, GA, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neevika Manoharan
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia; Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
4
|
Iacoban CG, Ramaglia A, Severino M, Tortora D, Resaz M, Parodi C, Piccardo A, Rossi A. Advanced imaging techniques and non-invasive biomarkers in pediatric brain tumors: state of the art. Neuroradiology 2024; 66:2093-2116. [PMID: 39382639 DOI: 10.1007/s00234-024-03476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
In the pediatric age group, brain neoplasms are the second most common tumor category after leukemia, with an annual incidence of 6.13 per 100,000. Conventional MRI sequences, complemented by CT whenever necessary, are fundamental for the initial diagnosis and surgical planning as well as for post-operative evaluations, assessment of response to treatment, and surveillance; however, they have limitations, especially concerning histopathologic or biomolecular phenotyping and grading. In recent years, several advanced MRI sequences, including diffusion-weighted imaging, diffusion tensor imaging, arterial spin labelling (ASL) perfusion, and MR spectroscopy, have emerged as a powerful aid to diagnosis as well as prognostication; furthermore, other techniques such as diffusion kurtosis, amide proton transfer imaging, and MR elastography are being translated from the research environment to clinical practice. Molecular imaging, especially PET with amino-acid tracers, complement MRI in several aspects, including biopsy targeting and outcome prediction. Finally, radiomics with radiogenomics are opening entirely new perspectives for a quantitative approach aiming at identifying biomarkers that can be used for personalized, precision management strategies.
Collapse
Affiliation(s)
| | - Antonia Ramaglia
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Martina Resaz
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Costanza Parodi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| |
Collapse
|
5
|
Nabavizadeh A, Barkovich MJ, Mian A, Ngo V, Kazerooni AF, Villanueva-Meyer JE. Current state of pediatric neuro-oncology imaging, challenges and future directions. Neoplasia 2023; 37:100886. [PMID: 36774835 PMCID: PMC9945752 DOI: 10.1016/j.neo.2023.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Imaging plays a central role in neuro-oncology including primary diagnosis, treatment planning, and surveillance of tumors. The emergence of quantitative imaging and radiomics provided an uprecedented opportunity to compile mineable databases that can be utilized in a variety of applications. In this review, we aim to summarize the current state of conventional and advanced imaging techniques, standardization efforts, fast protocols, contrast and sedation in pediatric neuro-oncologic imaging, radiomics-radiogenomics, multi-omics and molecular imaging approaches. We will also address the existing challenges and discuss future directions.
Collapse
Affiliation(s)
- Ali Nabavizadeh
- Department of Radiology, Hospital of University of Pennsylvania, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | - Matthew J Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Ali Mian
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri, USA
| | - Van Ngo
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Proton MR Spectroscopy of Pediatric Brain Disorders. Diagnostics (Basel) 2022; 12:diagnostics12061462. [PMID: 35741272 PMCID: PMC9222059 DOI: 10.3390/diagnostics12061462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
In vivo MR spectroscopy is a non -invasive methodology that provides information about the biochemistry of tissues. It is available as a “push-button” application on state-of-the-art clinical MR scanners. MR spectroscopy has been used to study various brain diseases including tumors, stroke, trauma, degenerative disorders, epilepsy/seizures, inborn errors, neuropsychiatric disorders, and others. The purpose of this review is to provide an overview of MR spectroscopy findings in the pediatric population and its clinical use.
Collapse
|
7
|
Whitehead MT, Bluml S. Proton and Multinuclear Spectroscopy of the Pediatric Brain. Magn Reson Imaging Clin N Am 2021; 29:543-555. [PMID: 34717844 DOI: 10.1016/j.mric.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is a valuable adjunct to structural brain imaging. State-of-the-art MRS has benefited greatly from recent technical advancements. Neurometabolic alterations in pediatric brain diseases have implications for diagnosis, prognosis, and therapy. Herein, the authors discuss MRS technical considerations and applications in the setting of various pediatric disease processes including tumors, metabolic diseases, hypoxic/ischemic encephalopathy/stroke, epilepsy, demyelinating disease, and infection.
Collapse
Affiliation(s)
- Matthew T Whitehead
- Department of Radiology, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA; Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA; The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Stefan Bluml
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 450 Sunset Boulevard, Los Angeles, CA 90027, USA; Rudi Schulte Research Institute, Santa Barbara, CA, USA
| |
Collapse
|