1
|
Esgul N, Orhan Varoglu A, Baysal B. Association of gray and white matter volumes, clinical features, neurofilament light chain, and glial fibrillary acidic protein in relapsing-remitting multiple sclerosis. Acta Radiol 2025; 66:470-476. [PMID: 40012414 DOI: 10.1177/02841851241305738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
BackgroundNumerous studies have examined the prognosis of patients with relapsing-remitting multiple sclerosis (RRMS).PurposeTo seek a relationship between the gray matter/white matter (GM/WM) volume ratio, clinical features, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in RRMS.Material and MethodsA total of 61 patients aged 18-70 years with RRMS and 20 controls were included. Neurological examinations were noted at the first attack and last visit. Blood samples were taken in remission.ResultsPatients' WM volume was lower and the GM/WM volume ratio was larger than in the controls (P < 0.001). Patients' WM correlated with GM volume (P < 0.001, r = 0.608). WM correlated with GM/WM volume ratio (P < 0.001, r = -0.632). For NfL and GFAP, no difference was found between patients and controls. Patients' NfL correlated with GFAP (P < 0.001, r = 0.452). Age and disease duration were correlated with Gfap (P < 0.001, r = 0.434; P < 0.002, r = 0.381). No correlation was found between NfL/GFAP levels and all volumetric measurements of patients. Higher Expanded Disability Status Scale (EDSS), lower GM and WM volumes, and greater GM/WM volume ratio were detected in patients with the first pyramidal findings (P < 0.001).ConclusionPatients' NfL and GFAP levels were lower than in controls and did not correlate with all volumes. GFAP is more informative, particularly in patients of advanced age and those with longstanding diseases. Higher EDSS and decreased GM and WM volumes were seen in patients with pyramidal symptoms at the first attack.
Collapse
Affiliation(s)
- Neslihan Esgul
- Department of Neurology, Istanbul Medeniyet University, Goztepe Training, and Research Hospital, Goztepe, Istanbul, Turkey
| | - Asuman Orhan Varoglu
- Department of Neurology, Istanbul Medeniyet University, Goztepe Training, and Research Hospital, Goztepe, Istanbul, Turkey
| | - Begumhan Baysal
- Department of Radiology, Istanbul Medeniyet University, Goztepe Training, and Research Hospital, Goztepe, Istanbul, Turkey
| |
Collapse
|
2
|
Gaubert M, Combès B, Bannier E, Masson A, Caron V, Baudron G, Ferré JC, Michel L, Le Page E, Stankoff B, Edan G, Bodini B, Kerbrat A. Microstructural Damage and Repair in the Spinal Cord of Patients With Early Multiple Sclerosis and Association With Disability at 5 Years. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200333. [PMID: 39571137 PMCID: PMC11587990 DOI: 10.1212/nxi.0000000000200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/01/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND AND OBJECTIVES The dynamics of microstructural spinal cord (SC) damage and repair in people with multiple sclerosis (pwMS) and their clinical relevance have yet to be explored. We set out to describe patient-specific profiles of microstructural SC damage and change during the first year after MS diagnosis and to investigate their associations with disability and SC atrophy at 5 years. METHODS We performed a longitudinal monocentric cohort study among patients with relapsing-remitting MS: first relapse <1 year, no relapse <1 month, and high initial severity on MRI (>9 T2 lesions on brain MRI and/or initial myelitis). pwMS and age-matched healthy controls (HCs) underwent cervical SC magnetization transfer (MT) imaging at baseline and at 1 year for pwMS. Based on HC data, SC MT ratio z-score maps were computed for each person with MS. An index of microstructural damage was calculated as the proportion of voxels classified as normal at baseline and identified as damaged after 1 year. Similarly, an index of repair was also calculated (voxels classified as damaged at baseline and as normal after 1 year). Linear models including these indices and disability or SC cross-sectional area (CSA) change between baseline and 5 years were implemented. RESULTS Thirty-seven patients and 19 HCs were included. We observed considerable variability in the extent of microstructural SC damage at baseline (0%-58% of SC voxels). We also observed considerable variability in damage and repair indices over 1 year (0%-31% and 0%-20%), with 18 patients showing predominance of damage and 18 predominance of repair. The index of microstructural damage was associated positively with the Expanded Disability Status Scale score (r = 0.504, p = 0.002) and negatively with CSA change (r = -0.416, p = 0.02) at 5 years, independent of baseline SC lesion volume. DISCUSSION People with early relapsing-remitting MS exhibited heterogeneous profiles of microstructural SC damage and repair. Progression of microstructural damage was associated with disability progression and SC atrophy 5 years later. These results indicate a potential for microstructural repair in the SC to prevent disability progression in pwMS.
Collapse
Affiliation(s)
- Malo Gaubert
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Benoit Combès
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Elise Bannier
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Arthur Masson
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Vivien Caron
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Gaëlle Baudron
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Jean-Christophe Ferré
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Laure Michel
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Emmanuelle Le Page
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Bruno Stankoff
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Gilles Edan
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Benedetta Bodini
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Anne Kerbrat
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| |
Collapse
|
3
|
Naghizadeh Kashani S, Vel I, Sadeghi Adl Z, Shahrampour S, Middleton D, Alizadeh M, Krisa L, Faro S, Tounekti S, Cohen‐Adad J, Mohamed FB. Magnetization Transfer Ratio in the Typically Developing Pediatric Spinal Cord: Normative Data and Age Correlation. J Neuroimaging 2025; 35:e70019. [PMID: 39923194 PMCID: PMC11807365 DOI: 10.1111/jon.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND AND PURPOSE This study presents automated atlas-based magnetization transfer (MT) measurements of the typically developing pediatric cervical spinal cord (SC). We report normative MT ratio (MTR) values from the whole cervical cord white matter (WM) and WM tracts, examining variations with age, sex, height, and weight. METHODS MT scans of 33 healthy females (mean age = 12.8) and 22 males (mean age = 13.09) were acquired from the cervical SC (C2-C7) using a 3.0 T MRI. Data were processed using the SC Toolbox, segmented, and registered to the PAM50 template. Affine and non-rigid transformations co-registered the PAM50 WM atlas to subject-specific space. MTRs were measured for the specific WM tracts (left and right dorsal fasciculus gracilis, dorsal fasciculus cuneatus, and lateral corticospinal tracts [LCST]) and the whole WM. Descriptive statistics, correlation analysis, and unpaired t-tests (p < 0.05) assessed relationships with age, height, weight, and sex. RESULTS Normative MTR measurements were obtained from all regions. The coefficients of variation were low to moderate. No significant differences (p > 0.05) were found across all the cervical levels. However, significant sex differences were observed in whole WM (p = 0.04) and LCST (p = 0.03). MTR values correlated positively with age, with significant correlations at C5 (r = 0.3, p false discovery rate = 0.04). A decreasing trend in MTR values across levels was found for whole WM (r = -0.2, p < 0.001). CONCLUSIONS This study provides an understanding of MTR values in pediatric cervical SC and their variations by sex, age, height, and weight, providing a baseline for comparisons in pediatric SC diseases.
Collapse
Affiliation(s)
- Sara Naghizadeh Kashani
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Iswarya Vel
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Zahra Sadeghi Adl
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Shiva Shahrampour
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Devon Middleton
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Mahdi Alizadeh
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of NeurosurgeryJefferson Integrated Magnetic Resonance Imaging CenterPhiladelphiaPennsylvaniaUSA
- Department of RadiologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Laura Krisa
- Department of Physical Therapy, Jefferson College of Rehabilitation SciencesThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Scott Faro
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Slimane Tounekti
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Institute of Biomedical EngineeringPolytechnique MontrealMontrealQuebecCanada
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Keegan BM, Absinta M, Cohen-Adad J, Flanagan EP, Henry RG, Klawiter EC, Kolind S, Krieger S, Laule C, Lincoln JA, Messina S, Oh J, Papinutto N, Smith SA, Traboulsee A. Spinal cord evaluation in multiple sclerosis: clinical and radiological associations, present and future. Brain Commun 2024; 6:fcae395. [PMID: 39611182 PMCID: PMC11604059 DOI: 10.1093/braincomms/fcae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Spinal cord disease is important in most people with multiple sclerosis, but assessment remains less emphasized in patient care, basic and clinical research and therapeutic trials. The North American Imaging in Multiple Sclerosis Spinal Cord Interest Group was formed to determine and present the contemporary landscape of multiple sclerosis spinal cord evaluation, further existing and advanced spinal cord imaging techniques, and foster collaborative work. Important themes arose: (i) multiple sclerosis spinal cord lesions (differential diagnosis, association with clinical course); (ii) spinal cord radiological-pathological associations; (iii) 'critical' spinal cord lesions; (iv) multiple sclerosis topographical model; (v) spinal cord atrophy; and (vi) automated and special imaging techniques. Distinguishing multiple sclerosis from other myelopathic aetiology is increasingly refined by imaging and serological studies. Post-mortem spinal cord findings and MRI pathological correlative studies demonstrate MRI's high sensitivity in detecting microstructural demyelination and axonal loss. Spinal leptomeninges include immune inflammatory infiltrates, some in B-cell lymphoid-like structures. 'Critical' demyelinating lesions along spinal cord corticospinal tracts are anatomically consistent with and may be disproportionately associated with motor progression. Multiple sclerosis topographical model implicates the spinal cord as an area where threshold impairment associates with multiple sclerosis disability. Progressive spinal cord atrophy and 'silent' multiple sclerosis progression may be emerging as an important multiple sclerosis prognostic biomarker. Manual atrophy assessment is complicated by rater bias, while automation (e.g. Spinal Cord Toolbox), and artificial intelligence may reduce this. Collaborative research by the North American Imaging in Multiple Sclerosis and similar groups with experts combining distinct strengths is key to advancing assessment and treatment of people with multiple sclerosis spinal cord disease.
Collapse
Affiliation(s)
- B Mark Keegan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Julien Cohen-Adad
- Institute of Biomedical Imaging, Polytechnique Montreal, Montreal, Canada H3T 1J4
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Roland G Henry
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric C Klawiter
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon Kolind
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - Stephen Krieger
- Department of Neurology, Mount Sinai, New York City, NY 10029, USA
| | - Cornelia Laule
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - John A Lincoln
- McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Steven Messina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiwon Oh
- Division of Neurology, University of Toronto, Toronto, Canada M5B 1W8
| | - Nico Papinutto
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Seth Aaron Smith
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Anthony Traboulsee
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| |
Collapse
|
5
|
Morris S, Swift-LaPointe T, Yung A, Prevost V, George S, Bauman A, Kozlowski P, Samadi-Bahrami Z, Fournier C, Mattu PS, Parker L, Streijger F, Hirsch-Reinshagen V, Moore GRW, Kwon BK, Laule C. Advanced Magnetic Resonance Imaging Biomarkers of the Injured Spinal Cord: A Comparative Study of Imaging and Histology in Human Traumatic Spinal Cord Injury. J Neurotrauma 2024; 41:1223-1239. [PMID: 38318802 DOI: 10.1089/neu.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
A significant problem in the diagnosis and management of traumatic spinal cord injury (tSCI) is the heterogeneity of secondary injury and the prediction of neurological outcome. Imaging biomarkers specific to myelin loss and inflammation after tSCI would enable detailed assessment of the pathophysiological processes underpinning secondary damage to the cord. Such biomarkers could be used to biologically stratify injury severity and better inform prognosis for neurological recovery. While much work has been done to establish magnetic resonance imaging (MRI) biomarkers for SCI in animal models, the relationship between imaging findings and the underlying pathology has been difficult to discern in human tSCI because of the paucity of human spinal cord tissue. We utilized post-mortem spinal cords from individuals who had a tSCI to examine this relationship by performing ex vivo MRI scans before histological analysis. We investigated the correlation between the histological distribution of myelin loss and inflammatory cells in the injured spinal cord and a number of myelin and inflammation-sensitive MRI measures: myelin water fraction (MWF), inhomogeneous magnetization transfer ratio (ihMTR), and diffusion tensor and diffusion kurtosis imaging-derived fractional anisotropy (FA) and axial, radial, and mean diffusivity (AD, RD, MD). The histological features were analyzed by staining with Luxol Fast Blue (LFB) for myelin lipids and Class II major histocompatibility complex (Class II MHC) and CD68 for microglia and macrophages. Both MWF and ihMTR were strongly correlated with LFB staining for myelin, supporting the use of both as biomarkers for myelin loss after SCI. A decrease in ihMTR was also correlated with the presence of Class II MHC positive immune cells. FA and RD correlated with both Class II MHC and CD68 and may therefore be useful biomarkers for inflammation after tSCI. Our work demonstrates the utility of advanced MRI techniques sensitive to biological tissue damage after tSCI, which is an important step toward using these MRI techniques in the clinic to aid in decision-making.
Collapse
Affiliation(s)
- Sarah Morris
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Taylor Swift-LaPointe
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Valentin Prevost
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Shana George
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Andrew Bauman
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Zahra Samadi-Bahrami
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Caron Fournier
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | | | - Lisa Parker
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Veronica Hirsch-Reinshagen
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - G R Wayne Moore
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Vancouver, British Columbia, Canada
- Orthopaedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Cornelia Laule
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Chen LM, Wang F, Mishra A, Yang PF, Sengupta A, Reed JL, Gore JC. Longitudinal multiparametric MRI of traumatic spinal cord injury in animal models. Magn Reson Imaging 2023; 102:184-200. [PMID: 37343904 PMCID: PMC10528214 DOI: 10.1016/j.mri.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Multi-parametric MRI (mpMRI) technology enables non-invasive and quantitative assessments of the structural, molecular, and functional characteristics of various neurological diseases. Despite the recognized importance of studying spinal cord pathology, mpMRI applications in spinal cord research have been somewhat limited, partly due to technical challenges associated with spine imaging. However, advances in imaging techniques and improved image quality now allow longitudinal investigations of a comprehensive range of spinal cord pathological features by exploiting different endogenous MRI contrasts. This review summarizes the use of mpMRI techniques including blood oxygenation level-dependent (BOLD) functional MRI (fMRI), diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST) MRI in monitoring different aspects of spinal cord pathology. These aspects include cyst formation and axonal disruption, demyelination and remyelination, changes in the excitability of spinal grey matter and the integrity of intrinsic functional circuits, and non-specific molecular changes associated with secondary injury and neuroinflammation. These approaches are illustrated with reference to a nonhuman primate (NHP) model of traumatic cervical spinal cord injuries (SCI). We highlight the benefits of using NHP SCI models to guide future studies of human spinal cord pathology, and demonstrate how mpMRI can capture distinctive features of spinal cord pathology that were previously inaccessible. Furthermore, the development of mechanism-based MRI biomarkers from mpMRI studies can provide clinically useful imaging indices for understanding the mechanisms by which injured spinal cords progress and repair. These biomarkers can assist in the diagnosis, prognosis, and evaluation of therapies for SCI patients, potentially leading to improved outcomes.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
7
|
Alsop DC, Ercan E, Girard OM, Mackay AL, Michal CA, Varma G, Vinogradov E, Duhamel G. Inhomogeneous magnetization transfer imaging: Concepts and directions for further development. NMR IN BIOMEDICINE 2023; 36:e4808. [PMID: 35916067 DOI: 10.1002/nbm.4808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 05/23/2023]
Abstract
Off-resonance radio frequency irradiation can induce the ordering of proton spins in the dipolar fields of their neighbors, in molecules with restricted mobility. This dipolar order decays with a characteristic relaxation time, T1D , that is very different from the T1 and T2 relaxation of the nuclear alignment with the main magnetic field. Inhomogeneous magnetization transfer (ihMT) imaging is a refinement of magnetization transfer (MT) imaging that isolates the MT signal dependence on dipolar order relaxation times within motion-constrained molecules. Because T1D relaxation is a unique contrast mechanism, ihMT may enable improved characterization of tissue. Initial work has stressed the high correlation between ihMT signal and myelin density. Dipolar order relaxation appears to be much longer in membrane lipids than other molecules. Recent work has shown, however, that ihMT acquisitions may also be adjusted to emphasize different ranges of T1D . These newer approaches may be sensitive to other microstructural components of tissue. Here, we review the concepts and history of ihMT and outline the requirements for further development to realize its full potential.
Collapse
Affiliation(s)
- David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ece Ercan
- MR Clinical Science, Philips, Best, The Netherlands
| | | | - Alex L Mackay
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl A Michal
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gopal Varma
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Vinogradov
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
8
|
Taso M, Munsch F, Girard OM, Duhamel G, Alsop DC, Varma G. Fast-spin-echo versus rapid gradient-echo for 3D magnetization-prepared acquisitions: Application to inhomogeneous magnetization transfer. Magn Reson Med 2023; 89:550-564. [PMID: 36306334 PMCID: PMC10848167 DOI: 10.1002/mrm.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the benefits of fast spin echo (FSE) imaging over rapid gradient-echo (RAGE) for magnetization-prepared inhomogeneous magnetization transfer (ihMT) imaging. METHODS A 3D FSE sequence was modified to include an ihMT preparation (ihMT-FSE) with an optional CSF suppression based on an inversion-recovery (ihMT-FLAIR). After numeric simulations assessing SNR benefits of FSE and the potential impact of an additional inversion-recovery, ihMT-RAGE, ihMT-FSE, and ihMT-FLAIR sequences were compared in a group of six healthy volunteers, evaluating image quality, thermal, and physiological noise as well as quantification using an ihMT saturation (ihMTsat) approach. A preliminary exploration in the cervical spinal cord was also conducted in a group of three healthy volunteers. RESULTS Several fold improvements in thermal SNR were observed with ihMT-FSE in agreement with numerical simulations. However, we observed significantly higher physiological noise in ihMT-FSE compared to ihMT-RAGE that was mitigated in ihMT-FLAIR, which provided the best total SNR (+74% and +49% compared to ihMT-RAGE in the white and gray matter, P ≤ 0.004). IhMTsat quantification was successful in all cases with strong correlation between all sequences (r2 > 0.75). Early experiments showed potential for spinal cord imaging. CONCLUSIONS FSE generally offers higher SNR compared to gradient-echo based acquisitions for magnetization-prepared contrasts as illustrated here in the case of ihMT. However, physiological noise has a significant effect, but an inversion-recovery-based CSF suppression was shown to be efficient in mitigating effects of CSF motion.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Fanny Munsch
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | | | - David C. Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Gopal Varma
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Berg RC, Menegaux A, Amthor T, Gilbert G, Mora M, Schlaeger S, Pongratz V, Lauerer M, Sorg C, Doneva M, Vavasour I, Mühlau M, Preibisch C. Comparing myelin-sensitive magnetic resonance imaging measures and resulting g-ratios in healthy and multiple sclerosis brains. Neuroimage 2022; 264:119750. [PMID: 36379421 PMCID: PMC9931395 DOI: 10.1016/j.neuroimage.2022.119750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
The myelin concentration and the degree of myelination of nerve fibers can provide valuable information on the integrity of human brain tissue. Magnetic resonance imaging (MRI) of myelin-sensitive parameters can help to non-invasively evaluate demyelinating diseases such as multiple sclerosis (MS). Several different myelin-sensitive MRI methods have been proposed to determine measures of the degree of myelination, in particular the g-ratio. However, variability in underlying physical principles and different biological models influence measured myelin concentrations, and consequently g-ratio values. We therefore investigated similarities and differences between five different myelin-sensitive MRI measures and their effects on g-ratio mapping in the brains of both MS patients and healthy volunteers. We compared two different estimates of the myelin water fraction (MWF) as well as the inhomogeneous magnetization transfer ratio (ihMTR), magnetization transfer saturation (MTsat), and macromolecular tissue volume (MTV) in 13 patients with MS and 14 healthy controls. In combination with diffusion-weighted imaging, we derived g-ratio parameter maps for each of the five different myelin measures. The g-ratio values calculated from different myelin measures varied strongly, especially in MS lesions. While, compared to normal-appearing white matter, MTsat and one estimate of the MWF resulted in higher g-ratio values within lesions, ihMTR, MTV, and the second MWF estimate resulted in lower lesion g-ratio values. As myelin-sensitive measures provide rough estimates of myelin content rather than absolute myelin concentrations, resulting g-ratio values strongly depend on the utilized myelin measure and model used for g-ratio mapping. When comparing g-ratio values, it is, thus, important to utilize the same MRI methods and models or to consider methodological differences. Particular caution is necessary in pathological tissue such as MS lesions.
Collapse
Affiliation(s)
- Ronja C. Berg
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany,Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany,Corresponding author at: Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaninger Str. 22, 81675, München, Germany. (R.C. Berg)
| | - Aurore Menegaux
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany
| | | | | | - Maria Mora
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany
| | - Sarah Schlaeger
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany
| | - Viola Pongratz
- Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany
| | - Markus Lauerer
- Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany
| | - Christian Sorg
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany,Technical University of Munich, School of Medicine, Department of Psychiatry, Munich, Germany
| | | | - Irene Vavasour
- University of British Columbia, Department of Radiology, Vancouver, BC, Canada
| | - Mark Mühlau
- Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany,Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany
| |
Collapse
|
10
|
Combes AJE, Clarke MA, O'Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin 2022; 36:103244. [PMID: 36306717 PMCID: PMC9668663 DOI: 10.1016/j.nicl.2022.103244] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.
Collapse
Affiliation(s)
- Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States.
| | - Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Increasingly, therapeutic strategy in multiple sclerosis (MS) is informed by imaging and laboratory biomarkers, in addition to traditional clinical factors. Here, we review aspects of monitoring the efficacy and risks of disease-modifying therapy (DMT) with both conventional and emerging MRI and laboratory measures. RECENT FINDINGS The adoption of consensus-driven, stable MRI acquisition protocols and artificial intelligence-based, quantitative image analysis is heralding an era of precision monitoring of DMT efficacy. New MRI measures of compartmentalized inflammation, neuro-degeneration and repair complement traditional metrics but require validation before use in individual patients. Laboratory markers of brain cellular injury, such as neurofilament light, are robust outcomes in DMT efficacy trials; their use in clinical practice is being refined. DMT-specific laboratory monitoring for safety is critical and may include lymphocytes, immunoglobulins, autoimmunity surveillance, John Cunningham virus serology and COVID-19 vaccination seroresponse. SUMMARY A biomarker-enhanced monitoring strategy has immediate clinical application, with growing evidence of long-term reductions in disability accrual when both clinically symptomatic and asymptomatic inflammatory activity is fully suppressed; and amelioration of the risks associated with therapy. Emerging MRI and blood-based measures will also become important tools for monitoring agents that target the innate immune system and promote neuro-repair.
Collapse
|
12
|
Thomas AM, Barkhof F, Bulte JWM. Opportunities for Molecular Imaging in Multiple Sclerosis Management: Linking Probe to Treatment. Radiology 2022; 303:486-497. [PMID: 35471110 PMCID: PMC9131169 DOI: 10.1148/radiol.211252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Imaging has been a critical component of multiple sclerosis (MS) management for nearly 40 years. The visual information derived from structural MRI, that is, signs of blood-brain barrier disruption, inflammation and demyelination, and brain and spinal cord atrophy, are the primary metrics used to evaluate therapeutic efficacy in MS. The development of targeted imaging probes has expanded our ability to evaluate and monitor MS and its therapies at the molecular level. Most molecular imaging probes evaluated for MS applications are small molecules initially developed for PET, nearly half of which are derived from U.S. Food and Drug Administration-approved drugs and those currently undergoing clinical trials. Superparamagnetic and fluorinated particles have been used for tracking circulating immune cells (in situ labeling) and immunosuppressive or remyelinating therapeutic stem cells (ex vivo labeling) clinically using proton (hydrogen 1 [1H]) and preclinically using fluorine 19 MRI. Translocator protein PET and 1H MR spectroscopy have been demonstrated to complement imaging metrics from structural (gadolinium-enhanced) MRI in nine and six trials for MS disease-modifying therapies, respectively. Still, despite multiple demonstrations of the utility of molecular imaging probes to evaluate the target location and to elucidate the mechanisms of disease-modifying therapies for MS applications, their use has been sparse in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Aline M Thomas
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| | - Frederik Barkhof
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| | - Jeff W M Bulte
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| |
Collapse
|
13
|
Forodighasemabadi A, Baucher G, Soustelle L, Troalen T, Girard OM, Guye M, Grisoli JB, Ranjeva JP, Duhamel G, Callot V. Spinal cord and brain tissue impairments as long-term effects of rugby practice? An exploratory study based on T1 and ihMTsat measures. NEUROIMAGE: CLINICAL 2022; 35:103124. [PMID: 35905667 PMCID: PMC9421542 DOI: 10.1016/j.nicl.2022.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Diffuse degeneration of spinal cord (higher T1) is observed in retired rugby players. Demyelination of brain WM tracts (higher T1 / lower ihMTsat values) is present in rugby players. Early aging in both brain and spinal cord tissues may be linked to the rugby practice. The aforementioned effects may suggest cumulative effects of long-term impacts on the tissues.
Rugby players are subject to multiple impacts to their head and neck that could have adverse neurological effects and put them at increased risk of neurodegeneration. Previous studies demonstrated altered default mode network and diffusion metrics on brain, as well as more foraminal stenosis, disc protrusion and neck pain among players of contact sports as compared to healthy controls. However, the long-term effects of practice and repetitive impacts on brain and cervical spinal cord (cSC) of the rugby players have never been systematically investigated. In this study, 15 retired professional and amateur rugby players (R) and 15 age-matched healthy controls (HC) (all males; mean age R: 46.8 ± 7.6; and HC: 48.6 ± 9.5) were recruited both to investigate cord impairments and further characterize brain structure damage. Medical questionnaires including modified Japanese Orthopedic Association scale (mJOA) and Neck Disability Index (NDI) were filled by all participants. A 3 T multi-parametric MR protocol including conventional qualitative techniques such as T1-, T2-, and T2*-weighted sequences, as well as state-of-the art quantitative techniques including MP2RAGE T1 mapping and 3D ihMTRAGE, was used on both brain and cSC. Normalized brain WM and GM volumes, spine Overall Stenosis Score, cord cross-sectional area and regional T1 and ihMT metrics were derived from these acquisitions. Rugby players showed significantly higher NDI scores, as well as a faster decline of normalized brain GM volume with age as compared to HC. Moreover, higher T1 values on cSC suggestive of structural degeneration, together with higher T1 and lower ihMTsat on brain WM suggestive of demyelination, were observed in retired rugby players as compared to age-matched controls, which may suggest cumulative effects of long-term impacts on the tissues. Metrics also suggest early aging and different aging processes on brain tissue in the players. These preliminary observations provide new insights in the domain, which should now be further investigated on larger cohorts and multicentric longitudinal studies, and further correlated to the likelihood of neurodegenerative diseases and risk factors.
Collapse
|
14
|
Imaging of the Spinal Cord in Multiple Sclerosis: Past, Present, Future. Brain Sci 2020; 10:brainsci10110857. [PMID: 33202821 PMCID: PMC7696997 DOI: 10.3390/brainsci10110857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Spinal cord imaging in multiple sclerosis (MS) plays a significant role in diagnosing and tracking disease progression. The spinal cord is one of four key areas of the central nervous system where documenting the dissemination in space in the McDonald criteria for diagnosing MS. Spinal cord lesion load and the severity of cord atrophy are believed to be more relevant to disability than white matter lesions in the brain in different phenotypes of MS. Axonal loss contributes to spinal cord atrophy in MS and its degree correlates with disease severity and prognosis. Therefore, measures of axonal loss are often reliable biomarkers for monitoring disease progression. With recent technical advances, more and more qualitative and quantitative MRI techniques have been investigated in an attempt to provide objective and reliable diagnostic and monitoring biomarkers in MS. In this article, we discuss the role of spinal cord imaging in the diagnosis and prognosis of MS and, additionally, we review various techniques that may improve our understanding of the disease.
Collapse
|