1
|
Gu J, Ge S, Chen X, Zhang X, Chen S, Lu Z, Wang H. Does it stable? Intracranial aneurysm wall enhancement might be the warning signals: a meta-analysis of observational studies. Neurosurg Rev 2024; 47:524. [PMID: 39223389 DOI: 10.1007/s10143-024-02760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Magnetic resonance vessel wall imaging (MR-VWI) is an emerging imaging technology used to assess the progressive risk of unruptured intracranial aneurysms (UIAs). Unlike the standard evaluation model, MR-VWI is still debatable. This study aims to further define the potential relationship between aneurysm wall enhancement (AWE) and aneurysm stability. Using "intracranial aneurysm", "magnetic resonance", and "enhancement" as keywords, relevant studies were systematically searched in PubMed, Embase, and Cochrane, and the qualified studies were enrolled for further analysis. There were 13 case-control studies, 4 cohort studies, and 2,678 cases of intracranial aneurysms included in the meta-analysis. It was shown that AWE was correlated with intracranial aneurysm rupture (OR = 35.90, 95% CI: 15.58 to 82.75, p < 0.001), growth (OR = 6.69, 95% CI: 2.69 to 16.63, p < 0.001), and presence of symptoms (OR = 14.46, 95% CI: 9.07 to 23.05, p < 0.001). This finding had a high diagnostic value, but the correlation was probably not independent of aneurysm size. The pooled relative risks of the follow-up studies revealed that the risk of UIA progression was approximately 3.33 times higher with AWE than without AWE (RR = 3.33, 95% CI: 2.33 to 4.78, p < 0.001). In addition, the pooled results demonstrated that quantitative indices of VWI enhancement were equally linked with aneurysm stability (OR = 19.61, 95% CI: 10.63 to 36.17, p < 0.001). AWE is an effective imaging method to assess the stability of UIAs, and it can be a marker for the prophylactic treatment of small unruptured intracranial aneurysms in the future, which remains to be validated by prospective studies with large samples.
Collapse
Affiliation(s)
- Jiajie Gu
- Department of Neurosurgery, People's Hospital Affiliated of Ningbo University, East Baizhang Rd 251th, Yinzhou, Zhejiang, 315100, China.
| | - Shuxiong Ge
- Department of Vascular Surgery, People's Hospital Affiliated of Ningbo University, East Baizhang Rd 251th, Yinzhou, Zhejiang, 315100, China
| | - Xiaosheng Chen
- Department of Neurosurgery, People's Hospital Affiliated of Ningbo University, East Baizhang Rd 251th, Yinzhou, Zhejiang, 315100, China
| | - Xiaojia Zhang
- Department of Neurosurgery, People's Hospital Affiliated of Ningbo University, East Baizhang Rd 251th, Yinzhou, Zhejiang, 315100, China
| | - Shiling Chen
- College of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zhou Lu
- Department of Neurosurgery, People's Hospital Affiliated of Ningbo University, East Baizhang Rd 251th, Yinzhou, Zhejiang, 315100, China
| | - Huixiao Wang
- Department of Neurosurgery, People's Hospital Affiliated of Ningbo University, East Baizhang Rd 251th, Yinzhou, Zhejiang, 315100, China
| |
Collapse
|
2
|
Laukka D, Paturi J, Rahi M, Saraste A, Parkkola R, Kivelev J, Gardberg M, Kuhmonen J, Rinne J. PET imaging of unruptured intracranial aneurysm inflammation (PET-IA) study: a feasibility study protocol. BMJ Open 2024; 14:e076764. [PMID: 38382960 PMCID: PMC10882366 DOI: 10.1136/bmjopen-2023-076764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION Positron emission tomography (PET) imaging can be used to evaluate arterial wall inflammation in extracranial vascular diseases. However, the application of PET imaging in unruptured intracranial aneurysms (UIA) remains unexplored. Our objective is to investigate feasibility of PET imaging using 18F-FDG and 68Ga-DOTANOC tracers to evaluate arterial wall inflammation in UIA. METHODS AND ANALYSIS This PET imaging feasibility study will enrol patients scheduled for surgical treatment of UIA. The study subjects will undergo PET imaging of the intracranial arteries within 1 month before planned surgery. The imaging protocol includes 18F-FDG PET MRI, MRA with gadolinium enhancement, and 68Ga-DOTANOC PET CT. The study will also involve preoperative blood samples, intraoperative cerebrospinal fluid (CSF) samples, and aneurysm sac biopsy. Planned sample size is at least 18 patients. Primary outcome is uptake of 18F-FDG or 68Ga-DOTANOC in intracranial arterial aneurysms compared with contralateral normal vessel as maximum standardised uptake value or target-to-blood pool ratio and correlation of uptake of 18F-FDG or 68Ga-DOTANOC to aneurysm histological findings. Secondary outcomes include estimating the correlations between uptake of 18F-FDG or 68Ga-DOTANOC and histological findings with blood and CSF miRNA-levels, arterial wall enhancement in gadolinium enhanced MRA, aneurysm size and shape, smoking, hypertension, and location of the aneurysm. ETHICS AND DISSEMINATION This study is approved by the Human Research Ethics Committee of the Hospital District of Southwest Finland, Finnish Medicines Agency Fimea, and Turku University Hospital. Findings will be disseminated through peer-reviewed journal articles and presentations at national and international conferences. TRIAL REGISTRATION NUMBER NCT04715503.
Collapse
Affiliation(s)
- Dan Laukka
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Jooa Paturi
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Melissa Rahi
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, Turku, Finland
- Heart Centre, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku, Turku, Finland
| | - Juri Kivelev
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Maria Gardberg
- Department of Pathology, Turku University Hospital, Turku, Varsinais-Suomi, Finland
| | - Johanna Kuhmonen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Jaakko Rinne
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
3
|
Benndorf G. Advancing vessel wall imaging in intracranial aneurysms: a crucial step towards improved patient management? Acta Neurochir (Wien) 2023; 165:3831-3832. [PMID: 37861925 DOI: 10.1007/s00701-023-05773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 10/21/2023]
|
4
|
Dinia L, Vert C, Gramegna LL, Arikan F, Hernández D, Coscojuela P, Martinez-Saez E, Ramón Y Cajal S, Luzi M, Sarria-Estrada S, Salerno A, De Barros A, Gandara D, Quintana M, Rovira A, Tomasello A. Wall enhancement as a biomarker of intracranial aneurysm instability: a histo-radiological study. Acta Neurochir (Wien) 2023; 165:2783-2791. [PMID: 37589724 DOI: 10.1007/s00701-023-05739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/25/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The aim of this is to explore the histological basis of vessel wall enhancement (WE) on magnetic resonance imaging (MRI), which is a strong radiological biomarker of aneurysmal prone to rupture compared to other classical risk predictors (e.g., PHASES score, size, morphology). METHODS A prospective observational study was performed including all consecutive patients presenting with a saccular intracranial aneurysm at Vall d'Hebron University Hospital between October 2017 and May 2019. The patients underwent high-resolution 3 T MRI, and their aneurysms were classified into asymptomatic, symptomatic, and ruptured. A histological and immunohistochemical study was performed in a subgroup of patients (n = 20, of which 15 presented with WE). Multiple regression analyses were performed to identify predictors of rupture and aneurysm symptoms. RESULTS A total of 132 patients were enrolled in the study. WE was present in 36.5% of aneurysms: 22.9% asymptomatic, 76.9% symptomatic, and 100% ruptured. Immunohistochemical markers associated with WE were CD3 T cell receptor (p = 0.05) and CD45 leukocyte common antigen (p = 0.05). Moreover, WE is an independent predictor of symptomatic and ruptured aneurysms (p < 0.001). CONCLUSIONS Aneurysms with WE present multiple histopathological changes that may contribute to wall disruption and represent the pathophysiological basis of radiological WE. Moreover, WE is an independent diagnostic predictor of aneurysm symptoms and rupture.
Collapse
Affiliation(s)
- Lavinia Dinia
- Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona, Spain
- Interventional Neuroradiology Section, Department of Radiology, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
| | - Carla Vert
- Section of Neuroradiology and Magnetic Resonance Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Laura Ludovica Gramegna
- Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Servicio de Radiología, Unidad de Neurorradiología., Hospital del Mar, Barcelona, Spain
| | - Fuat Arikan
- Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona, Spain
- Neurotraumatology and Neurosurgery Research Unit, Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Hernández
- Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona, Spain
- Interventional Neuroradiology Section, Department of Radiology, Vall d'Hebron University Hospital, Pg. Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Coscojuela
- Interventional Neuroradiology Section, Department of Radiology, Vall d'Hebron University Hospital, Pg. Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | | | | | - Michele Luzi
- Interventional Neuroradiology Section, Department of Radiology, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Torrette University Hospital, UNIVPM, Ancona, Italy
| | - Silvana Sarria-Estrada
- Section of Neuroradiology and Magnetic Resonance Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Annalaura Salerno
- Section of Neuroradiology and Magnetic Resonance Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Andrea De Barros
- Section of Neuroradiology and Magnetic Resonance Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Dario Gandara
- Neurotraumatology and Neurosurgery Research Unit, Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Manuel Quintana
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Neurology Department, Epilepsy Unit, Vall d'Hebron Hospital, Barcelona, Spain
| | - Alex Rovira
- Section of Neuroradiology and Magnetic Resonance Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alejandro Tomasello
- Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona, Spain.
- Interventional Neuroradiology Section, Department of Radiology, Vall d'Hebron University Hospital, Pg. Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
5
|
The role of vessel wall imaging in determining the best treatment approach for coexisting aneurysms and subarachnoid hemorrhage. Acta Neurol Belg 2022:10.1007/s13760-022-02096-8. [PMID: 36173550 DOI: 10.1007/s13760-022-02096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/12/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE The purpose of this study was to investigate the utilization of gadolinium enhancement on vessel wall imaging (VWI) in treatment decision-making for patients with two intracranial aneurysms presenting as a subarachnoid hemorrhage (SAH). MATERIALS AND METHODS We prospectively performed VWI using 3.0-Tesla (3T) magnetic resonance imaging (MRI) before treatment with endovascular coiling or surgical clipping in patients with one or two intracranial aneurysms. The VWI protocol includes three different scans: black blood (BB) T1-weighted, BB T2-weighted, TOF axial, and BB contrast-enhanced T1-weighted imaging. We analyzed all aneurysm ruptures both with and without gadolinium enhancement of the aneurysm wall. RESULTS Thirty-eight patients with 48 aneurysms were enrolled in this study. Of these patients, 28 had a single aneurysm (15 ruptured and 13 unruptured), and 10 had two aneurysms and SAH (9 patients with two aneurysms and 1 patient with three aneurysms). Of the 15 single ruptured aneurysms, 12 (80.0%) showed positive wall enhancement, whereas 2 of the 13 single unruptured aneurysms (15.4%) demonstrated positive wall enhancement. Ten patients with SAH and two aneurysms showed wall enhancement of a single aneurysm, and these aneurysms were treated first. CONCLUSION Gadolinium enhancement of an aneurysm wall on MRI was associated with aneurysm rupture. In patients with two aneurysms and SAH, this type of imaging can play an important role in determining the order of aneurysm treatment.
Collapse
|
6
|
Raghuram A, Varon A, Sanchez S, Ishii D, Wu C, Magnotta VA, Hasan DM, Koscik TR, Samaniego EA. Topographical Analysis of Aneurysm Wall Enhancement With 3-Dimensional Mapping. STROKE (HOBOKEN, N.J.) 2022; 2:e000309. [PMID: 36061513 PMCID: PMC9432773 DOI: 10.1161/svin.121.000309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/09/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Aneurysm wall enhancement has been identified as a potential biomarker for aneurysm instability. Enhancement has been determined by different approaches on 2D multiplanar views. This study describes a new method to quantify enhancement through 3D heatmaps and histograms. METHODS A custom algorithm was developed using orthogonal probes extending from the aneurysm lumen into the wall to create 3D heatmaps and histograms of wall enhancement on 7T-MRI. Three quantitative metrics for general, specific, and focal wall enhancement were generated from the histograms. RESULTS Thirty-two aneurysms were analyzed and classified based on 3D heatmaps and histograms. Larger aneurysms were more enhancing (Spearman's r=0.472, p=0.006), and had more heterogeneous enhancement (Spearman's r=0.557, p<0.001) than smaller aneurysms. Patterns of enhancement differed between saccular, fusiform, and thrombosed aneurysms. Fusiform aneurysms were larger (p=0.015) and had more heterogenous enhancement compared to saccular aneurysms. Fusiform aneurysms had more areas of focal enhancement (p<0.001) and right skewed histograms (p=0.003). CONCLUSIONS The 3D analysis of aneurysm wall enhancement provides topographic data of the entire aneurysm wall. New metrics developed based on this method showed that large and fusiform aneurysms have heterogenous enhancement.
Collapse
Affiliation(s)
- Ashrita Raghuram
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Alberto Varon
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Sebastian Sanchez
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Daizo Ishii
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Chaorong Wu
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - David M Hasan
- Department of Neurosurgery, Duke University, Durham, NC
| | - Timothy R Koscik
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Edgar A Samaniego
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
7
|
Cirillo L, Rustici A, Toni F, Zoli M, Bartiromo F, Gramegna LL, Cicala D, Tonon C, Caranci F, Lodi R. Vessel Wall MRI: clinical implementation in cerebrovascular disorders—technical aspects. Radiol Med 2022; 127:645-651. [PMID: 35366709 PMCID: PMC9130152 DOI: 10.1007/s11547-022-01484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/09/2022] [Indexed: 10/27/2022]
Abstract
AbstractVessel Wall MRI (VW-MRI) is an emerging MR sequence used for diagnosis, characterization, and treatment planning of cerebrovascular diseases. Although VW-MRI is not yet routinely used, most papers have emphasized its role in several aspects of the management of cerebrovascular diseases. Nowadays, no VW-MRI sequence optimized for the intracranial imaging is commercially available, thus the Spin Echo sequences are the more effective sequences for this purpose. Moreover, as one of the principal technical requirements for intracranial VW-MR imaging is to achieve both the suppression of blood in vessel lumen and of the outer cerebrospinal fluid, different suppression techniques have been developed. This short report provides the technical parameters of our VW-MR sequence developed over 3-years’ experience.
Collapse
|
8
|
Zwarzany Ł, Owsiak M, Tyburski E, Poncyljusz W. High-Resolution Vessel Wall MRI of Endovascularly Treated Intracranial Aneurysms. Tomography 2022; 8:303-315. [PMID: 35202190 PMCID: PMC8874437 DOI: 10.3390/tomography8010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The aim of this study was to determine the frequency and the pattern of post-procedural intracranial aneurysm contrast enhancement on high-resolution vessel wall magnetic resonance imaging (HR-VW MRI). We investigated the possible association between this imaging finding and factors such as time elapsed since embolization or aneurysm occlusion grade on baseline and follow-up imaging. (2) Methods: Consecutive patients presenting for follow-up after endovascular treatment of intracranial aneurysms were included. HR-VW MRI was acquired and interpreted independently by two radiologists. (3) Results: This study included 40 aneurysms in 39 patients. Contrast enhancement was detected in 30 (75%) aneurysms. It was peripheral in 12 (30.0%), central in 9 (22.5%), and both peripheral and central in 9 (22.5%) aneurysms. The statistical analysis did not reveal any relationship between follow-up period and the presence of contrast enhancement (p = 0.277). There were no statistically significant differences in the frequency of contrast enhancement between aneurysms with total occlusion and those with remnant flow on follow-up MR angiography (p = 0.850) nor between aneurysms with different interval changes in the aneurysm occlusion grade (p = 0.536). Multivariate analysis did not demonstrate aneurysm size, ruptured aneurysm status, nor initial complete aneurysm occlusion to be a predictor of contrast enhancement (p = 0.080). (4) Conclusions: Post-procedural aneurysm contrast enhancement is a common imaging finding on HR-VW MRI. The clinical utility of this imaging finding, especially in the prediction of aneurysm recurrence, seems limited. The results of our study do not support routine use of HR-VW MRI in the follow-up of patients after endovascular treatment of intracranial aneurysms.
Collapse
Affiliation(s)
- Łukasz Zwarzany
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.O.); (W.P.)
- Correspondence:
| | - Mateusz Owsiak
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.O.); (W.P.)
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland;
| | - Wojciech Poncyljusz
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.O.); (W.P.)
| |
Collapse
|
9
|
Mattay RR, Saucedo JF, Lehman VT, Xiao J, Obusez EC, Raymond SB, Fan Z, Song JW. Current Clinical Applications of Intracranial Vessel Wall MR Imaging. Semin Ultrasound CT MR 2021; 42:463-473. [PMID: 34537115 DOI: 10.1053/j.sult.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracranial vessel wall MR imaging (VWI) is increasingly being used as a valuable adjunct to conventional angiographic imaging techniques. This article will provide an updated review on intracranial VWI protocols and image interpretation. We review VWI technical considerations, describe common VWI imaging features of different intracranial vasculopathies and show illustrative cases. We review the role of VWI for differentiating among steno-occlusive vasculopathies, such as intracranial atherosclerotic plaque, dissections and Moyamoya disease. We also highlight how VWI may be used for the diagnostic work-up and surveillance of patients with vasculitis of the central nervous system and cerebral aneurysms.
Collapse
Affiliation(s)
- Raghav R Mattay
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Jose F Saucedo
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Jiayu Xiao
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Scott B Raymond
- Department of Radiology, University of Vermont Medical Center, Burlington, VT
| | - Zhaoyang Fan
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jae W Song
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
10
|
Raghuram A, Varon A, Roa JA, Ishii D, Lu Y, Raghavan ML, Wu C, Magnotta VA, Hasan DM, Koscik TR, Samaniego EA. Semiautomated 3D mapping of aneurysmal wall enhancement with 7T-MRI. Sci Rep 2021; 11:18344. [PMID: 34526579 PMCID: PMC8443635 DOI: 10.1038/s41598-021-97727-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Aneurysm wall enhancement (AWE) after the administration of contrast gadolinium is a potential biomarker of unstable intracranial aneurysms. While most studies determine AWE subjectively, this study comprehensively quantified AWE in 3D imaging using a semi-automated method. Thirty patients with 33 unruptured intracranial aneurysms prospectively underwent high-resolution imaging with 7T-MRI. The signal intensity (SI) of the aneurysm wall was mapped and normalized to the pituitary stalk (PS) and corpus callosum (CC). The CC proved to be a more reliable normalizing structure in detecting contrast enhancement (p < 0.0001). 3D-heatmaps and histogram analysis of AWE were used to generate the following metrics: specific aneurysm wall enhancement (SAWE), general aneurysm wall enhancement (GAWE) and focal aneurysm wall enhancement (FAWE). GAWE was more accurate in detecting known morphological determinants of aneurysm instability such as size ≥ 7 mm (p = 0.049), size ratio (p = 0.01) and aspect ratio (p = 0.002). SAWE and FAWE were aneurysm specific metrics used to characterize enhancement patterns within the aneurysm wall and the distribution of enhancement along the aneurysm. Blebs were easily identified on 3D-heatmaps and were more enhancing than aneurysm sacs (p = 0.0017). 3D-AWE mapping may be a powerful objective tool in characterizing different biological processes of the aneurysm wall.
Collapse
Affiliation(s)
- Ashrita Raghuram
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52246, USA
| | - Alberto Varon
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52246, USA
| | - Jorge A Roa
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52246, USA.,Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Daizo Ishii
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Yongjun Lu
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Madhavan L Raghavan
- Roy J Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Chaorong Wu
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - David M Hasan
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Timothy R Koscik
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Edgar A Samaniego
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52246, USA. .,Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA. .,Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
11
|
Zwarzany Ł, Tyburski E, Poncyljusz W. High-Resolution Vessel Wall Magnetic Resonance Imaging of Small Unruptured Intracranial Aneurysms. J Clin Med 2021; 10:jcm10020225. [PMID: 33435180 PMCID: PMC7827782 DOI: 10.3390/jcm10020225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background: We decided to investigate whether aneurysm wall enhancement (AWE) on high-resolution vessel wall magnetic resonance imaging (HR VW-MRI) coexists with the conventional risk factors for aneurysm rupture. Methods: We performed HR VW-MRI in 46 patients with 64 unruptured small intracranial aneurysms. Patient demographics and clinical characteristics were recorded. The PHASES score was calculated for each aneurysm. Results: Of the 64 aneurysms, 15 (23.4%) showed wall enhancement on post-contrast HR VW-MRI. Aneurysms with wall enhancement had significantly larger size (p = 0.001), higher dome-to-neck ratio (p = 0.024), and a more irregular shape (p = 0.003) than aneurysms without wall enhancement. The proportion of aneurysms with wall enhancement was significantly higher in older patients (p = 0.011), and those with a history of prior aneurysmal SAH. The mean PHASES score was significantly higher in aneurysms with wall enhancement (p < 0.000). The multivariate logistic regression analysis revealed that aneurysm irregularity and the PHASES score are independently associated with the presence of AWE. Conclusions: Aneurysm wall enhancement on HR VW-MRI coexists with the conventional risk factors for aneurysm rupture.
Collapse
Affiliation(s)
- Łukasz Zwarzany
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
- Correspondence:
| | - Ernest Tyburski
- Institute of Psychology, SWPS University of Social Sciences and Humanities, Kutrzeby 10, 61-719 Poznań, Poland;
| | - Wojciech Poncyljusz
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| |
Collapse
|