1
|
Sheikh RA, Naqvi S, Al-Sulami AM, Bayamin M, Samsahan A, Baig MR, Al-Abbasi FA, Almalki NAR, Asar TO, Anwar F. Synchronized Glioma Insights: Trends, Blood Group Correlations, Staging Dynamics, and the Vanguard of Liquid Biopsy Advancements. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:74-82. [PMID: 38956913 DOI: 10.2174/0118715273306577240612053957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Gliomas are the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. MATERIALS AND METHODS We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, we tried to prove the potential association between glioma and specific blood group antigens. RESULTS 78 patients were found, among whom the maximum percentage with glioblastoma had blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and the least with O-. Liquid biopsy biomarkers included Alanine Aminotransferase (ALT), Lactate Dehydrogenase (LDH), lymphocytes, Urea, Alkaline phosphatase (AST), Neutrophils, and C-Reactive Protein (CRP). The levels of all the components increased significantly with the severity of the glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II, respectively. CONCLUSION Gliomas have significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. A liquid biopsy is a non-invasive approach that aids in setting up the status of the patient and figuring out the tumor grade; therefore, it may show diagnostic and prognostic utility. Additionally, our study provides evidence to prove the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and confirm their clinical usefulness to guide treatment approaches.
Collapse
Affiliation(s)
- Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ayman Mohammed Al-Sulami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Bayamin
- Medical Oncology Consultant, King Abdullah Medical City Makkah. Saudi Council for Health Specialist Medical Oncology Program. Makka, Saudi Arabia
| | - Abdullaha Samsahan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mirza Rafi Baig
- Department of Clinical Pharmacy & Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai, United Arab Emirates
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Naif A R Almalki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
2
|
Buti G, Ajdari A, Bridge CP, Sharp GC, Bortfeld T. Diffusion tensor transformation for personalizing target volumes in radiation therapy. Med Image Anal 2024; 97:103271. [PMID: 39043108 PMCID: PMC11365800 DOI: 10.1016/j.media.2024.103271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Diffusion tensor imaging (DTI) is used in tumor growth models to provide information on the infiltration pathways of tumor cells into the surrounding brain tissue. When a patient-specific DTI is not available, a template image such as a DTI atlas can be transformed to the patient anatomy using image registration. This study investigates a model, the invariance under coordinate transform (ICT), that transforms diffusion tensors from a template image to the patient image, based on the principle that the tumor growth process can be mapped, at any point in time, between the images using the same transformation function that we use to map the anatomy. The ICT model allows the mapping of tumor cell densities and tumor fronts (as iso-levels of tumor cell density) from the template image to the patient image for inclusion in radiotherapy treatment planning. The proposed approach transforms the diffusion tensors to simulate tumor growth in locally deformed anatomy and outputs the tumor cell density distribution over time. The ICT model is validated in a cohort of ten brain tumor patients. Comparative analysis with the tumor cell density in the original template image shows that the ICT model accurately simulates tumor cell densities in the deformed image space. By creating radiotherapy target volumes as tumor fronts, this study provides a framework for more personalized radiotherapy treatment planning, without the use of additional imaging.
Collapse
Affiliation(s)
- Gregory Buti
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA.
| | - Ali Ajdari
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA
| | - Christopher P Bridge
- Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth St, Charlestown, MA 02129, USA
| | - Gregory C Sharp
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA
| | - Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA
| |
Collapse
|
3
|
Sanvito F, Raymond C, Cho NS, Yao J, Hagiwara A, Orpilla J, Liau LM, Everson RG, Nghiemphu PL, Lai A, Prins R, Salamon N, Cloughesy TF, Ellingson BM. Simultaneous quantification of perfusion, permeability, and leakage effects in brain gliomas using dynamic spin-and-gradient-echo echoplanar imaging MRI. Eur Radiol 2024; 34:3087-3101. [PMID: 37882836 PMCID: PMC11045669 DOI: 10.1007/s00330-023-10215-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVE To determine the feasibility and biologic correlations of dynamic susceptibility contrast (DSC), dynamic contrast enhanced (DCE), and quantitative maps derived from contrast leakage effects obtained simultaneously in gliomas using dynamic spin-and-gradient-echo echoplanar imaging (dynamic SAGE-EPI) during a single contrast injection. MATERIALS AND METHODS Thirty-eight patients with enhancing brain gliomas were prospectively imaged with dynamic SAGE-EPI, which was processed to compute traditional DSC metrics (normalized relative cerebral blood flow [nrCBV], percentage of signal recovery [PSR]), DCE metrics (volume transfer constant [Ktrans], extravascular compartment [ve]), and leakage effect metrics: ΔR2,ss* (reflecting T2*-leakage effects), ΔR1,ss (reflecting T1-leakage effects), and the transverse relaxivity at tracer equilibrium (TRATE, reflecting the balance between ΔR2,ss* and ΔR1,ss). These metrics were compared between patient subgroups (treatment-naïve [TN] vs recurrent [R]) and biological features (IDH status, Ki67 expression). RESULTS In IDH wild-type gliomas (IDHwt-i.e., glioblastomas), previous exposure to treatment determined lower TRATE (p = 0.002), as well as higher PSR (p = 0.006), Ktrans (p = 0.17), ΔR1,ss (p = 0.035), ve (p = 0.006), and ADC (p = 0.016). In IDH-mutant gliomas (IDHm), previous treatment determined higher Ktrans and ΔR1,ss (p = 0.026). In TN-gliomas, dynamic SAGE-EPI metrics tended to be influenced by IDH status (p ranging 0.09-0.14). TRATE values above 142 mM-1s-1 were exclusively seen in TN-IDHwt, and, in TN-gliomas, this cutoff had 89% sensitivity and 80% specificity as a predictor of Ki67 > 10%. CONCLUSIONS Dynamic SAGE-EPI enables simultaneous quantification of brain tumor perfusion and permeability, as well as mapping of novel metrics related to cytoarchitecture (TRATE) and blood-brain barrier disruption (ΔR1,ss), with a single contrast injection. CLINICAL RELEVANCE STATEMENT Simultaneous DSC and DCE analysis with dynamic SAGE-EPI reduces scanning time and contrast dose, respectively alleviating concerns about imaging protocol length and gadolinium adverse effects and accumulation, while providing novel leakage effect metrics reflecting blood-brain barrier disruption and tumor tissue cytoarchitecture. KEY POINTS • Traditionally, perfusion and permeability imaging for brain tumors requires two separate contrast injections and acquisitions. • Dynamic spin-and-gradient-echo echoplanar imaging enables simultaneous perfusion and permeability imaging. • Dynamic spin-and-gradient-echo echoplanar imaging provides new image contrasts reflecting blood-brain barrier disruption and cytoarchitecture characteristics.
Collapse
Affiliation(s)
- Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Viale Camillo Golgi 19, 27100, Pavia, Italy
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
| | - Nicholas S Cho
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 7400 Boelter Hall, Los Angeles, CA, 90095, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
- Department of Radiology, Juntendo University School of Medicine, Bunkyo City, 2-Chōme-1-1 Hongō, Tokyo, 113-8421, Japan
| | - Joey Orpilla
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
| | - Richard G Everson
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
| | - Phioanh L Nghiemphu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
| | - Robert Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, CA, 90024, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA.
- Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 7400 Boelter Hall, Los Angeles, CA, 90095, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA.
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, 885 Tiverton Dr, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Herr J, Stoyanova R, Mellon EA. Convolutional Neural Networks for Glioma Segmentation and Prognosis: A Systematic Review. Crit Rev Oncog 2024; 29:33-65. [PMID: 38683153 DOI: 10.1615/critrevoncog.2023050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Deep learning (DL) is poised to redefine the way medical images are processed and analyzed. Convolutional neural networks (CNNs), a specific type of DL architecture, are exceptional for high-throughput processing, allowing for the effective extraction of relevant diagnostic patterns from large volumes of complex visual data. This technology has garnered substantial interest in the field of neuro-oncology as a promising tool to enhance medical imaging throughput and analysis. A multitude of methods harnessing MRI-based CNNs have been proposed for brain tumor segmentation, classification, and prognosis prediction. They are often applied to gliomas, the most common primary brain cancer, to classify subtypes with the goal of guiding therapy decisions. Additionally, the difficulty of repeating brain biopsies to evaluate treatment response in the setting of often confusing imaging findings provides a unique niche for CNNs to help distinguish the treatment response to gliomas. For example, glioblastoma, the most aggressive type of brain cancer, can grow due to poor treatment response, can appear to grow acutely due to treatment-related inflammation as the tumor dies (pseudo-progression), or falsely appear to be regrowing after treatment as a result of brain damage from radiation (radiation necrosis). CNNs are being applied to separate this diagnostic dilemma. This review provides a detailed synthesis of recent DL methods and applications for intratumor segmentation, glioma classification, and prognosis prediction. Furthermore, this review discusses the future direction of MRI-based CNN in the field of neuro-oncology and challenges in model interpretability, data availability, and computation efficiency.
Collapse
Affiliation(s)
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Fl 33136, USA
| | - Eric Albert Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Fl 33136, USA
| |
Collapse
|
5
|
Christoph S, Alicia S, Fritz T, Vanessa T, Ralf K, Jin KY, Stefan L, Joachim O. The intra-tumoral heterogeneity in glioblastoma - a limitation for prognostic value of epigenetic markers? Acta Neurochir (Wien) 2023; 165:1635-1644. [PMID: 37083881 DOI: 10.1007/s00701-023-05594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Epigenetic tumor features are getting into focus as prognostic markers in glioblastoma. Whether intra-tumoral heterogeneity in these epigenetic characteristics may influence prognostic value remains unclear. METHODS Of 154 patients suffering from glioblastoma, 120 patients served as reference collective, while 34 patients were compiled as test collective. MGMT, p15, and p16 promoter methylation and miRNA expression levels (miRNA-21, miRNA-24, miRNA-26a, and miRNA-181d) were measured in each tumor specimen. Serving as a statistical baseline, epigenetic heterogeneity between tumors (inter-tumoral) was estimated within a triplet of three tumor specimens from three different reference patients. For estimation of epigenetic heterogeneity within a tumor (intra-tumoral), previous results were compared to three tumor specimens within one glioblastoma of patients of the test collective. Resulting levels of heterogeneity were then correlated with survival and validated by an external TCGA data set. RESULTS Heterogeneity in MGMT promoter methylation occurred less likely in the test group compared to the reference group. No difference in heterogeneity was observed between test and reference group regarding p15 and p16 methylation. Intra-tumoral heterogeneity within the test group regarding miRNA-21, miRNA-24, miRNA-26a, and miRNA-181d expression was not distinguishable from inter-tumoral heterogeneity. A homogenously increased miRNA-21 expression was associated with reduced overall survival in the test collective. The findings could be validated by comparison with TCGA datasets. CONCLUSION Heterogeneity of epigenetic characteristics in one glioblastoma may be of the same magnitude as heterogeneity between different patients. Not only the extent of epigenetic characteristics but also the extent of intra-tumoral heterogeneity may influence survival in glioblastoma.
Collapse
Affiliation(s)
- Sippl Christoph
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany.
| | - Saenz Alicia
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| | - Teping Fritz
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| | - Trenkpohl Vanessa
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| | - Ketter Ralf
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| | - Kim Yoo Jin
- Institute of Pathology, Faculty of Medicine, University of Saarland, Glockenstraße 54, Kaiserslautern, Germany
| | - Linsler Stefan
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| | - Oertel Joachim
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| |
Collapse
|
6
|
Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol 2023; 91:110-123. [PMID: 36907387 DOI: 10.1016/j.semcancer.2023.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Ke Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China; Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China.
| |
Collapse
|
7
|
Gates EDH, Suki D, Celaya A, Weinberg JS, Prabhu SS, Sawaya R, Huse JT, Long JP, Fuentes D, Schellingerhout D. Cellular Density in Adult Glioma, Estimated with MR Imaging Data and a Machine Learning Algorithm, Has Prognostic Power Approaching World Health Organization Histologic Grading in a Cohort of 1181 Patients. AJNR Am J Neuroradiol 2022; 43:1411-1417. [PMID: 36109124 PMCID: PMC9575543 DOI: 10.3174/ajnr.a7620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Recent advances in machine learning have enabled image-based prediction of local tissue pathology in gliomas, but the clinical usefulness of these predictions is unknown. We aimed to evaluate the prognostic ability of imaging-based estimates of cellular density for patients with gliomas, with comparison to the gold standard reference of World Health Organization grading. MATERIALS AND METHODS Data from 1181 (207 grade II, 246 grade III, 728 grade IV) previously untreated patients with gliomas from a single institution were analyzed. A pretrained random forest model estimated voxelwise tumor cellularity using MR imaging data. Maximum cellular density was correlated with the World Health Organization grade and actual survival, correcting for covariates of age and performance status. RESULTS A maximum estimated cellular density of >7681 nuclei/mm2 was associated with a worse prognosis and a univariate hazard ratio of 4.21 (P < .001); the multivariate hazard ratio after adjusting for covariates of age and performance status was 2.91 (P < .001). The concordance index between maximum cellular density (adjusted for covariates) and survival was 0.734. The hazard ratio for a high World Health Organization grade (IV) was 7.57 univariate (P < .001) and 5.25 multivariate (P < .001). The concordance index for World Health Organization grading (adjusted for covariates) was 0.761. The maximum cellular density was an independent predictor of overall survival, and a Cox model using World Health Organization grade, maximum cellular density, age, and Karnofsky performance status had a higher concordance (C = 0.764; range 0.748-0.781) than the component predictors. CONCLUSIONS Image-based estimation of glioma cellularity is a promising biomarker for predicting survival, approaching the prognostic power of World Health Organization grading, with added values of early availability, low risk, and low cost.
Collapse
Affiliation(s)
- E D H Gates
- From the Departments of Imaging Physics (E.D.H.G., A.C., D.F.)
- University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (E.D.H.G.), Houston, Texas
| | - D Suki
- Neurosurgery (D. Suki, J.S.W., S.S.P., R.S.)
| | - A Celaya
- From the Departments of Imaging Physics (E.D.H.G., A.C., D.F.)
| | | | - S S Prabhu
- Neurosurgery (D. Suki, J.S.W., S.S.P., R.S.)
| | - R Sawaya
- Neurosurgery (D. Suki, J.S.W., S.S.P., R.S.)
| | - J T Huse
- Translational Molecular Pathology (J.T.H.)
| | | | - D Fuentes
- From the Departments of Imaging Physics (E.D.H.G., A.C., D.F.)
| | | |
Collapse
|
8
|
Blee JA, Liu X, Harland AJ, Fatania K, Currie S, Kurian KM, Hauert S. Liquid biopsies for early diagnosis of brain tumours: in silico mathematical biomarker modelling. J R Soc Interface 2022; 19:20220180. [PMID: 35919979 PMCID: PMC9346349 DOI: 10.1098/rsif.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Brain tumours are the biggest cancer killer in those under 40 and reduce life expectancy more than any other cancer. Blood-based liquid biopsies may aid early diagnosis, prediction and prognosis for brain tumours. It remains unclear whether known blood-based biomarkers, such as glial fibrillary acidic protein (GFAP), have the required sensitivity and selectivity. We have developed a novel in silico model which can be used to assess and compare blood-based liquid biopsies. We focused on GFAP, a putative biomarker for astrocytic tumours and glioblastoma multi-formes (GBMs). In silico modelling was paired with experimental measurement of cell GFAP concentrations and used to predict the tumour volumes and identify key parameters which limit detection. The average GBM volumes of 449 patients at Leeds Teaching Hospitals NHS Trust were also measured and used as a benchmark. Our model predicts that the currently proposed GFAP threshold of 0.12 ng ml-1 may not be suitable for early detection of GBMs, but that lower thresholds may be used. We found that the levels of GFAP in the blood are related to tumour characteristics, such as vasculature damage and rate of necrosis, which are biological markers of tumour aggressiveness. We also demonstrate how these models could be used to provide clinical insight.
Collapse
Affiliation(s)
- Johanna A. Blee
- Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building, Bristol BS8 1TW, UK
| | - Xia Liu
- Brain Tumour Research Centre, Bristol Medical School, Bristol BS2 8DZ, UK
| | - Abigail J. Harland
- Brain Tumour Research Centre, Bristol Medical School, Bristol BS2 8DZ, UK
| | - Kavi Fatania
- Department of Radiology, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - Stuart Currie
- Department of Radiology, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | | | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building, Bristol BS8 1TW, UK
| |
Collapse
|
9
|
Harris DC, Mignucci-Jiménez G, Xu Y, Eikenberry SE, Quarles CC, Preul MC, Kuang Y, Kostelich EJ. Tracking glioblastoma progression after initial resection with minimal reaction-diffusion models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5446-5481. [PMID: 35603364 DOI: 10.3934/mbe.2022256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We describe a preliminary effort to model the growth and progression of glioblastoma multiforme, an aggressive form of primary brain cancer, in patients undergoing treatment for recurrence of tumor following initial surgery and chemoradiation. Two reaction-diffusion models are used: the Fisher-Kolmogorov equation and a 2-population model, developed by the authors, that divides the tumor into actively proliferating and quiescent (or necrotic) cells. The models are simulated on 3-dimensional brain geometries derived from magnetic resonance imaging (MRI) scans provided by the Barrow Neurological Institute. The study consists of 17 clinical time intervals across 10 patients that have been followed in detail, each of whom shows significant progression of tumor over a period of 1 to 3 months on sequential follow up scans. A Taguchi sampling design is implemented to estimate the variability of the predicted tumors to using 144 different choices of model parameters. In 9 cases, model parameters can be identified such that the simulated tumor, using both models, contains at least 40 percent of the volume of the observed tumor. We discuss some potential improvements that can be made to the parameterizations of the models and their initialization.
Collapse
Affiliation(s)
- Duane C Harris
- School of Mathematical & Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Giancarlo Mignucci-Jiménez
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Yuan Xu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Steffen E Eikenberry
- School of Mathematical & Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - C Chad Quarles
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Yang Kuang
- School of Mathematical & Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Eric J Kostelich
- School of Mathematical & Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
10
|
Martens C, Lebrun L, Decaestecker C, Vandamme T, Van Eycke YR, Rovai A, Metens T, Debeir O, Goldman S, Salmon I, Van Simaeys G. Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study. Tomography 2021; 7:650-674. [PMID: 34842805 PMCID: PMC8628987 DOI: 10.3390/tomography7040055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023] Open
Abstract
Reaction-diffusion models have been proposed for decades to capture the growth of gliomas. Nevertheless, these models require an initial condition: the tumor cell density distribution over the whole brain at diagnosis time. Several works have proposed to relate this distribution to abnormalities visible on magnetic resonance imaging (MRI). In this work, we verify these hypotheses by stereotactic histological analysis of a non-operated brain with glioblastoma using a 3D-printed slicer. Cell density maps are computed from histological slides using a deep learning approach. The density maps are then registered to a postmortem MR image and related to an MR-derived geodesic distance map to the tumor core. The relation between the edema outlines visible on T2-FLAIR MRI and the distance to the core is also investigated. Our results suggest that (i) the previously proposed exponential decrease of the tumor cell density with the distance to the core is reasonable but (ii) the edema outlines would not correspond to a cell density iso-contour and (iii) the suggested tumor cell density at these outlines is likely overestimated. These findings highlight the limitations of conventional MRI to derive glioma cell density maps and the need for other initialization methods for reaction-diffusion models to be used in clinical practice.
Collapse
Affiliation(s)
- Corentin Martens
- Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium; (A.R.); (S.G.); (G.V.S.)
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Charleroi, Belgium; (C.D.); (Y.-R.V.E.); (O.D.); (I.S.)
- Laboratory of Image Synthesis and Analysis (LISA), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium; (T.V.); (T.M.)
| | - Laetitia Lebrun
- Department of Pathology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium;
| | - Christine Decaestecker
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Charleroi, Belgium; (C.D.); (Y.-R.V.E.); (O.D.); (I.S.)
- Laboratory of Image Synthesis and Analysis (LISA), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium; (T.V.); (T.M.)
| | - Thomas Vandamme
- Laboratory of Image Synthesis and Analysis (LISA), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium; (T.V.); (T.M.)
| | - Yves-Rémi Van Eycke
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Charleroi, Belgium; (C.D.); (Y.-R.V.E.); (O.D.); (I.S.)
- Laboratory of Image Synthesis and Analysis (LISA), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium; (T.V.); (T.M.)
| | - Antonin Rovai
- Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium; (A.R.); (S.G.); (G.V.S.)
| | - Thierry Metens
- Laboratory of Image Synthesis and Analysis (LISA), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium; (T.V.); (T.M.)
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Olivier Debeir
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Charleroi, Belgium; (C.D.); (Y.-R.V.E.); (O.D.); (I.S.)
- Laboratory of Image Synthesis and Analysis (LISA), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium; (T.V.); (T.M.)
| | - Serge Goldman
- Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium; (A.R.); (S.G.); (G.V.S.)
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Charleroi, Belgium; (C.D.); (Y.-R.V.E.); (O.D.); (I.S.)
| | - Isabelle Salmon
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Charleroi, Belgium; (C.D.); (Y.-R.V.E.); (O.D.); (I.S.)
- Department of Pathology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium;
| | - Gaetan Van Simaeys
- Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium; (A.R.); (S.G.); (G.V.S.)
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Charleroi, Belgium; (C.D.); (Y.-R.V.E.); (O.D.); (I.S.)
| |
Collapse
|
11
|
Critical illness-associated cerebral microbleeds for patients with severe COVID-19: etiologic hypotheses. J Neurol 2020; 268:2676-2684. [PMID: 33219827 PMCID: PMC7679237 DOI: 10.1007/s00415-020-10313-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 01/04/2023]
Abstract
Background and purpose During the COVID-19 outbreak, the presence of extensive white matter microhemorrhages was detected by brain MRIs. The goal of this study was to investigate the origin of this atypical hemorrhagic complication. Methods Between March 17 and May 18, 2020, 80 patients with severe COVID-19 infections were admitted for acute respiratory distress syndrome to intensive care units at the University Hospitals of Strasbourg for whom a brain MRI for neurologic manifestations was performed. 19 patients (24%) with diffuse microhemorrhages were compared to 18 control patients with COVID-19 and normal brain MRI. Results The first hypothesis was hypoxemia. The latter seemed very likely since respiratory failure was longer and more pronounced in patients with microhemorrhages (prolonged endotracheal intubation (p = 0.0002), higher FiO2 (p = 0.03), increased use of extracorporeal membrane oxygenation (p = 0.04)). A relevant hypothesis, the role of microangiopathy, was also considered, since patients with microhemorrhages presented a higher increase of the D-Dimers (p = 0.01) and a tendency to more frequent thrombotic events (p = 0.12). Another hypothesis tested was the role of kidney failure, which was more severe in the group with diffuse microhemorrhages (higher creatinine level [median of 293 µmol/L versus 112 µmol/L, p = 0.04] and more dialysis were introduced in this group during ICU stay [12 versus 5 patients, p = 0.04]). Conclusions Blood–brain barrier dysfunction secondary to hypoxemia and high concentration of uremic toxins seems to be the main mechanism leading to critical illness-associated cerebral microbleeds, and this complication remains to be frequently described in severe COVID-19 patients.
Collapse
|