1
|
Pirozzi MA, Franza F, Chianese M, Papallo S, De Rosa AP, Nardo FD, Caiazzo G, Esposito F, Donisi L. Combining radiomics and connectomics in MRI studies of the human brain: A systematic literature review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 266:108771. [PMID: 40233442 DOI: 10.1016/j.cmpb.2025.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Advances in MRI techniques continue to open new avenues to investigate the structure and function of the human brain. Radiomics, involving the extraction of quantitative image features, and connectomics, involving the estimation of structural and functional neural connections, from large amounts and different types of MRI data sets, represent two key research areas for advancing neuroimaging while exploiting progress in computational and theoretical modelling applied to MRI. This systematic literature review aimed at exploring the combination of radiomics and connectomics in human brain MRI studies, highlighting how the combination of these approaches can provide novel or additional insights into the human brain under normal and pathological conditions. The review was conducted according to the Preferred Reported Item for Systematic Reviews and Meta-Analyses (PRISMA) statement, seeking documents from Scopus and PubMed archives. Eleven studies (out of the initial 675 records) have met the established criteria and reported combined approaches from radiomics and connectomics. Three subgroups of approaches were identified, based on the MRI modalities used to obtain radiomic and connectomic features. The first group of 3 studies combined radiomics and connectomics applied to structural MRI (sMRI) data sets; the second group of 5 studies combined radiomics applied to sMRI data and connectomics applied to diffusion (dMRI) and/or functional MRI (fMRI) data sets; the third group of 3 studies combined radiomics and connectomics applied to fMRI. This review highlighted the recent growing interest in combining MRI-based radiomics and connectomics to explore the human brain for neurological, psychiatric, and oncological conditions. Current methodologies and challenges were discussed, pointing out future research directions to improve or standardize these approaches and the gaps to be filled to advance the field.
Collapse
Affiliation(s)
- Maria Agnese Pirozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia, 2, Naples 80138, Italy
| | - Federica Franza
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia, 2, Naples 80138, Italy
| | - Marianna Chianese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia, 2, Naples 80138, Italy
| | - Simone Papallo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia, 2, Naples 80138, Italy
| | - Alessandro Pasquale De Rosa
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia, 2, Naples 80138, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia, 2, Naples 80138, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia, 2, Naples 80138, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia, 2, Naples 80138, Italy.
| | - Leandro Donisi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia, 2, Naples 80138, Italy
| |
Collapse
|
2
|
Inglese M, Conti A, Toschi N. Radiomics across modalities: a comprehensive review of neurodegenerative diseases. Clin Radiol 2025; 85:106921. [PMID: 40305877 DOI: 10.1016/j.crad.2025.106921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025]
Abstract
Radiomics allows extraction from medical images of quantitative features that are able to reveal tissue patterns that are generally invisible to human observers. Despite the challenges in visually interpreting radiomic features and the computational resources required to generate them, they hold significant value in downstream automated processing. For instance, in statistical or machine learning frameworks, radiomic features enhance sensitivity and specificity, making them indispensable for tasks such as diagnosis, prognosis, prediction, monitoring, image-guided interventions, and evaluating therapeutic responses. This review explores the application of radiomics in neurodegenerative diseases, with a focus on Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. While radiomics literature often focuses on magnetic resonance imaging (MRI) and computed tomography (CT), this review also covers its broader application in nuclear medicine, with use cases of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiomics. Additionally, we review integrated radiomics, where features from multiple imaging modalities are fused to improve model performance. This review also highlights the growing integration of radiomics with artificial intelligence and the need for feature standardisation and reproducibility to facilitate its translation into clinical practice.
Collapse
Affiliation(s)
- M Inglese
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Department of Surgery and Cancer, Imperial College London, UK.
| | - A Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - N Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Kotsiantis S, Melagraki G, Verykios V, Sakagianni A, Matsoukas J. Semi-Supervised Learning for Predicting Multiple Sclerosis. J Pers Med 2025; 15:167. [PMID: 40423039 DOI: 10.3390/jpm15050167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
Background: Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system with a propensity to inflict severe neurological disability. Accurate and early prediction of MS progression is extremely crucial for its management and treatment. Methods: In this paper, we compare a number of self-labeled semi-supervised learning methods used to predict MS from labeled and unlabeled medical data. Specifically, we compare the performance of Self-Training, SETRED, Co-Training, Co-Training by Committee, Democratic Co-Learning, RASCO, RelRASCO, CoForest, and TriTraining in different labeled ratios. The data contain clinical, imaging, and demographic features, allowing for a detailed comparison of each method's predictive ability. Results and Conclusions: The experimental results demonstrate that several self-labeling semi-supervised learning (SSL) algorithms perform competitively in the task of Multiple Sclerosis (MS) prediction, even when trained on as little as 30-40% of the labeled data. Notably, Co-Training by Committee, CoForest, and TriTraining consistently deliver high performance across all metrics (accuracy, F1-score, and MCC).
Collapse
Affiliation(s)
| | - Georgia Melagraki
- Department of Military Sciences, Hellenic Army Academy, 16673 Athens, Greece
| | - Vassilios Verykios
- School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | | | - John Matsoukas
- Department of Chemistry, University of Patras, 26504 Patras, Greece
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N3, Canada
- Immunology and Translational Research Group, Institution for Health and Sport, Victoria University, Werribee, VIC 3030, Australia
- NewDrug PC, Patras Science Park, 26504 Patras, Greece
| |
Collapse
|
4
|
Szekely-Kohn AC, Castellani M, Espino DM, Baronti L, Ahmed Z, Manifold WGK, Douglas M. Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241052. [PMID: 39845718 PMCID: PMC11750376 DOI: 10.1098/rsos.241052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 11/17/2024] [Indexed: 01/24/2025]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS. Published MS MRI-based computational studies can be divided into five categories: automated diagnosis; differentiation between lesion types and/or MS stages; differential diagnosis; monitoring and predicting disease progression; and synthetic MRI dataset generation. Collectively, these approaches show promise in assisting with MS diagnosis, monitoring of disease activity and prediction of future progression, all potentially contributing to disease management. Analysis quality using ML is highly dependent on the dataset size and variability used for training. Wider public access would mean larger datasets for experimentation, resulting in higher-quality analysis, permitting for more conclusive research. This narrative review provides an outline of the fundamentals of MS pathology and pathogenesis, diagnostic techniques and data types in computational analysis, as well as collating literature pertaining to the application of computational techniques to MRI towards developing a better understanding of MS.
Collapse
Affiliation(s)
- Adam C. Szekely-Kohn
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Marco Castellani
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Daniel M. Espino
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Luca Baronti
- School of Computer Science, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Zubair Ahmed
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | | | - Michael Douglas
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
- Department of Neurology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, BirminghamDY1 2HQ, UK
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
5
|
Mayfield JD, Murtagh R, Ciotti J, Robertson D, Naqa IE. Time-Dependent Deep Learning Prediction of Multiple Sclerosis Disability. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:3231-3249. [PMID: 38871944 PMCID: PMC11612123 DOI: 10.1007/s10278-024-01031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 06/15/2024]
Abstract
The majority of deep learning models in medical image analysis concentrate on single snapshot timepoint circumstances, such as the identification of current pathology on a given image or volume. This is often in contrast to the diagnostic methodology in radiology where presumed pathologic findings are correlated to prior studies and subsequent changes over time. For multiple sclerosis (MS), the current body of literature describes various forms of lesion segmentation with few studies analyzing disability progression over time. For the purpose of longitudinal time-dependent analysis, we propose a combinatorial analysis of a video vision transformer (ViViT) benchmarked against traditional recurrent neural network of Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) architectures and a hybrid Vision Transformer-LSTM (ViT-LSTM) to predict long-term disability based upon the Extended Disability Severity Score (EDSS). The patient cohort was procured from a two-site institution with 703 patients' multisequence, contrast-enhanced MRIs of the cervical spine between the years 2002 and 2023. Following a competitive performance analysis, a VGG-16-based CNN-LSTM was compared to ViViT with an ablation analysis to determine time-dependency of the models. The VGG16-LSTM predicted trinary classification of EDSS score in 6 years with 0.74 AUC versus the ViViT with 0.84 AUC (p-value < 0.001 per 5 × 2 cross-validation F-test) on an 80:20 hold-out testing split. However, the VGG16-LSTM outperformed ViViT when patients with only 2 years of MRIs (n = 94) (0.75 AUC versus 0.72 AUC, respectively). Exact EDSS classification was investigated for both models using both classification and regression strategies but showed collectively worse performance. Our experimental results demonstrate the ability of time-dependent deep learning models to predict disability in MS using trinary stratification of disability, mimicking clinical practice. Further work includes external validation and subsequent observational clinical trials.
Collapse
Affiliation(s)
- John D Mayfield
- USF Health Department of Radiology, 2 Tampa General Circle, STC 6103, Tampa, FL, 33612, USA.
| | - Ryan Murtagh
- USF Health Department of Radiology, 2 Tampa General Circle, STC 6103, Tampa, FL, 33612, USA
| | - John Ciotti
- Department of Neurology, University of South Florida, Morsani College of Medicine, USF Multiple Sclerosis Center, 13330 USF Laurel Drive, Tampa, FL, 33612, USA
| | - Derrick Robertson
- Department of Neurology, James A. Haley VA Medical Center, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Issam El Naqa
- University of South Florida, College of Engineering, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
- H. Lee Moffitt Cancer Center Department of Machine Learning, Tampa, FL, 33612, USA
| |
Collapse
|
6
|
Ferrari R, Trinci M, Casinelli A, Treballi F, Leone E, Caruso D, Polici M, Faggioni L, Neri E, Galluzzo M. Radiomics in radiology: What the radiologist needs to know about technical aspects and clinical impact. LA RADIOLOGIA MEDICA 2024; 129:1751-1765. [PMID: 39472389 DOI: 10.1007/s11547-024-01904-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/16/2024] [Indexed: 12/17/2024]
Abstract
Radiomics represents the science of extracting and analyzing a multitude of quantitative features from medical imaging, revealing the quantitative potential of radiologic images. This scientific review aims to provide radiologists with a comprehensive understanding of radiomics, emphasizing its principles, applications, challenges, limits, and prospects. The limitations of standardization in current scientific production are analyzed, along with possible solutions proposed by some of the referenced papers. As the continuous evolution of medical imaging is ongoing, radiologists must be aware of new perspectives to play a central role in patient management.
Collapse
Affiliation(s)
- Riccardo Ferrari
- Emergency Radiology Department, San Camillo-Forlanini Hospital, Rome, Italy.
| | - Margherita Trinci
- Dipartimento Di Radiologia, P.O. Colline Dell'Albegna, Orbetello, Grosseto, Italy
| | - Alice Casinelli
- Diagnostic Imaging Department, Sandro Pertini Hospital, Rome, Italy
| | | | - Edoardo Leone
- Emergency Radiology Department, San Camillo-Forlanini Hospital, Rome, Italy
| | - Damiano Caruso
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant'Andrea University Hospital, Rome, Italy
| | - Michela Polici
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant'Andrea University Hospital, Rome, Italy
| | - Lorenzo Faggioni
- Department of Translational Research on New Technologies in Medicine e Surgery, Pisa University, Pisa, Italy
| | - Emanuele Neri
- Department of Translational Research on New Technologies in Medicine e Surgery, Pisa University, Pisa, Italy
| | - Michele Galluzzo
- Emergency Radiology Department, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
7
|
Yousef H, Malagurski Tortei B, Castiglione F. Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review. J Neurol 2024; 271:6543-6572. [PMID: 39266777 PMCID: PMC11447111 DOI: 10.1007/s00415-024-12651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating neurological disorder with a highly heterogeneous clinical presentation and course of progression. Disease-modifying therapies are the only available treatment, as there is no known cure for the disease. Careful selection of suitable therapies is necessary, as they can be accompanied by serious risks and adverse effects such as infection. Magnetic resonance imaging (MRI) plays a central role in the diagnosis and management of MS, though MRI lesions have displayed only moderate associations with MS clinical outcomes, known as the clinico-radiological paradox. With the advent of machine learning (ML) in healthcare, the predictive power of MRI can be improved by leveraging both traditional and advanced ML algorithms capable of analyzing increasingly complex patterns within neuroimaging data. The purpose of this review was to examine the application of MRI-based ML for prediction of MS disease progression. Studies were divided into five main categories: predicting the conversion of clinically isolated syndrome to MS, cognitive outcome, EDSS-related disability, motor disability and disease activity. The performance of ML models is discussed along with highlighting the influential MRI-derived biomarkers. Overall, MRI-based ML presents a promising avenue for MS prognosis. However, integration of imaging biomarkers with other multimodal patient data shows great potential for advancing personalized healthcare approaches in MS.
Collapse
Affiliation(s)
- Hibba Yousef
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates.
| | - Brigitta Malagurski Tortei
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | - Filippo Castiglione
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
- Institute for Applied Computing (IAC), National Research Council of Italy, Rome, Italy
| |
Collapse
|
8
|
Amin M, Martínez-Heras E, Ontaneda D, Prados Carrasco F. Artificial Intelligence and Multiple Sclerosis. Curr Neurol Neurosci Rep 2024; 24:233-243. [PMID: 38940994 PMCID: PMC11258192 DOI: 10.1007/s11910-024-01354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
In this paper, we analyse the different advances in artificial intelligence (AI) approaches in multiple sclerosis (MS). AI applications in MS range across investigation of disease pathogenesis, diagnosis, treatment, and prognosis. A subset of AI, Machine learning (ML) models analyse various data sources, including magnetic resonance imaging (MRI), genetic, and clinical data, to distinguish MS from other conditions, predict disease progression, and personalize treatment strategies. Additionally, AI models have been extensively applied to lesion segmentation, identification of biomarkers, and prediction of outcomes, disease monitoring, and management. Despite the big promises of AI solutions, model interpretability and transparency remain critical for gaining clinician and patient trust in these methods. The future of AI in MS holds potential for open data initiatives that could feed ML models and increasing generalizability, the implementation of federated learning solutions for training the models addressing data sharing issues, and generative AI approaches to address challenges in model interpretability, and transparency. In conclusion, AI presents an opportunity to advance our understanding and management of MS. AI promises to aid clinicians in MS diagnosis and prognosis improving patient outcomes and quality of life, however ensuring the interpretability and transparency of AI-generated results is going to be key for facilitating the integration of AI into clinical practice.
Collapse
Affiliation(s)
- Moein Amin
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Eloy Martínez-Heras
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Ferran Prados Carrasco
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain.
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.
- Center for Medical Image Computing, University College London, London, UK.
- National Institute for Health Research Biomedical Research Centre at UCL and UCLH, London, UK.
| |
Collapse
|
9
|
Feng J, Huang Y, Zhang X, Yang Q, Guo Y, Xia Y, Peng C, Li C. Research and application progress of radiomics in neurodegenerative diseases. META-RADIOLOGY 2024; 2:100068. [DOI: 10.1016/j.metrad.2024.100068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
10
|
Kelly BS, Mathur P, McGuinness G, Dillon H, Lee EH, Yeom KW, Lawlor A, Killeen RP. A Radiomic "Warning Sign" of Progression on Brain MRI in Individuals with MS. AJNR Am J Neuroradiol 2024; 45:236-243. [PMID: 38216299 PMCID: PMC11285987 DOI: 10.3174/ajnr.a8104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/08/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND AND PURPOSE MS is a chronic progressive, idiopathic, demyelinating disorder whose diagnosis is contingent on the interpretation of MR imaging. New MR imaging lesions are an early biomarker of disease progression. We aimed to evaluate a machine learning model based on radiomics features in predicting progression on MR imaging of the brain in individuals with MS. MATERIALS AND METHODS This retrospective cohort study with external validation on open-access data obtained full ethics approval. Longitudinal MR imaging data for patients with MS were collected and processed for machine learning. Radiomics features were extracted at the future location of a new lesion in the patients' prior MR imaging ("prelesion"). Additionally, "control" samples were obtained from the normal-appearing white matter for each participant. Machine learning models for binary classification were trained and tested and then evaluated the external data of the model. RESULTS The total number of participants was 167. Of the 147 in the training/test set, 102 were women and 45 were men. The average age was 42 (range, 21-74 years). The best-performing radiomics-based model was XGBoost, with accuracy, precision, recall, and F1-score of 0.91, 0.91, 0.91, and 0.91 on the test set, and 0.74, 0.74, 0.74, and 0.70 on the external validation set. The 5 most important radiomics features to the XGBoost model were associated with the overall heterogeneity and low gray-level emphasis of the segmented regions. Probability maps were produced to illustrate potential future clinical applications. CONCLUSIONS Our machine learning model based on radiomics features successfully differentiated prelesions from normal-appearing white matter. This outcome suggests that radiomics features from normal-appearing white matter could serve as an imaging biomarker for progression of MS on MR imaging.
Collapse
Affiliation(s)
- Brendan S Kelly
- From the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent's University Hospital, Dublin, Ireland
- Insight Centre for Data Analytics (B.S.K., P.M., A.L.), University College Dublin, Dublin, Ireland
- Wellcome Trust and Health Research Board (B.S.K.), Irish Clinical Academic Training, Dublin, Ireland
- School of Medicine (B.S.K.), University College Dublin, Dublin, Ireland
| | - Prateek Mathur
- Insight Centre for Data Analytics (B.S.K., P.M., A.L.), University College Dublin, Dublin, Ireland
| | - Gerard McGuinness
- From the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent's University Hospital, Dublin, Ireland
| | - Henry Dillon
- From the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent's University Hospital, Dublin, Ireland
| | - Edward H Lee
- Lucille Packard Children's Hospital at Stanford (E.H.L., K.W.Y.), Stanford, California
| | - Kristen W Yeom
- Lucille Packard Children's Hospital at Stanford (E.H.L., K.W.Y.), Stanford, California
| | - Aonghus Lawlor
- Insight Centre for Data Analytics (B.S.K., P.M., A.L.), University College Dublin, Dublin, Ireland
| | - Ronan P Killeen
- From the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
11
|
Faustino R, Lopes C, Jantarada A, Mendonça A, Raposo R, Ferrão C, Freitas J, Mateus C, Pinto A, Almeida E, Gomes N, Marques L, Palavra F. Neuroimaging characterization of multiple sclerosis lesions in pediatric patients: an exploratory radiomics approach. Front Neurosci 2024; 18:1294574. [PMID: 38370435 PMCID: PMC10869542 DOI: 10.3389/fnins.2024.1294574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Multiple sclerosis (MS), a chronic inflammatory immune-mediated disease of the central nervous system (CNS), is a common condition in young adults, but it can also affect children. The aim of this study was to construct radiomic models of lesions based on magnetic resonance imaging (MRI, T2-weighted-Fluid-Attenuated Inversion Recovery), to understand the correlation between extracted radiomic features, brain and lesion volumetry, demographic, clinical and laboratorial data. Methods The neuroimaging data extracted from eleven scans of pediatric MS patients were analyzed. A total of 60 radiomic features based on MR T2-FLAIR images were extracted and used to calculate gray level co-occurrence matrix (GLCM). The principal component analysis and ROC analysis were performed to select the radiomic features, respectively. The realized classification task by the logistic regression models was performed according to these radiomic features. Results Ten most relevant features were selected from data extracted. The logistic regression applied to T2-FLAIR radiomic features revealed significant predictor for multiple sclerosis (MS) lesion detection. Only the variable "contrast" was statistically significant, indicating that only this variable played a significant role in the model. This approach enhances the classification of lesions from normal tissue. Discussion and conclusion Our exploratory results suggest that the radiomic models based on MR imaging (T2-FLAIR) may have a potential contribution to characterization of brain tissues and classification of lesions in pediatric MS.
Collapse
Affiliation(s)
- Ricardo Faustino
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
- Faculty of Science, Institute of Biophysics and Biomedical Engineering, University of Lisbon, Lisbon, Portugal
- Biomedical Research Group, Faculty of Engineering, Faculty of Veterinary Medicine NICiTeS, Lusófona University, Lisbon, Portugal
| | - Cristina Lopes
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Afonso Jantarada
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Ana Mendonça
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Rafael Raposo
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Cristina Ferrão
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Joana Freitas
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Constança Mateus
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Ana Pinto
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Ellen Almeida
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Nuno Gomes
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Liliana Marques
- Neuroimaging and Biomedicine Research Group, Medical Imaging and Radiotherapy Research Unit, CrossI&D: Lisbon Research Center, Portuguese Red Cross Higher Health School (ESSCVP), Lisbon, Portugal
| | - Filipe Palavra
- Centre for Child Development – Neuropediatrics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Jiang X, Shen C, Caba B, Arnold DL, Elliott C, Zhu B, Fisher E, Belachew S, Gafson AR. Assessing the utility of magnetic resonance imaging-based "SuStaIn" disease subtyping for precision medicine in relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler Relat Disord 2023; 77:104869. [PMID: 37459715 DOI: 10.1016/j.msard.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Patient stratification and individualized treatment decisions based on multiple sclerosis (MS) clinical phenotypes are arbitrary. Subtype and Staging Inference (SuStaIn), a published machine learning algorithm, was developed to identify data-driven disease subtypes with distinct temporal progression patterns using brain magnetic resonance imaging; its clinical utility has not been assessed. The objective of this study was to explore the prognostic capability of SuStaIn subtyping and whether it is a useful personalized predictor of treatment effects of natalizumab and dimethyl fumarate. METHODS Subtypes were available from the trained SuStaIn model for 3 phase 3 clinical trials in relapsing-remitting and secondary progressive MS. Regression models were used to determine whether baseline SuStaIn subtypes could predict on-study clinical and radiological disease activity and progression. Differences in treatment responses relative to placebo between subtypes were determined using interaction terms between treatment and subtype. RESULTS Natalizumab and dimethyl fumarate reduced inflammatory disease activity in all SuStaIn subtypes (all p < 0.001). SuStaIn MS subtyping alone did not discriminate responder heterogeneity based on new lesion formation and disease progression (p > 0.05 across subtypes). CONCLUSION SuStaIn subtypes correlated with disease severity and functional impairment at baseline but were not predictive of disability progression and could not discriminate treatment response heterogeneity.
Collapse
Affiliation(s)
| | - Changyu Shen
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Bastien Caba
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Douglas L Arnold
- NeuroRx Research, Montreal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | | | - Bing Zhu
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
13
|
Liu D, Cabezas M, Wang D, Tang Z, Bai L, Zhan G, Luo Y, Kyle K, Ly L, Yu J, Shieh CC, Nguyen A, Kandasamy Karuppiah E, Sullivan R, Calamante F, Barnett M, Ouyang W, Cai W, Wang C. Multiple sclerosis lesion segmentation: revisiting weighting mechanisms for federated learning. Front Neurosci 2023; 17:1167612. [PMID: 37274196 PMCID: PMC10232857 DOI: 10.3389/fnins.2023.1167612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Background and introduction Federated learning (FL) has been widely employed for medical image analysis to facilitate multi-client collaborative learning without sharing raw data. Despite great success, FL's applications remain suboptimal in neuroimage analysis tasks such as lesion segmentation in multiple sclerosis (MS), due to variance in lesion characteristics imparted by different scanners and acquisition parameters. Methods In this work, we propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms. Specifically, a learnable weight is assigned to each local node during the aggregation process, based on its segmentation performance. In addition, the segmentation loss function in each client is also re-weighted according to the lesion volume for the data during training. Results The proposed method has been validated on two FL MS segmentation scenarios using public and clinical datasets. Specifically, the case-wise and voxel-wise Dice score of the proposed method under the first public dataset is 65.20 and 74.30, respectively. On the second in-house dataset, the case-wise and voxel-wise Dice score is 53.66, and 62.31, respectively. Discussions and conclusions The Comparison experiments on two FL MS segmentation scenarios using public and clinical datasets have demonstrated the effectiveness of the proposed method by significantly outperforming other FL methods. Furthermore, the segmentation performance of FL incorporating our proposed aggregation mechanism can achieve comparable performance to that from centralized training with all the raw data.
Collapse
Affiliation(s)
- Dongnan Liu
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Mariano Cabezas
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Dongang Wang
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Zihao Tang
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Lei Bai
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Geng Zhan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Yuling Luo
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Kain Kyle
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Linda Ly
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - James Yu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Chun-Chien Shieh
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Aria Nguyen
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | | | - Ryan Sullivan
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Fernando Calamante
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
- Sydney Imaging, The University of Sydney, Sydney, NSW, Australia
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Wanli Ouyang
- School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Weidong Cai
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Du S, Yuan C, Zhou Q, Huang X, Meng H, Chen M, Wang H, Huang Q, Xiang S, Qian D, Li B, Chen S, Zhang M. Deep learning-based PET/MR radiomics for the classification of annualized relapse rate in multiple sclerosis. Mult Scler Relat Disord 2023; 75:104750. [PMID: 37196386 DOI: 10.1016/j.msard.2023.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/03/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Background Annualized Relapse Rate (ARR) is one of the most important indicators of disease progression in patients with Multiple Sclerosis (MS). However, imaging markers that can effectively predict ARR are currently unavailable. In this study, we developed a deep learning-based method for the automated extraction of radiomics features from Positron Emission Computed Tomography (PET) and Magnetic Resonance (MR) images to predict ARR in patients with MS. Methods Twenty-five patients with a definite diagnosis of Relapsing-Remitting MS (RRMS) were enrolled in this study. We designed a multi-branch fully convolutional neural network to segment lesions from PET/MR images. After that, radiomics features were extracted from the obtained lesion volume of interest. Three feature selection methods were used to retain features highly correlated with ARR. We combined four classifiers with different feature selection methods to form twelve models for ARR classification. Finally, the model with the best performance was chosen. Results Our network achieved precise automatic lesion segmentation with a Dice Similarity Coefficient (DSC) of 0.81 and a precision of 0.86. Radiomics features from lesions filtered by Recursive Feature Elimination (RFE) achieved the best performance in the Support Vector Machines (SVM) classifier. The classification model performance was best when radiomics from both PET and MR were combined to predict ARR, with high accuracy at 0.88 and Area Under the ROC curves (AUC) at 0.96, which outperformed MR or PET-based model and clinical indicators-based model. Conclusion Our automatic segmentation masks can replace manual ones with excellent performance. Furthermore, the deep learning and PET/MR radiomics-based model in our research is an effective tool in assisting ARR classification of MS patients.
Collapse
Affiliation(s)
- Sijia Du
- School of Biomedical Engineering, Shanghai Jiao Tong University, China; Department of Nuclear Medicine, Ruijin Hospital,Shanghai Jiao Tong University School of Medicine, China
| | - Cheng Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, China; College of Medical Imaging, Shanghai University of Medicine and Health Sciences, China
| | - Qinming Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital,Shanghai Jiao Tong University School of Medicine, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Ruijin Hospital,Shanghai Jiao Tong University School of Medicine, China
| | - Hongping Meng
- Department of Nuclear Medicine, Ruijin Hospital,Shanghai Jiao Tong University School of Medicine, China
| | - Meidi Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Hanzhong Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, China; Department of Nuclear Medicine, Ruijin Hospital,Shanghai Jiao Tong University School of Medicine, China
| | - Qiu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Suncheng Xiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Dahong Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital,Shanghai Jiao Tong University School of Medicine, China.
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital,Shanghai Jiao Tong University School of Medicine, China; Co-innovation Center of Neuroregeneration, Nantong University, China.
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital,Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
15
|
Taloni A, Farrelly FA, Pontillo G, Petsas N, Giannì C, Ruggieri S, Petracca M, Brunetti A, Pozzilli C, Pantano P, Tommasin S. Evaluation of Disability Progression in Multiple Sclerosis via Magnetic-Resonance-Based Deep Learning Techniques. Int J Mol Sci 2022; 23:ijms231810651. [PMID: 36142563 PMCID: PMC9505100 DOI: 10.3390/ijms231810651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Short-term disability progression was predicted from a baseline evaluation in patients with multiple sclerosis (MS) using their three-dimensional T1-weighted (3DT1) magnetic resonance images (MRI). One-hundred-and-eighty-one subjects diagnosed with MS underwent 3T-MRI and were followed up for two to six years at two sites, with disability progression defined according to the expanded-disability-status-scale (EDSS) increment at the follow-up. The patients’ 3DT1 images were bias-corrected, brain-extracted, registered onto MNI space, and divided into slices along coronal, sagittal, and axial projections. Deep learning image classification models were applied on slices and devised as ResNet50 fine-tuned adaptations at first on a large independent dataset and secondly on the study sample. The final classifiers’ performance was evaluated via the area under the curve (AUC) of the false versus true positive diagram. Each model was also tested against its null model, obtained by reshuffling patients’ labels in the training set. Informative areas were found by intersecting slices corresponding to models fulfilling the disability progression prediction criteria. At follow-up, 34% of patients had disability progression. Five coronal and five sagittal slices had one classifier surviving the AUC evaluation and null test and predicted disability progression (AUC > 0.72 and AUC > 0.81, respectively). Likewise, fifteen combinations of classifiers and axial slices predicted disability progression in patients (AUC > 0.69). Informative areas were the frontal areas, mainly within the grey matter. Briefly, 3DT1 images may give hints on disability progression in MS patients, exploiting the information hidden in the MRI of specific areas of the brain.
Collapse
Affiliation(s)
- Alessandro Taloni
- Institute for Complex Systems, National Research Council (ISC-CNR), 00185 Rome, Italy
| | | | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy
- Department of Electrical Engineering and Information Technology, Federico II University of Naples, 80125 Naples, Italy
| | - Nikolaos Petsas
- Department of Radiology, IRCCS NEUROMED, 86077 Pozzilli, Italy
| | - Costanza Giannì
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Serena Ruggieri
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Maria Petracca
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Carlo Pozzilli
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Patrizia Pantano
- Department of Radiology, IRCCS NEUROMED, 86077 Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Tommasin
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
16
|
Ma Y, Zhang C, Cabezas M, Song Y, Tang Z, Liu D, Cai W, Barnett M, Wang C. Multiple Sclerosis Lesion Analysis in Brain Magnetic Resonance Images: Techniques and Clinical Applications. IEEE J Biomed Health Inform 2022; 26:2680-2692. [PMID: 35171783 DOI: 10.1109/jbhi.2022.3151741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system, characterized by the appearance of focal lesions in the white and gray matter that topographically correlate with an individual patients neurological symptoms and signs. Magnetic resonance imaging (MRI) provides detailed in-vivo structural information, permitting the quantification and categorization of MS lesions that critically inform disease management. Traditionally, MS lesions have been manually annotated on 2D MRI slices, a process that is inefficient and prone to inter-/intra-observer errors. Recently, automated statistical imaging analysis techniques have been proposed to detect and segment MS lesions based on MRI voxel intensity. However, their effectiveness is limited by the heterogeneity of both MRI data acquisition techniques and the appearance of MS lesions. By learning complex lesion representations directly from images, deep learning techniques have achieved remarkable breakthroughs in the MS lesion segmentation task. Here, we provide a comprehensive review of state-of-the-art automatic statistical and deep-learning MS segmentation methods and discuss current and future clinical applications. Further, we review technical strategies, such as domain adaptation, to enhance MS lesion segmentation in real-world clinical settings.
Collapse
|