1
|
Yu B, Huang C, Fan X, Liu D, Zhang Y, Ding J. Differentiation Between Parotid Adenolymphoma and Malignant Tumor Based on Multimodal Functional MRI of Radiomics and Intratumoral Vascular ITSS Classification. Ann Surg Oncol 2025:10.1245/s10434-025-17399-2. [PMID: 40358780 DOI: 10.1245/s10434-025-17399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/13/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Differentiating between parotid adenolymphoma and malignant tumors remains challenging. PURPOSE This study aims to improve preoperative diagnosis accuracy by evaluating the role of multimodal functional magnetic resonance imaging (MRI) and advanced radiomics analysis. METHODS We retrospectively analyzed 124 patients with adenolymphoma and malignant parotid tumors, divided into primary (n = 84) and test (n = 40) cohorts. Tumor regions were manually labeled on susceptibility-weighted imaging (SWI), diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted imaging (CE-T1WI). Seven radiomics models were constructed using logistic regression. We also incorporated intratumoral susceptibility signal (ITSS) grading and performed histogram analysis of apparent diffusion coefficient (ADC) maps. RESULTS The united radiomics model combining SWI, DWI, and CE-T1WI showed the highest diagnostic performance (area under the curve (AUC) = 0.95, accuracy = 0.93, specificity = 0.93) in the primary cohort, outperforming single-sequence and double-sequence models. The test set validated the model's good diagnostic performance (AUC = 0.9). ITSS grading significantly differed between adenolymphomas and malignant tumors (p < 0.001). ADC histogram analysis revealed significant differences in mean, 10th percentile, and kurtosis values between the two groups. CONCLUSIONS The multisequence radiomics model combining DWI, SWI, and CE-T1WI provides a comprehensive and accurate noninvasive approach for differentiating parotid adenolymphoma from malignant tumors. This method helps avoid the risks associated with invasive procedures, such as tumor cell implantation and metastasis, while guiding personalized surgical decision-making. By offering a novel diagnostic tool, this study enhances the precision of preoperative tumor characterization and supports more effective treatment planning and prognosis assessment for patients with parotid gland tumors.
Collapse
Affiliation(s)
- Baoting Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise and League of PHD Technology Co., Ltd, Beijing, China
| | - Xiaofei Fan
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongyao Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuting Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jun Ding
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Warstadt M, Winegar B, Shah LM. Imaging of Cervical Spine Trauma: Update of Techniques and Clinical Relevance. Clin Spine Surg 2024; 37:440-450. [PMID: 39315684 DOI: 10.1097/bsd.0000000000001677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Imaging of cervical spine trauma most commonly begins with computed tomography (CT) for initial osseous and basic soft tissue evaluation, followed by magnetic resonance imaging (MRI) for complementary evaluation of the neural structures (i.e., spinal cord, nerves) and soft tissues (i.e., ligaments). Although CT and conventional MRI sequences have been the mainstay of trauma imaging for decades, there have been significant advances in CT processing, imaging sequences and techniques made possible by hardware and software development, and artificial intelligence. These advancements may provide advantages in increasing sensitivity for detection of pathology as well as in decreasing imaging and interpretation time. Unquestionably, the most important role of imaging is to provide information to help direct patient care, including diagnosis, next steps in treatment plan, and prognosis. As such, there has been a growing body of research investigating the clinical relevance of imaging findings to clinical outcomes in the setting of spinal cord injury. This article will focus on these recent advances in imaging of cervical spinal trauma.
Collapse
Affiliation(s)
- Melissa Warstadt
- Department of Radiology, University of Utah, 30 N Mario Capecchi Dr. Salt Lake City, UT
| | | | | |
Collapse
|
3
|
Khaing ZZ, Leyendecker J, Harmon JN, Sivakanthan S, Cates LN, Hyde JE, Krueger M, Glenny RW, Bruce M, Hofstetter CP. Perfusion imaging metrics after acute traumatic spinal cord injury are associated with injury severity in rats and humans. Sci Transl Med 2024; 16:eadn4970. [PMID: 39292799 DOI: 10.1126/scitranslmed.adn4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/25/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024]
Abstract
Traumatic spinal cord injury (tSCI) causes an immediate loss of neurological function, and the prediction of recovery is difficult in the acute phase. In this study, we used contrast-enhanced ultrasound imaging to quantify intraspinal vascular disruption acutely after tSCI. In a rodent thoracic tSCI model, contrast-enhanced ultrasound revealed a perfusion area deficit that was positively correlated with injury severity and negatively correlated with hindlimb locomotor function at 8 weeks after injury. The spinal perfusion index was calculated by normalizing the contrast inflow at the injury center to the contrast inflow in the injury periphery. The spinal perfusion index decreased with increasing injury severity and positively correlated with hindlimb locomotor function at 8 weeks after injury. The feasibility of intraoperative contrast-enhanced ultrasound imaging was further tested in a cohort of 27 patients with acute tSCI of varying severity and including both motor-complete and motor-incomplete tSCIs. Both the perfusion area deficit and spinal perfusion index were different between motor-complete and motor-incomplete patients. Moreover, the perfusion area deficit and spinal perfusion index correlated with the injury severity at intake and exhibited a correlation with extent of functional recovery at 6 months. Our data suggest that intraoperative contrast-enhanced, ultrasound-derived metrics are correlated with injury severity and chronic functional outcome after tSCI. Larger clinical studies are required to better assess the reliability of the proposed contrast-enhanced ultrasound biomarkers and their prognostic capacity.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105, USA
| | - Jannik Leyendecker
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105, USA
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Orthopedics and Trauma Surgery, 50937 Cologne, North Rhine-Westphalia, Germany
| | - Jennifer N Harmon
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105, USA
| | - Sananthan Sivakanthan
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105, USA
| | - Lindsay N Cates
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105, USA
| | - Jeffrey E Hyde
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105, USA
| | - Melissa Krueger
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98105, USA
| | - Robb W Glenny
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98105, USA
| | - Matthew Bruce
- Applied Physics Laboratory, CIMU, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
4
|
Schilling KG, Combes AJE, Ramadass K, Rheault F, Sweeney G, Prock L, Sriram S, Cohen-Adad J, Gore JC, Landman BA, Smith SA, O'Grady KP. Influence of preprocessing, distortion correction and cardiac triggering on the quality of diffusion MR images of spinal cord. Magn Reson Imaging 2024; 108:11-21. [PMID: 38309376 PMCID: PMC11218893 DOI: 10.1016/j.mri.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 02/05/2024]
Abstract
Diffusion MRI of the spinal cord (SC) is susceptible to geometric distortion caused by field inhomogeneities, and prone to misalignment across time series and signal dropout caused by biological motion. Several modifications of image acquisition and image processing techniques have been introduced to overcome these artifacts, but their specific benefits are largely unproven and warrant further investigations. We aim to evaluate two specific aspects of image acquisition and processing that address image quality in diffusion studies of the spinal cord: susceptibility corrections to reduce geometric distortions, and cardiac triggering to minimize motion artifacts. First, we evaluate 4 distortion preprocessing strategies on 7 datasets of the cervical and lumbar SC and find that while distortion correction techniques increase geometric similarity to structural images, they are largely driven by the high-contrast cerebrospinal fluid, and do not consistently improve the geometry within the cord nor improve white-to-gray matter contrast. We recommend at a minimum to perform bulk-motion correction in preprocessing and posit that improvements/adaptations are needed for spinal cord distortion preprocessing algorithms, which are currently optimized and designed for brain imaging. Second, we design experiments to evaluate the impact of removing cardiac triggering. We show that when triggering is foregone, images are qualitatively similar to triggered sequences, do not have increased prevalence of artifacts, and result in similar diffusion tensor indices with similar reproducibility to triggered acquisitions. When triggering is removed, much shorter acquisitions are possible, which are also qualitatively and quantitatively similar to triggered sequences. We suggest that removing cardiac triggering for cervical SC diffusion can be a reasonable option to save time with minimal sacrifice to image quality.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Anna J E Combes
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karthik Ramadass
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Francois Rheault
- Medical Imaging and Neuroinformatic (MINi) Lab, Department of Computer Science, University of Sherbrooke, Canada
| | - Grace Sweeney
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Logan Prock
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Subramaniam Sriram
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montreal, QC, Canada; Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - John C Gore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kristin P O'Grady
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Talbott JF, Shah V, Ye AQ. Diffusion Imaging of the Spinal Cord: Clinical Applications. Radiol Clin North Am 2024; 62:273-285. [PMID: 38272620 DOI: 10.1016/j.rcl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Spinal cord pathologic condition often presents as a neurologic emergency where timely and accurate diagnosis is critical to expedite appropriate treatment and minimize severe morbidity and even mortality. MR imaging is the gold standard imaging technique for diagnosing patients with suspected spinal cord pathologic condition. This review will focus on the basic principles of diffusion imaging and how spinal anatomy presents technical challenges to its application. Both the promises and shortcomings of spinal diffusion imaging will then be explored in the context of several clinical spinal cord pathologies for which diffusion has been evaluated.
Collapse
Affiliation(s)
- Jason F Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Avenue, Room 1X57, San Francisco, CA 94110, USA; Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital.
| | - Vinil Shah
- Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, 505 Parnassus Avenue, #M-391, San Francisco, CA 94143, USA
| | - Allen Q Ye
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Avenue, Room 1X57, San Francisco, CA 94110, USA; Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, 505 Parnassus Avenue, #M-391, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Mihailovic JM, Sanganahalli BG, Hyder F, Chitturi J, Elkabes S, Heary RF, Kannurpatti SS. Cross-hemicord spinal fiber reorganization associates with cortical sensory and motor network expansion in the rat model of hemicontusion cervical spinal cord injury. Neurosci Lett 2024; 820:137607. [PMID: 38141752 PMCID: PMC10797561 DOI: 10.1016/j.neulet.2023.137607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Magnetic resonance imaging plays an important role in characterizing microstructural changes and reorganization after traumatic injuries to the nervous system. In this study, we tested the feasibility of ex-vivo spinal cord diffusion tensor imaging (DTI) in combination with in vivo brain functional MRI to characterize spinal reorganization and its supraspinal association after a hemicontusion cervical spinal cord injury (SCI). DTI parameters (fractional anisotropy [FA], mean diffusion [MD]) and fiber orientation changes related to reorganization in the contused cervical spinal cord were compared to sham specimens. Altered fiber density and fiber directions occurred across the ipsilateral and contralateral hemicords but with only ipsilateral FA and MD changes. The hemicontusion SCI resulted in ipsilateral fiber breaks, voids and vivid fiber reorientations along the injury epicenter. Fiber directional changes below the injury level were primarily inter-hemispheric, indicating prominent below-level cross-hemispheric reorganization. In vivo resting state functional connectivity of the brain from the respective rats before obtaining the spinal cord samples indicated spatial expansion and increased connectivity strength across both the sensory and motor networks after SCI. The consistency of the neuroplastic changes along the neuraxis (both brain and spinal cord) at the single-subject level, indicates that distinctive reorganizational relationships exist between the spinal cord and the brain post-SCI.
Collapse
Affiliation(s)
- Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520, United States.
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520, United States.
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520, United States.
| | - Jyothsna Chitturi
- Department of Radiology, Rutgers Biomedical and Health Sciences-New Jersey Medical School, 30 Bergen Street, Newark, NJ 07103, United States
| | - Stella Elkabes
- Department of Neurosurgery, Rutgers Biomedical and Health Sciences-New Jersey Medical School. 205 South Orange Avenue, Newark, NJ 07103, United States.
| | - Robert F Heary
- Division of Neurosurgery, Hackensack Meridian School of Medicine, Mountainside Medical Center, Montclair, NJ, United States.
| | - Sridhar S Kannurpatti
- Department of Radiology, Rutgers Biomedical and Health Sciences-New Jersey Medical School, 30 Bergen Street, Newark, NJ 07103, United States.
| |
Collapse
|
7
|
Ahmed RU, Medina‐Aguinaga D, Adams S, Knibbe CA, Morgan M, Gibson D, Kim J, Sharma M, Chopra M, Davison S, Sherwood LC, Negahdar M, Bert R, Ugiliweneza B, Hubscher C, Budde MD, Xu J, Boakye M. Predictive values of spinal cord diffusion magnetic resonance imaging to characterize outcomes after contusion injury. Ann Clin Transl Neurol 2023; 10:1647-1661. [PMID: 37501362 PMCID: PMC10502634 DOI: 10.1002/acn3.51855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES To explore filtered diffusion-weighted imaging (fDWI), in comparison with conventional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), as a predictor for long-term locomotor and urodynamic (UD) outcomes in Yucatan minipig model of spinal cord injury (SCI). Additionally, electrical conductivity of neural tissue using D-waves above and below the injury was measured to assess correlations between fDWI and D-waves data. METHODS Eleven minipigs with contusion SCI at T8-T10 level underwent MRI at 3T 4 h. post-SCI. Parameters extracted from region of interest analysis included Daxial from fDWI at injury site, fractional anisotropy and radial diffusivity from DTI above the injury site along with measures of edema length and cord width at injury site from T2 -weighted images. Locomotor recovery was assessed pre- and weekly post-SCI through porcine thoracic injury behavior scale (PTIBS) and UD were performed pre- and at 12 weeks of SCI. D-waves latency and amplitude differences were recorded before and immediately after SCI. RESULTS Two groups of pigs were found based on the PTIBS at week 12 (p < 0.0001) post-SCI and were labeled "poor" and "good" recovery. D-waves amplitude decreased below injury and increased above injury. UD outcomes pre/post SCI changed significantly. Conventional MRI metrics from T2 -weighted images were significantly correlated with diffusion MRI metrics. Daxial at injury epicenter was diminished by over 50% shortly after SCI, and it differentiated between good and poor locomotor recovery and UD outcomes. INTERPRETATION Similar to small animal studies, fDWI from acute imaging after SCI is a promising predictor for functional outcomes in large animals.
Collapse
Affiliation(s)
- Rakib Uddin Ahmed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Daniel Medina‐Aguinaga
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Shawns Adams
- Department of NeurosurgeryDuke UniversityRaleighNorth CarolinaUSA
| | - Chase A. Knibbe
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Monique Morgan
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Destiny Gibson
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Joo‐won Kim
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Mayur Sharma
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Manpreet Chopra
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Steven Davison
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Leslie C. Sherwood
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - M.J. Negahdar
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Robert Bert
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Charles Hubscher
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Matthew D. Budde
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Clement J. Zablocki Veterans Affairs Medical CenterMilwaukeeWisconsinUSA
| | - Junqian Xu
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
8
|
Meyer BP, Lee SY, Kurpad SN, Budde MD. Differential Trajectory of Diffusion and Perfusion Magnetic Resonance Imaging of Rat Spinal Cord Injury. J Neurotrauma 2023; 40:918-930. [PMID: 36226406 PMCID: PMC10150724 DOI: 10.1089/neu.2022.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic spinal cord injury causes rapid neuronal and vascular injury, and predictive biomarkers are needed to facilitate acute patient management. This study examined the progression of magnetic resonance imaging (MRI) biomarkers after spinal cord injury and their ability to predict long-term neurological outcomes in a rodent model, with an emphasis on diffusion-weighted imaging (DWI) markers of axonal injury and perfusion-weighted imaging of spinal cord blood flow (SCBF). Adult Sprague-Dawley rats received a cervical contusion injury of varying severity (injured = 30, sham = 9). MRI at 4 h, 48-h, and 12-weeks post-injury included T1, T2, perfusion, and DWI. Locomotor outcome was assessed up to 12 weeks post-injury. At 4 h, the deficit in SCBF was larger than the DWI lesion, and although SCBF partially recovered by 48 h, the DWI lesion expanded. At 4 h, the volume of the SCBF deficit (R2 = 0.56, padj < 0.01) was significantly correlated with 12-week locomotor outcome, whereas DWI (R2 = 0.30, padj < 0.01) was less predictive of outcome. At 48 h, SCBF (R2 = 0.41, padj < 0.01) became less associated with outcome, and DWI (R2 = 0.38, padj < 0.01) lesion volume became more closely related to outcome. Spinal cord perfusion has unique spatiotemporal dynamics compared with diffusion measures of axonal damage and highlights the importance of acute perfusion abnormalities. Perfusion and diffusion offer complementary and clinically relevant insight into physiological and structural abnormalities following spinal cord injury beyond those afforded by T1 or T2 contrasts.
Collapse
Affiliation(s)
- Briana P. Meyer
- Neuroscience Doctoral Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Seung-Yi Lee
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Clement J. Zablocki Veterans' Affairs Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|